

Ph: 970-871-6772 · Fax: 970-879-8023 · P.O. Box 775966 · Steamboat Springs, Colorado 80477

Drainage Study and Stormwater Quality Plan for Eddyline Townhomes 1940 Bridge Lane, Steamboat Springs, CO

Drainage Report: 8/1/2025 Revised: 10/22/2025

Prepared by: Matthew McLeod, P.E. Four Points Surveying & Engineering

P.O. Box 775966 Steamboat Springs, Colorado 80477 (970) 871-6772

Table of Contents

1.0 Int	roduction	1
A.	Location	1
B.	Planning Application	1
C.	Drainage Reports for Adjacent Developments	2
2.0 Dra	ainage Criteria and Methodology Used	2
A.	Design Rainfall and Storm Frequency	2
B.	Runoff Calculation Methodology	2
C.	Storm Sewer Design Methodology	2
3.0 Exi	sting Conditions	2
A.	Ground Cover, Imperviousness, Topography and Size	2
B.	Existing Stormwater Systems	2
C.	Site Outfall and Ultimate Outfall Locations	3
D.	NRCS Soil Type	3
E.	Existing Easements	3
F.	FEMA Map Reviewal	3
4.0 Pro	posed Conditions	3
A.	Ground Cover, Imperviousness, and Topography	3
B.	Proposed Water Quality Conditions	4
C.	Proposed Stormwater Systems	4
D.	Outlets: Historic and Proposed Flow	4
E.	Hydraulic Calculations	4
F.	Major and Minor Flow Summary Table	4
G.	Proposed Easements	4
Н.	Off Site Flows	5
I.	Impacts to Downstream Properties	5
J.	Detention Pond	5
K.	Culverts	5
L.	Drainage Channels	5
5.0 Pos	st Construction Stormwater Management	5
6.0 Co	nclusions	5
A.	General Summary	5
B.	Compliance	6

C.	Historic and Proposed Site Flows	6
6.0 Wa	ter Quality Operation and Maintenance (O&M) Plan	6
7.0 Ref	erences	6
8.0 Apr	pendices	6

NOTE

City of Steamboat Springs plan review and approval is only for general conformance with City design criteria and City code. The City is not responsible for the accuracy and adequacy of the design, dimensions, and elevations that shall be confirmed and correlated at this job site. The City of Steamboat Springs assumes no responsibility for the completeness or accuracy of this document.

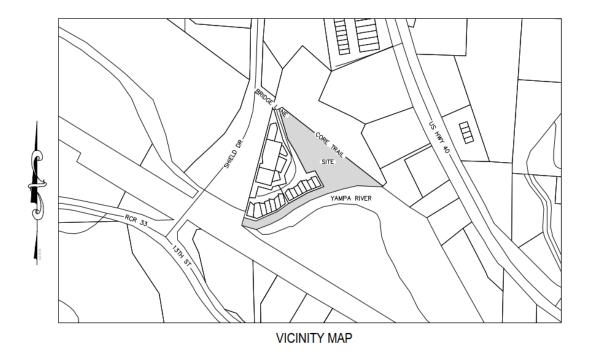
CERTIFICATION

I hereby affirm that this Drainage Report for Eddyline Townhomes was prepared by me (or under my direct supervision) for the owners thereof and is, to the best of my knowledge, in accordance with the provisions of the City of Steamboat Springs Storm Drainage Criteria. I understand that the City of Steamboat Springs does not and will not assume liability for drainage facilities designed by others.

Matthew McLeod, P.E.

State of Colorado No. 0044949

Date:----



1.0 Introduction

This report provides a detailed analysis of the existing drainage conditions and proposed post-development drainage conditions for the construction of four (4) residential buildings to be known under the development plan as Eddyline Townhomes. The parcel is adjacent to the Yampa River with the Steamboat Springs Core Trail running along the northeast property line and is approximately 2.17 acres. An existing development exists to the west with residential and commercial use. This report includes all data, engineering methods, assumptions, and calculations used by Four Points Surveying and Engineering (Four Points) to design the stormwater drainage and water treatment systems for the project. Four Points prepared this report and performed engineering calculations for the project in accordance with the most recent version of the City of Steamboat Springs Drainage Criteria and Engineering Standards.

A. Location

Figure 1: Vicinity Map

Legal Description: Future Expansion Parcel, Riverfront Park located in the NW $\frac{1}{2}$ of Section 7, Township 6 North, Range 84 West of the 6^{th} P.m.

B. Planning Application

This drainage study is for a development plan application for the proposed Project and was prepared by Four Points Surveying and Engineering on behalf of the Owner, Kruse Builders, LLC.

C. Drainage Reports for Adjacent Developments

The following drainage reports for adjacent developments were reviewed as part of this drainage study.

- 1. Riverfront Industrial Park (Lot 2 Petrillo Subdivision) dated October 13th, 2005 and prepared by Civil Design Consultants (CDC)
- 2. Planned Unit Development at Riverfront Park dated September 25, 2023 and prepared by Four Points Surveying and Engineering

2.0 Drainage Criteria and Methodology Used

A. Design Rainfall and Storm Frequency

Design rainfall: NOAA Atlas 14, Volume 8, Version 2 for Steamboat Springs, CO.

- Minor Event (5-year) 24-hour rainfall depth: 1.59 inches
- Major Event (100-year) 24-hour rainfall depth: 2.91 inches

B. Runoff Calculation Methodology

Runoff calculation method: Small basin peak flow runoff was analyzed using the Rational Method, shown in Eq-1.

Rational Method:
$$\mathbf{Q} = \mathbf{CiA}$$
 (Eq-1)

Where: Q = runoff, CFS

C = runoff coefficient, dimensionless i = rainfall intensity, inches per hour

A = basin area, acres

C. Storm Sewer Design Methodology

Sizing calculations for culverts and drainage pipes was performed using AutoCAD Hydroflow Express which utilizes Manning's "n" equation for open channel flow and the Darcey formula for surcharged flow conditions.

3.0 Existing Conditions

A. Ground Cover, Imperviousness, Topography and Size

- The site is currently vacant with the Steamboat Springs Core Trail running along the northeast property line.
- An existing development with residential and commercial units resides to the west.
- There are existing utilities (water, sewer, gas, etc.) running through the site.
- \sim 2% imperviousness
- Gradients ranging from 2-10% draining southeast with small portion northeast
- Development area size: ~1.1 acres

B. Existing Stormwater Systems

- The Yampa River runs along the southern property line, Design Point (DP) 1.
- A ditch flowing north along the of the Core Trail, terminating at an 18" culvert across the existing access to the site at DP2.

- There is an existing storm sewer on the adjacent Riverfront Industrial Park that was previously designed for the full buildout of the site. Proposed basin SB3 will drain to this system.
- There is an existing sedimentation pond at DP3 along the south side of the adjacent property, near the Yampa River, treating the adjacent development.

C. Site Outfall and Ultimate Outfall Locations

Flows from existing basin (EB) 1 generally sheet flow south to the Yampa River. A portion of the north part of the site, EB2, is routed via swale to an 18-inch CMP culvert (DP2) at the existing access drive. The culvert flows west to a ditch. The ditch then follows the core trail south and ultimately carries flow into the Yampa River.

D. NRCS Soil Type

Per the USDA NRCS Web Soil Survey:

- Slocum Loam
 - o Soils are classified as Hydraulic Group C.

E. Existing Easements

- There are no dedicated drainage easements.

F. FEMA Map Reviewal

FEMA flood map No. 08107C0876D was reviewed. The south portion of the parcel is in Zone AE floodplain (see attached map for base flood elevations). The rest of the parcel is in Zone X, with a 0.2% Annual Chance Flood Hazard.

4.0 Proposed Conditions

A. Ground Cover, Imperviousness, and Topography

The proposed residential development consists of a new paved access serving four buildings with associated parking. Development Basin (DB) 1 consists of the entire development broken up into four Sub-Basins (SB).

Pavement from SB1 sheet flows to a proposed Sand Filter Detention Pond (SFDP) at DP4 and out to the Yampa River via a storm sewer.

SB2 will drain north to the existing ditch (DP2). The ditch will be updated to a grass lined water quality swale for treatment.

SB3 will drain west to the existing storm system at DP5. The existing storm sewer system and sedimentation pond were designed and analyzed in a report by Civil Design Consultants for a build out of the entire 4.50 acre site that would encompass 106,752 square feet of building footprint for a total site imperviousness of 80%. SB3 is now the only portion of this new project that will drain to the existing stormwater infrastructure, and it consists of only 0.13 acres at 45% imperviousness. The proposed design of SB1 reduces the overall flow to the existing stormwater

infrastructure and the flow generated by SB3 will be managed easily by the existing stormwater infrastructure on the adjacent property.

SB4 will sheet flow away from the building on existing drainage patterns and will be treated with a grass buffer. DB2 is the southern, largely undeveloped portion of the site will sheet flow to the Yampa River.

B. Proposed Water Quality Conditions

- A SFDP will be constructed in the southeast corner of SB1.
- Grass lined swale in the north of SB2.
- Grass buffer along the south portion of SB4

See the Appendices of this report for additional information.

C. Proposed Stormwater Systems

- Storm sewer from SFDP to Yampa River.
- Trapezoidal grass lined swales.

D. Outlets: Historic and Proposed Flow

The historic outfall of the Yampa River will be maintained due to its proximity to the river itself.

E. Hydraulic Calculations

Hydraulic calculations were performed for the following:

- Grass lined swales

F. Major and Minor Flow Summary Table

Table 1: Basin Characteristics and Peak Flow Summary Table

Basin Condition	Aroa (aoroa)	Importious Area (9/)	Runoff				
Basin Condition	Area (acres)	Impervious Area (%)	Q ₅ (cfs)	Q ₁₀₀ (cfs)			
EB1	1.04	4%	0.43	2.77			
EB2	0.32	8%	0.17	0.96			
DB1	1.04	64%	1.88	5.51			
SB1	0.60	75%	1.28	3.46			
SB2	0.20	29%	0.22	0.92			
SB3	0.12	40%	0.16	0.57			
SB4	0.17	44%	0.23	0.82			
DB2	0.29	5%	0.19	1.15			

G. Proposed Easements

- A 20-foot-wide drainage access easement around the storm sewer system
- A 20-foot-wide drainage access easement for the SFDP
- Drainage easement encompassing the SFDP

H. Off Site Flows

There appears to be no offsite flow entering the site.

I. Impacts to Downstream Properties

There are no downstream properties so there will be no impact.

I. Detention Pond

There is one permanent detention facility, the SFDP, located in the southeast side of the lot. The facility will serve as both detention and water quality treatment with a minimum volume of 951 cubic feet. The outlet structure will be a Type C inlet with an 18" pipe to the Yampa River. Overflow consists of a rip rap spillway and sheet flow to the historic outfall. Design calculations and specifications for the pond sizing and outlet structure can be found in the appendices. The pond will outfall at DP6 on the drainage exhibit. Maintenance requirements are outlined in the O&M exhibit in the appendix.

K. Culverts

There is an 18-inch corrugated metal pipe storm sewer system proposed as the outfall for the SFDP. SB1 uses a french drain to carry drainage on the north side of Building 3 to the SFDP. SB 2 uses a french drain to carry drainage on the north side of Building 1 to the water quality swale. There are no additional culverts proposed on the site.

L. Drainage Channels

The triangular swale at DP2 is designed to handle the 100-year flow rate. The swale will be grass lined and will be utilized for water quality for treatment of SB2. Velocity, flow, and capacity calculations can be found in the appendices.

5.0 Post Construction Stormwater Management

Post construction management will consist of regular maintenance of the proposed system as outlined in the City of Steamboat Springs drainage criteria and the operation and maintenance (O&M) plan in this report.

6.0 Conclusions

A. General Summary

Flows originating from the proposed developed will be routed to a SFPD and grass lined swales as outlined in this report, relatively maintaining existing drainage patterns to the Yampa River, which is in close proximity to the development. The swale at DP2 will act as treatment for SB2 DP2 will have reduced flow from EB2 so it will not require any detention. The proposed SFDP will act as a combined detention pond and sand filter facility providing both detention and water quality for SB1. SB3 will enter the existing storm system west of the development. SB4 has minimal flows and will be treated with a grass buffer.

B. Compliance

The proposed stormwater drainage system meets City Drainage Criteria. No engineering variances required.

C. Historic and Proposed Site Flows

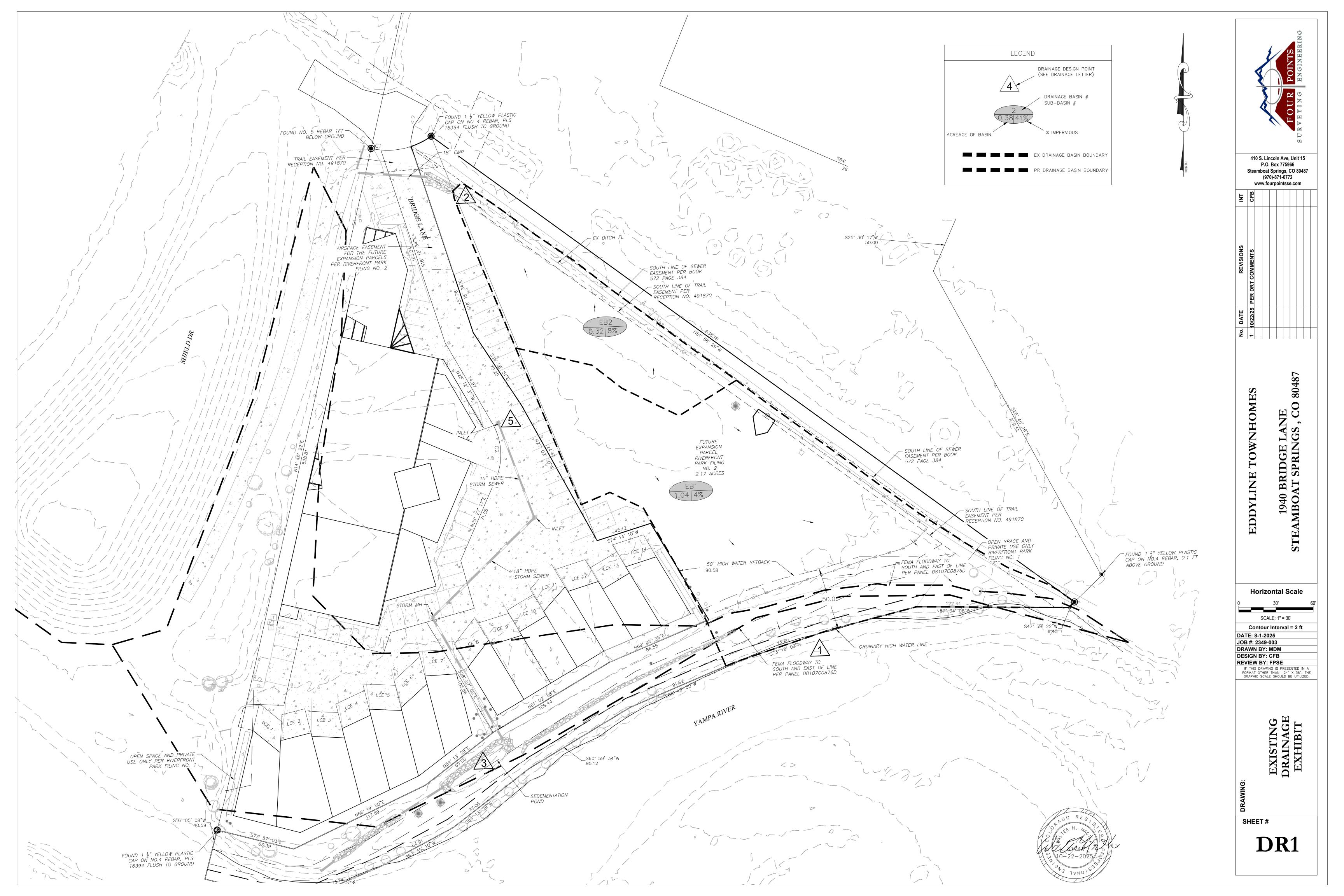
Peak proposed flow rates will be greater than peak historic flows from the Project site. The proposed detention facility will discharge flows at less than historic rates at DP6. The drainage associated with the Project will not have an adverse impact on adjacent or downstream properties.

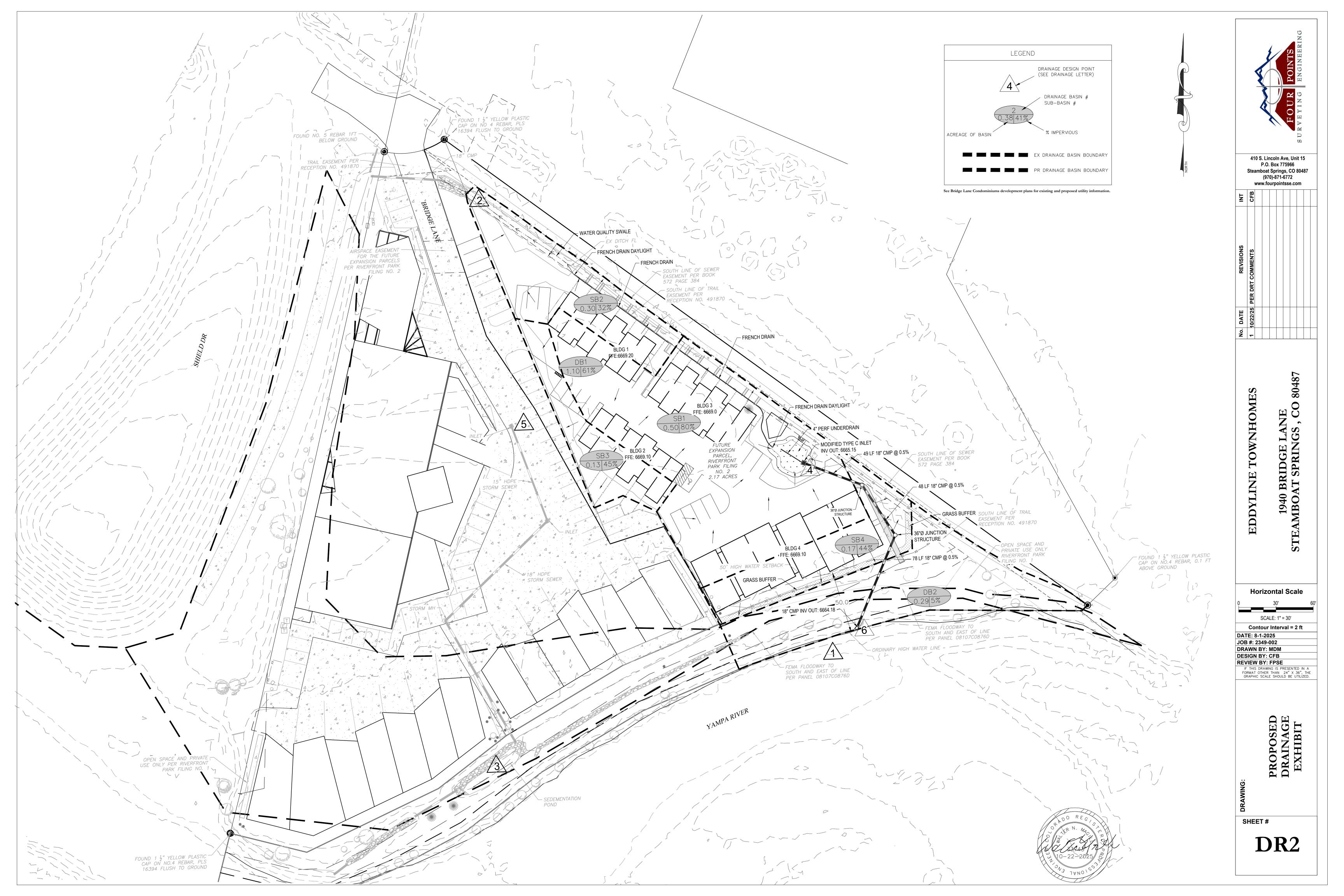
7.0 Water Quality Operation and Maintenance (O&M) Plan

See appendices.

8.0 References

Urban Drainage and Flood Control District Criteria Manual, 2018.


NOAA Precipitation Frequency Server. NOAA Atlas 14, Volume 8, Version 2. www.NOAA.com


City of Steamboat Springs Engineering Drainage Criteria, Latest Version.

8.0 Appendices

- A. Drainage Exhibits DR1 and DR2
- B. Basin Runoff Calculations, FEMA Flood Map and USDA Web Soil Survey
- C. Detention Calculations
- D. Drainage Channel Calculations
- E. Water Quality Sand Filter, Grass Buffer and Grass Lined Swale Calculations
- F. Water Quality O&M Plan
- G. Standard Forms No. 3 & No. 4 Final Drainage Study and Water Quality Plan Checklists
- H. Project Sheets Base Design Standards & WQCV Standard
- I. Standard Form No. 5 Scope Approval Form

Appendix A: Drainage Exhibits DR1 and DR2

Appendix B: Basin Runoff Calculations, FEMA Flood Map and USDA Web Soil Survey

RATIONAL METHOD RUNOFF ANALYSIS

Job# 2349-003 Date: 7/312025

Job Name Eddyline Townhomes Revised: Designed by: MDM

Existing Basin 1 (EB1)															
BASIN CHA	RACTERISTICS	S				TIME OF CONCENTRATION							RES	JLTS	
	Area, ac	% imp	Soil Type	Overland Flow - Surface Type 1 Overland Flow - Surface Type 2		Channel Flow			Event	С	i, in/hr	A, acres	Q, cfs		
Landscape	1.02	2%		Surface Imperviousness	0.02	Surface Imperviousness	0	Land Surface	Paved Areas and Shallow Swales	Minimum	1.25 YR	0.07	1.1	1.04	0.08
Asphalt Parking & Walkways	0.02	100%		Length, ft	205	Length, ft	0	Length, ft	0	Tc, min	2-YR	0.07	1.6	1.04	0.11
Roof	0.00	90%	P2	Slope, percent	4.0000	Slope, percent	1.0000	Slope, ft/ft	1.0000	5.0	5-YR	0.18	2.4	1.04	0.43
Gravel	0.00	80%	1.4	Runoff Coefficient	0.162	Runoff Coefficient	0.15	Conveyance Coefficient	20	Final	10-YR	0.27	3.0	1.04	0.85
Other	0.00	0%	1.4					Velocity, ft/s	20.0	Tc, min	25-YR	0.39	3.9	1.04	1.56
	1.04	4%		Ti, min=	15.2	Ti, min=	0.0	Tt, min=	0.0	15.2	100-YR	0.51	5.2	1.04	2.77

Existing Basin 2 (EB2)															
BASIN CHA	RACTERISTIC	S			TIME OF CONCENTRATION								RES	ULTS	
	Area, ac	% imp	Soil Type	Overland Flow - Surfa	ace Type 1	Overland Flow - Surfa	Overland Flow - Surface Type 2		Channel Flow		Event	C	i, in/hr	A, acres	Q, cfs
Landscape	0.30	2%	C	Surface Imperviousness	0.02	Surface Imperviousness	0	Land Surface	Grassed Waterways	Minimum	1.25 YR	0.10	1.2	0.32	0.04
Asphalt Parking & Walkways	0.02	100%		Length, ft	50	Length, ft	0	Length, ft	250	Tc, min	2-YR	0.10	1.7	0.32	0.05
Roof	0.00	90%	P2	Slope, percent	7.0000	Slope, percent	1.0000	Slope, ft/ft	0.0020	5.0	5-YR	0.20	2.6	0.32	0.17
Gravel	0.00	80%	1.4	Runoff Coefficient	0.162	Runoff Coefficient	0.15	Conveyance Coefficient	15	Final	10-YR	0.29	3.3	0.32	0.31
Other	0.00	0%	1.4					Velocity, ft/s	0.7	Tc, min	25-YR	0.41	4.3	0.32	0.55
	0.32	8%	-	Ti, min=	6.2	Ti, min=	0.0	Tt, min=	6.2	12.5	100-YR	0.53	5.7	0.32	0.96

Developed Basin 1 (DB1) - I	Developed														
BASIN CHA	BASIN CHARACTERISTICS						TIME OF CONCENTRATION						RESULTS		
	Area, ac	% imp	Soil Type	Overland Flow - Surface Type 1 Overland Flow - Surface Type 2			Channel Flow Tc, n			Event	С	i, in/hr	A, acres	Q, cfs	
Landscape	0.34	2%	0	Surface Imperviousness	1	Surface Imperviousness	1	Land Surface	Paved Areas and Shallow Swales	Minimum	1.25 YR	0.44	1.7	1.04	0.79
Asphalt Parking & Walkways	0.33	100%		Length, ft	90	Length, ft	0	Length, ft	90	Tc, min	2-YR	0.44	2.5	1.04	1.14
Roof	0.35	90%	P2	Slope, percent	0.8600	Slope, percent	1.0000	Slope, ft/ft	0.0050	5.0	5-YR	0.49	3.7	1.04	1.88
Gravel	0.02	80%	14	Runoff Coefficient	0.9	Runoff Coefficient	0.9	Conveyance Coefficient	20	Final	10-YR	0.53	4.7	1.04	2.63
Other	0.00	0%						Velocity, ft/s	1.4	Tc, min	25-YR	0.59	6.1	1.04	3.75
	1.04	64%		Ti, min=	3.6	Ti, min=	0.0	Tt, min=	1.1	5.0	100-YR	0.65	8.2	1.04	5.51

Sub-basin 1 (SB1) - Develop	Sub-basin 1 (SB1) - Developed														
BASIN CHA	BASIN CHARACTERISTICS						TIME OF CONCENTRATION						RESI	JLTS	
	Area, ac	% imp	Soil Type	Overland Flow - Surface Type 1 Overland Flow - Surface Type 2		C	Tc, min	Event	С	i, in/hr	A, acres	Q, cfs			
Landscape	0.13	2%	C	Surface Imperviousness	1	Surface Imperviousness	1	Land Surface	Paved Areas and Shallow Swales	Minimum	1.25 YR	0.54	1.7	0.60	0.56
Asphalt Parking & Walkways	0.25	100%		Length, ft	90	Length, ft	0	Length, ft	90	Tc, min	2-YR	0.54	2.5	0.60	0.81
Roof	0.20	90%	P2	Slope, percent	0.8600	Slope, percent	1.0000	Slope, ft/ft	0.0050	5.0	5-YR	0.57	3.7	0.60	1.28
Gravel	0.02	80%	1.4	Runoff Coefficient	0.9	Runoff Coefficient	0.9	Conveyance Coefficient	20	Final	10-YR	0.61	4.7	0.60	1.74
Other	0.00	0%	1.4					Velocity, ft/s	1.4	Tc, min	25-YR	0.66	6.1	0.60	2.41
	0.60	75%		Ti, min=	3.6	Ti, min=	0.0	Tt, min=	1.1	5.0	100-YR	0.71	8.2	0.60	3.46

	Sub-basin 2 (SB2) - Developed														
BASIN CHA	RACTERISTICS	3				TIME OF CONCENTRATION							RESU	JLTS	
	Area, ac	% imp	Soil Type	Overland Flow - Surfa	ace Type 1	e Type 1 Overland Flow - Surface Type 2			Channel Flow Tc, min			С	i, in/hr	A, acres	Q, cfs
Landscape	0.14	2%	0	Surface Imperviousness	0.9	Surface Imperviousness	0.02	Land Surface	Grassed Waterways	Minimum	1.25 YR	0.22	1.7	0.20	0.08
Asphalt Parking & Walkways	0.02	100%	Ů	Length, ft	20	Length, ft	18	Length, ft	200	Tc, min	2-YR	0.22	2.5	0.20	0.11

2349-003 FPSE Drainage Calculations - Kruse Basins 1 of 2

RATIONAL METHOD RUNOFF ANALYSIS

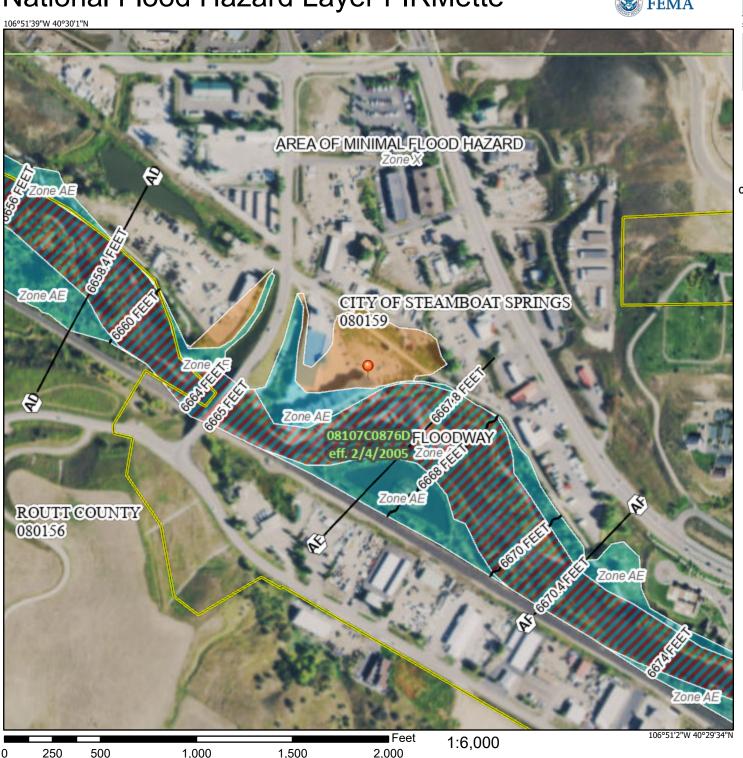
Job#	2349-003	Date:	7/312025
Job Name	Eddyline Townhomes	Revised:	
Designed by:	MDM		

Roof	0.04	90%	P2	Slope, percent	50.0000	Slope, percent	12.0000	Slope, ft/ft	0.5000	5.0	5-YR	0.30	3.7	0.20	0.22
Gravel	0.00	80%	1 /	Runoff Coefficient	0.75	Runoff Coefficient	0.162	Conveyance Coefficient	15	Final	10-YR	0.38	4.7	0.20	0.36
Other	0.00	0%	ť					Velocity, ft/s	10.6	Tc, min	25-YR	0.47	6.1	0.20	0.57
	0.20	29%		Ti, min=	0.8	Ti, min=	3.1	Tt, min=	0.3	5.0	100-YR	0.57	8.2	0.20	0.92

Sub-basin 3 (SB3) - Developed

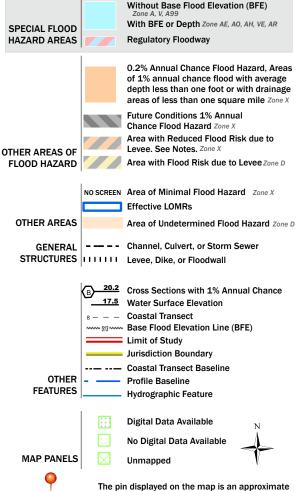
Sub-basili 3 (SB3) - Develo															
BASIN CHARACTERISTICS				TIME OF CONCENTRATION							RESULTS				
Area, ac % imp Soil Type		Overland Flow - Surfa	ice Type 1	Overland Flow - Surface Type 2		Channel Flow		Tc, min	Event	С	i, in/hr	A, acres	Q, cfs		
Landscape	0.07	2%	C	Surface Imperviousness	1	Surface Imperviousness	1	Land Surface	Paved Areas and Shallow Swales	Minimum	1.25 YR	0.28	1.7	0.12	0.06
Asphalt Parking & Walkways	0.02	100%		Length, ft	30	Length, ft	0	Length, ft	0	Tc, min	2-YR	0.28	2.5	0.12	0.08
Roof	0.03	90%	P2	Slope, percent	5.0000	Slope, percent	1.0000	Slope, ft/ft	1.0000	5.0	5-YR	0.35	3.7	0.12	0.16
Gravel	0.00	80%	14	Runoff Coefficient	0.9	Runoff Coefficient	0.9	Conveyance Coefficient	20	Final	10-YR	0.42	4.7	0.12	0.24
Other	0.00	0%	1.7					Velocity, ft/s	20.0	Tc, min	25-YR	0.50	6.1	0.12	0.36
	0.12	40%		Ti, min=	1.2	Ti, min=	0.0	Tt, min=	0.0	5.0	100-YR	0.58	8.2	0.12	0.57

Sub-basin 4 (SB4) - Developed


BASIN CHARACTERISTICS TIME OF CONCENTRATION RESULTS Area, ac Overland Flow - Surface Type 1 Overland Flow - Surface Type 2 Channel Flow i, in/hr A, acres Q, cfs % imp Soil Type Tc, min Event С Landscape 0.09 2% Surface Imperviousness 0.02 Surface Imperviousness Land Surface Paved Areas and Shallow Swales Minimum 1.25 YR 0.30 1.7 0.09 С Asphalt Parking & Walkways 0.01 100% Length, ft 18 Length, ft 0 Length, ft Tc, min 2-YR 0.30 2.5 0.17 0.13 Roof 0.07 90% P2 Slope, percent 3.0000 Slope, percent 1.0000 Slope, ft/ft 1.0000 5.0 5-YR 0.37 3.7 0.17 0.23 Gravel 0.00 80% Runoff Coefficient 0.162 Runoff Coefficient 0.9 Conveyance Coefficient 20 Final 10-YR 0.43 4.7 0.17 0.35 1.4 Other 0.00 0% Velocity, ft/s 20.0 25-YR 0.51 0.17 0.53 Tc, min 6.1 0.17 44% Ti, min= 5.0 Ti, min= 0.0 Tt, min= 0.0 100-YR 0.59 8.2 0.17 0.82

Developed Basin 2 (DB2)															
BASIN CHA	RACTERISTIC	S		TIME OF CONCENTRATION							RESULTS				
	Area, ac	% imp	Soil Type	Overland Flow - Surfa	ace Type 1	Overland Flow - Surface Type 2		Channel Flow		Tc, min	Event	С	i, in/hr	A, acres	Q, cfs
Landscape	0.28	2%	C	Surface Imperviousness	0.02	Surface Imperviousness	1	Land Surface	Paved Areas and Shallow Swales	Minimum	1.25 YR	0.08	1.6	0.29	0.04
Asphalt Parking & Walkways	0.01	100%		Length, ft	50	Length, ft	0	Length, ft	0	Tc, min	2-YR	0.08	2.4	0.29	0.05
Roof	0.00	90%	P2	Slope, percent	8.0000	Slope, percent	1.0000	Slope, ft/ft	0.0050	5.0	5-YR	0.18	3.5	0.29	0.19
Gravel	0.00	80%	14	Runoff Coefficient	0.162	Runoff Coefficient	0.9	Conveyance Coefficient	20	Final	10-YR	0.28	4.5	0.29	0.36
Other	0.00	0%	1					Velocity, ft/s	1.4	Tc, min	25-YR	0.39	5.7	0.29	0.66
	0.29	5%		Ti, min=	6.0	Ti, min=	0.0	Tt, min=	0.0	6.0	100-YR	0.52	7.7	0.29	1.15

2349-003 FPSE Drainage Calculations - Kruse Basins


National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

accuracy standards

point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 8/30/2023 at 12:48 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Routt Area, Colorado, Parts of Rio Blanco and Routt Counties

Future Expansion Parcel

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	12
Map Unit Descriptions	12
Routt Area, Colorado, Parts of Rio Blanco and Routt Counties	14
49A—Slocum loam, gravelly substratum, 0 to 3 percent slopes	14
W—Water	15
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

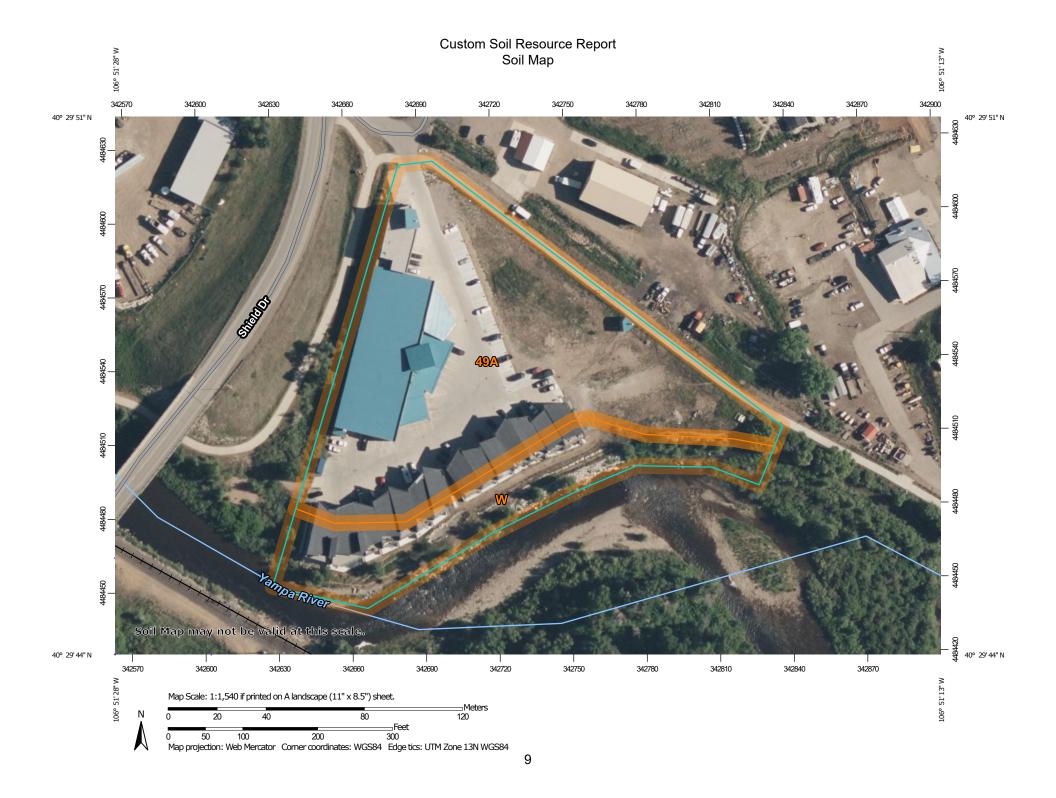
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

å

00

Ŷ

Δ

Water Features

Transportation

00

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Candfill

▲ Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Routt Area, Colorado, Parts of Rio Blanco and

Routt Counties

Survey Area Data: Version 14, Aug 29, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 2, 2021—Aug 25, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
49A	Slocum loam, gravelly substratum, 0 to 3 percent slopes	3.5	74.7%
W	Water	1.2	25.3%
Totals for Area of Interest		4.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Routt Area, Colorado, Parts of Rio Blanco and Routt Counties

49A—Slocum loam, gravelly substratum, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: k0g8 Elevation: 6,490 to 8,690 feet

Mean annual precipitation: 20 to 24 inches Mean annual air temperature: 38 to 41 degrees F

Frost-free period: 30 to 70 days

Farmland classification: Not prime farmland

Map Unit Composition

Slocum, gravelly substratum, and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Slocum, Gravelly Substratum

Setting

Landform: Flood plains
Down-slope shape: Concave
Across-slope shape: Linear

Parent material: Alluvium derived from igneous and sedimentary rock

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 23 inches: loam Bw - 23 to 30 inches: loam

Cg - 30 to 35 inches: loamy fine sand 2C - 35 to 59 inches: extremely cobbly sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.71 to 2.13 in/hr)

Depth to water table: About 18 to 35 inches

Frequency of flooding: Rare Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): 5c Land capability classification (nonirrigated): 5c

Hydrologic Soil Group: B/D

Ecological site: R048AY241CO - Mountain Meadow

Hydric soil rating: No

Minor Components

Venable

Percent of map unit: 5 percent Landform: Flood plains

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R048AY241CO - Mountain Meadow

Hydric soil rating: Yes

W-Water

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Annondia C. Detention Coloulet	:	
Appendix C: Detention Calculat	<u>ions</u>	

Designer:	Matthew M	cLeod					
Company:	FOUR POIN	ITS					
Date:	7/30/2025						
Project:	Eddyline To	ownhomes					
Location:	SB1						
	5 Year Dete	ention Pond					
		Area		acres			
		Allowable Releas					
		(0.10 cfs/acre) * A	4	=	0.06	(from table 5.11.1)	
			o ==			<i></i>	
		C ₅	0.57			(from table 5.6.1)	
		i ₅	3.7			(from table 5.5.1)	
		Tc (dev)	5				
		F 5 44 4					
		Equation 5.11.1					
		Volume In	*00	070.00		(for any 1 and 1)	
		V= C*I*A*Tc(dev)	"60	379.62 380		(from equation 5.11.1)	
		Equation 5.11.2		380	π°		
		Volume Out					
		V=Qallow*Tc(ex)	*(60)	18		(from equation 5.11.2)	
		v-Qallow TC(ex)	(00)		ft ³	(IIOIII equation 3.11.2)	
				10	IL		
		Pond Volume					
		Volume In - Volum	ne Out				
		362		0.0083	acre-ft		
		Depth		ft			
		Area	120.54		sq-ft		

Designer:							
	FOUR POIN						
Date:	7/30/2025						
Project:	Eddyline To	ownhomes					
Location:	SB1						
	100 Year Do	etention Pond	0.40				
		Area		acres			
		Allowable Release	Rate Major S			<i>(</i>	
		(0.54 cfs/acre) * A		=	0.324	(from table 5.11.1)	
		0	0.74			(6 111 504)	
		C ₁₀₀	0.71			(from table 5.6.1)	
		i ₁₀₀	8.2			(from table 5.5.1)	
		Tc (dev)	5				
		F					
		Equation 5.11.1					
		Volume In	\	4047.00		(6 (1 5 4 4 4)	
		V= C*I*A*Tc(dev)*6	50	1047.96		(from equation 5.11.1)	
		F		1048	ft°		
		Equation 5.11.2 Volume Out					
			20)	97.2		(for one of the one E 44.0)	
		V=Qallow*Tc(ex)*(6	50)	97.2		(from equation 5.11.2)	
				97	IL		
		Pond Volume					
		Volume In - Volume	2 Out				
		951		0.0218	acre-ft		
		Depth		ft	GOI O IL		
		Area	316.92		sq-ft		
		Width	25		54-1t		
		Length	46				

Discharge Rates for Minor Storms

Designer: Matthew McLeod
Company: Four Points
Date: 7/30/2025

Project: Eddyline Townhomes

Location: SB1

Orifice Plate Size for Minor Storm

 $\begin{array}{lll} \text{Area of Orifice Plate=} & 0.009 \text{ sq-ft} \\ \text{C}_{\text{d}} & 0.65 \\ \\ \text{Diameter of Opening} & 0.109 \text{ ft} \\ \end{array}$

Depth of surface(major)

0.59 in

1.5 ft

Flow line of Orifice Plate 6665.15

Discharge for Minor Storm Headwater Q=CdA(2gh)^(1/2) 0.06 cfs

Q_{wier} 0.26 cfs

Orifice Plate Size for Major Storm

Area of Orifice Plate= 0.05 sq-ft
Diameter of Opening 0.254 ft
3.05 in

Appendix D: Drainage Channel Calculations	

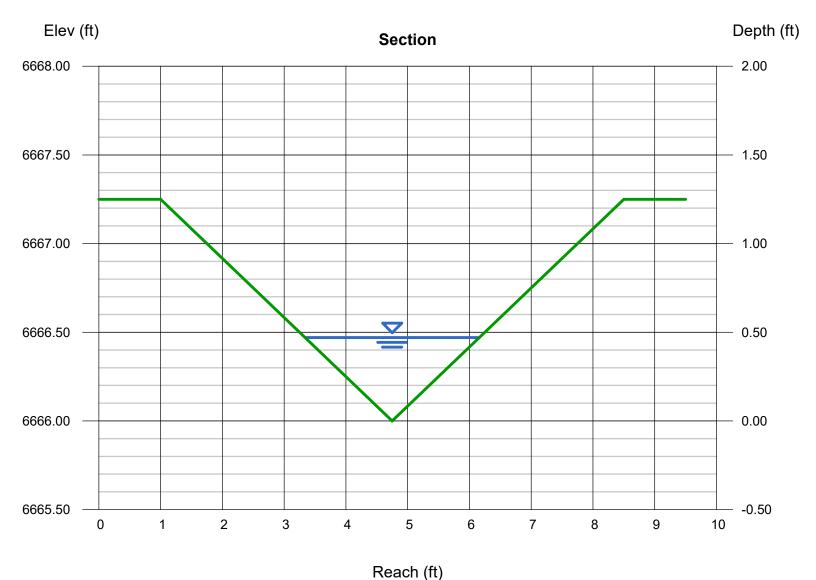
Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Aug 4 2025

Grass Swale at DP2

Side Slopes (z:1) = 3.00, 3.00Total Depth (ft) = 1.25


Invert Elev (ft) = 6666.00 Slope (%) = 0.35 N-Value = 0.022

Calculations

Compute by: Known Q Known Q (cfs) = 0.92

Highlighted

= 0.47Depth (ft) Q (cfs) = 0.920Area (sqft) = 0.66Velocity (ft/s) = 1.39Wetted Perim (ft) = 2.97Crit Depth, Yc (ft) = 0.36Top Width (ft) = 2.82EGL (ft) = 0.50

Appendix E: Water Quality –	Sand Filter. Grass B	uffer and Grass Linea	l Swale Calculations
, , , , , , , , , , , , , , , , , , ,	January Grands D		ZWAYWAYAAA

Design Procedure Form: Sand Filter (SF)				
	UD-BMP (Version 3.07	, March 2018) Sh	eet 1 of 2	
Designer:	Matthew McLeod, PE			
Company:	Four Points Surveying and Engineering			
Date:	August 4, 2025 Eddyline Townhomes			
Project: Location:	Steamboat Springs, CO			
Looution.				
1. Basin Stor	rage Volume			
,	re Imperviousness of Tributary Area, $\rm I_a$ if all paved and roofed areas upstream of sand filter)	I _a = 75.0 %		
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.750		
	Quality Capture Volume (WQCV) Based on 12-hour Drain Time V= $0.8 * (0.91*i^3 - 1.19*i^2 + 0.78*i)$	WQCV = 0.24 watershed inches		
D) Contril	buting Watershed Area (including sand filter area)	Area = 26,136 sq ft		
	Quality Capture Volume (WQCV) Design Volume v = WQCV / 12 * Area	V _{WQCV} =cu ft		
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = 0.34 in		
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft		
	nput of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	V _{WQCV USER} = 951 cu ft		
2. Basin Geo	ometry			
A) WQCV	Depth	D _{WQCV} = 1.0 ft		
	ilter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 4.00 ft / ft		
C) Minimu	m Filter Area (Flat Surface Area)	A _{Min} = 245 sq ft		
D) Actual	Filter Area	$A_{Actual} = 260 $ sq ft		
E) Volume	Provided	$V_T = 955$ cu ft		
3. Filter Mate	erial	Choose One 18" CDOT Class B or C Filter Material Other (Explain): 12" provided based on site constraints		
4. Underdrai	n System	☐ Choose One		
A) Are und	derdrains provided?	© YES		
,	Irain system orifice diameter for 12 hour drain time	○ NO		
	Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y = 1.5 ft		
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 951 cu ft		
	iii) Orifice Diameter, 3/8" Minimum	D _O = 3/4 in		

GLS WQ Calcs, SF 8/4/2025, 2:43 PM

	Design Procedure For	m: Sand Filter (SF)	
Designer: Company: Date: Project: Location:	Matthew McLeod, PE Four Points Surveying and Engineering August 4, 2025 Eddyline Townhomes Steamboat Springs, CO		Sheet 2 of 2
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose O ne ○ YES	
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet		

GLS WQ Calcs, SF 8/4/2025, 2:43 PM

	UD-BMP (Vers	sion 3.07, March 2018) Sheet 1
Designer:	Matthew McLeod	,
Company:	Four Points Surveying and Engineering	
Date:	August 1, 2025	
Project:	Eddyline Townhomes	
Location:	SB4 Grass Buffer	
	32.0.000 2000	
1. Design Di	ischarge	
A) 2-Year	Peak Flow Rate of the Area Draining to the Grass Buffer	Q ₂ = 0.8 cfs
2. Minimum	Width of Grass Buffer	W _G = 16 ft
3. Length of	Grass Buffer (14' or greater recommended)	L _G =ft (increased length will improve treatment)
4. Buffer Slo	ope (in the direction of flow, not to exceed 0.1 ft / ft)	S _G = 0.100 ft / ft
5 51 01		
5. Flow Cha	racteristics (sheet or concentrated)	□ Choose Offe
	runoff flow into the grass buffer across the	Yes No
entire	width of the buffer?	
B) Water	shed Flow Length	F _L = 18 ft
•	-	
C) Interfa	ace Slope (normal to flow)	$S_{i} = 0.100$ ft / ft
D) Type	of Flow	
Sheet	t Flow: F _L * S _I ≤ 1	
Conce	entrated Flow: F _L * S _I > 1	
0.51.57		Choose One
6. Flow Distr	ribution for Concentrated Flows	None (sheet flow) Slotted Curbing
		Level Spreader
		Other (Explain):
7 Cail Dec	oration	
7 Soil Prepa (Describe	aration e soil amendment)	
,	•	
		F Change 0
8 Vegetatio	n (Check the type used or describe "Other")	Choose One Existing Xeric Turf Grass
		○ Irrigated Turf Grass
		Other (Explain):
9. Irrigation		Choose One Temporary
	None if existing buffer area has 80% vegetation	Permanent
AND WIll r	not be disturbed during construction.)	○ None*
		☐ Choose One
10. Outflow C	Collection (Check the type used or describe "Other")	Grass Swale
		Street Gutter Storm Sewer Inlet
		Other (Explain):
Notes:		
140163.		

GB WQ Calcs, GB 8/1/2025, 12:05 PM

	Design Procedure Form: Grass	Swale (GS)			
	UD-BMP (Version 3.07, March	2018)	Sheet 1 of 1		
Designer:	Matthew McLeod, P.E.				
Company:	Four Points Surveying and Engineering				
Date:	August 4, 2025				
Project:		Eddyline Townhomes			
Location:	Grass Swale SB2				
1. Design D	Discharge for 2-Year Return Period	Q ₂ = 0.11 cfs			
2. Hydraulid	c Residence Time				
A) : Lenç	gth of Grass Swale	L _S = 200.0 ft			
B) Calcu	ulated Residence Time (based on design velocity below)	T _{HR} = 4.0 minutes			
3. Longitudi	inal Slope (vertical distance per unit horizontal)				
A) Availa	able Slope (based on site constraints)	$S_{avail} = 0.400$ ft / ft			
B) Desig	gn Slope	$S_D = $			
4. Swale G	eometry				
A) Chan	nel Side Slopes (Z = 4 min., horiz. distance per unit vertical)	Z = 3.00 ft / ft	TOO STEEP (< 4)		
	m Width of Swale (enter 0 for triangular section)	$W_B = 0.00$ ft			
5. Vegetatio	nc	Choose One			
A\ T	of Direction (conduct and office to constant materials and office to	Grass From Seed Grass Fro	m Sod		
A) Type	of Planting (seed vs. sod, affects vegetal retardance factor)				
6. Design V	/elocity (0.667 ft / s maximum for desirable 5-minute residence time)	$V_2 = $			
7. Design F	low Depth (1 foot maximum)	D ₂ = 0.21 ft			
A) Flow	Area	$A_2 = 0.1$ sq ft			
B) Top V	Nidth of Swale	W _T = 1.3 ft			
C) Froud	e Number (0.50 maximum)	F = 0.45			
D) Hydra	aulic Radius	R _H = 0.10			
	city-Hydraulic Radius Product for Vegetal Retardance	VR = 0.08			
	ing's n (based on SCS vegetal retardance curve D for sodded grass)	n = 0.200			
G) Cumi	ulative Height of Grade Control Structures Required	H _D = 20.00 ft			
8. Underdra (Is an u	ain nderdrain necessary?)	Choose One			
9. Soil Prep	paration				
(Describe soil amendment)					
10. Irrigation		Choose One ● Temporary	manent		
Notes:		<u> </u>			
					

GLS WQ Calcs, GS 8/4/2025, 1:59 PM

Appendix F: Water Quality O&M Plan			

1. GENERAL PROJECT INFORMATION

- A. EDDYLINE TOWNHOMES, 1940 BRIDGE LANE, STEAMBOAT SPRINGS, ROUTT COUNTY, COLORADO.
- 2. GENERAL FACILITY DESCRIPTION

THIS FACILITY IS A PROPOSED SAND FILTER DETENTION POND, GRASS BUFFER AND GRASS LINED SWALE WATER QUALITY (WQ) FEATURES THAT ARE CAPABLE OF TREATING RUNOFF AND OTHER POLLUTANTS THAT COMMONLY ORIGINATE FROM RESIDENTIAL USE. VEHICLES AND MOTORIZED EQUIPMENT.

3. INSPECTION & MAINTENANCE FREQUENCY & PROCEDURE

THE FOLLOWING TABLE PROVIDES A MAINTENANCE SCHEDULE FOR THE PROPOSED SAND FILTER DETENTION POND:

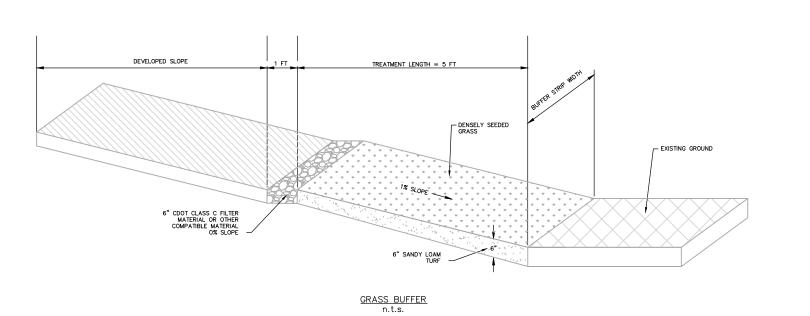
THE FULLOWING TABLE PROVIDES A MAINTENANCE SCHEDULE FOR THE PROPOSED SAND FILTER DETENTION POIND:					
REQUIRED ACTION	MAINTENANCE OBJECTIVE	FREQUENCY OF ACTION			
DEBRIS & LITTER REMOVAL	REMOVE DEBRIS AND LITTER FROM THE FOREBAY, POND AND RIP RAP OVERFLOW SWALE TO MINIMIZE OUTLET CLOGGING AND IMPROVE AESTHETICS	ROUTINE — INCLUDING JUST BEFORE ANNUAL STORM SEASONS (THAT IS APRIL AND MAY) AND FOLLOWING SIGNIFICANT RAINFALL EVENTS			
SEDIMENT REMOVAL	REMOVE ACCUMULATED SEDIMENT FROM THE FOREBAY, POND AND UNDERDRAIN	ROUTINE — THE SEDIMENT ACCUMULATIONS WILL NEED TO BE CLEANED OUT EVERY ONE TO THREE YEARS			
NUISANCE CONTROL	ADDRESS ODOR, INSECTS, AND OVERGROWTH ISSUES ASSOCIATED WITH STAGNANT OR STANDING WATER IN THE BOTTOM ZONE	NONROUTINE — HANDLE AS NECESSARY PER INSPECTION OR LOCAL COMPLAINTS			
EROSION & SEDIMENT CONTROL	REPAIR AND REVEGETATE ERODED AREAS IN THE BASIN AND CHANNELS	NONROUTINE — PERIODIC AND REPAIR AS NECESSARY BASED ON INSPECTION			
STRUCTURAL	REPAIR POND INLETS, OUTLETS, FOREBAYS, UNDERDRAIN, LOW FLOW CHANNEL LINERS AND RIP RAP	NONROUTINE — REPAIR OR REPLACE AS NEEDED BASED ON REGULAR INSPECTIONS			
INSPECTIONS	INSPECT BASINS TO ENSURE THAT THE BASIN CONTINUES TO FUNCTION AS INITIALLY INTENDED. EXAMINE THE OUTLET FOR CLOGGING, EROSION, SLUMPING, EXCESSIVE SEDIMENTATION LEVELS, OVERGROWTH, EMBANKMENT AND SPILLWAY INTEGRITY AND DAMAGE TO ANY STRUCTURAL ELEMENT	ROUTINE — ANNUAL INSPECTION OF HYDRAULIC AND STRUCTURAL FACILITIES. ALSO CHECK FOR OBVIOUS PROBLEMS DURING ROUTINE MAINTENANCE VISITS, ESPECIALLY FOR PLUGGING OF OUTLETS			

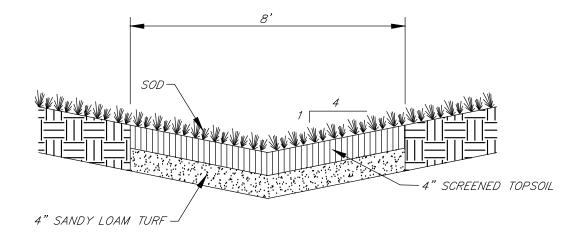
THE FOLLOWING TABLE PROVIDES A MAINTENANCE SCHEDULE FOR THE PROPOSED GRASS BUFFER AND SWALE:

٠.	BOTTEN AND SWILE.				
	Grass Swale, Grass Buffer				
	Activity	Required Frequency			
	Inspection for uniform cover, sediment accumulation, rill and gully development, and impacts from foot or vehicle traffic; maintain as necessary. Debris and litter removal.	Twice annually			
	Aeration	Annually			
	Mowing	As needed to maintain ~6" height			
	Irrigation and application of fertilizer, herbicide, and pesticide	As needed to maintain vegetative health			

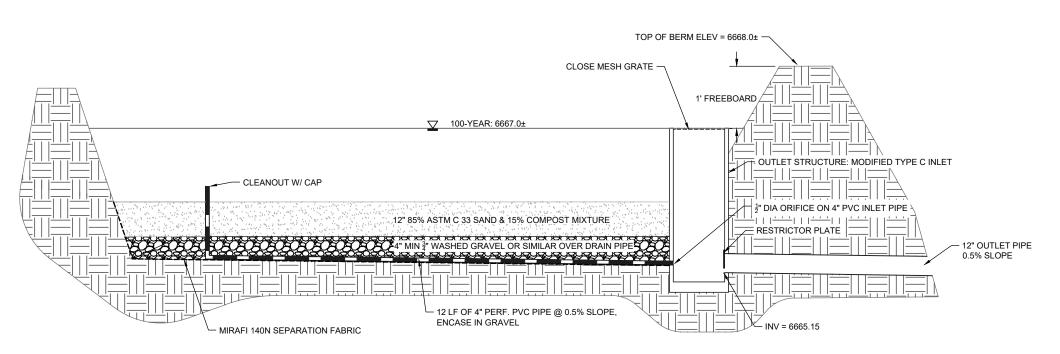
PROPOSED WATER QUALITY FEATURES FOR EDDYLINE TOWNHOMES OWNERSHIP AND MAINTENANCE PLAN

4. EQUIPMENT, STAFFING AND VEGETATION MANAGEMENT


- A. GENERAL LANDSCAPING TOOLS SUCH AS LAWNMOWER, WEED WHACKER
- B. STAFFING: TBD BY OWNER
- C. SEEDING: TBD
- D. MOWING: VEGETATION HEALTH SHOULD BE MAINTAINED IN THE BUFFER AND SWALE AREAS WITH REGULAR MOWING AND/OR WEEDEATING.
- E. UNDESIRABLE VEGETATION AND WEEDS: UNDESIRABLE VEGETATION AND NOXIOUS WEEDS SHOULD BE REMOVED REGULARLY BY THE LANDSCAPING STAFF. WEEDS SHOULD BE MOWED OR REMOVED.
- 5. SNOW AND ICE CONTROL


THE SAND FILTER DETENTION POND, GRASS BUFFER AND GRASS SWALE MAY SERVE AS A SNOW STORAGE AREA DURING THE WINTER MONTHS. SNOW CAN BE PLOWED INTO THE WQ FEATURES. PLOW OPERATORS SHALL TAKE CARE NOT TO DAMAGE THE POND.

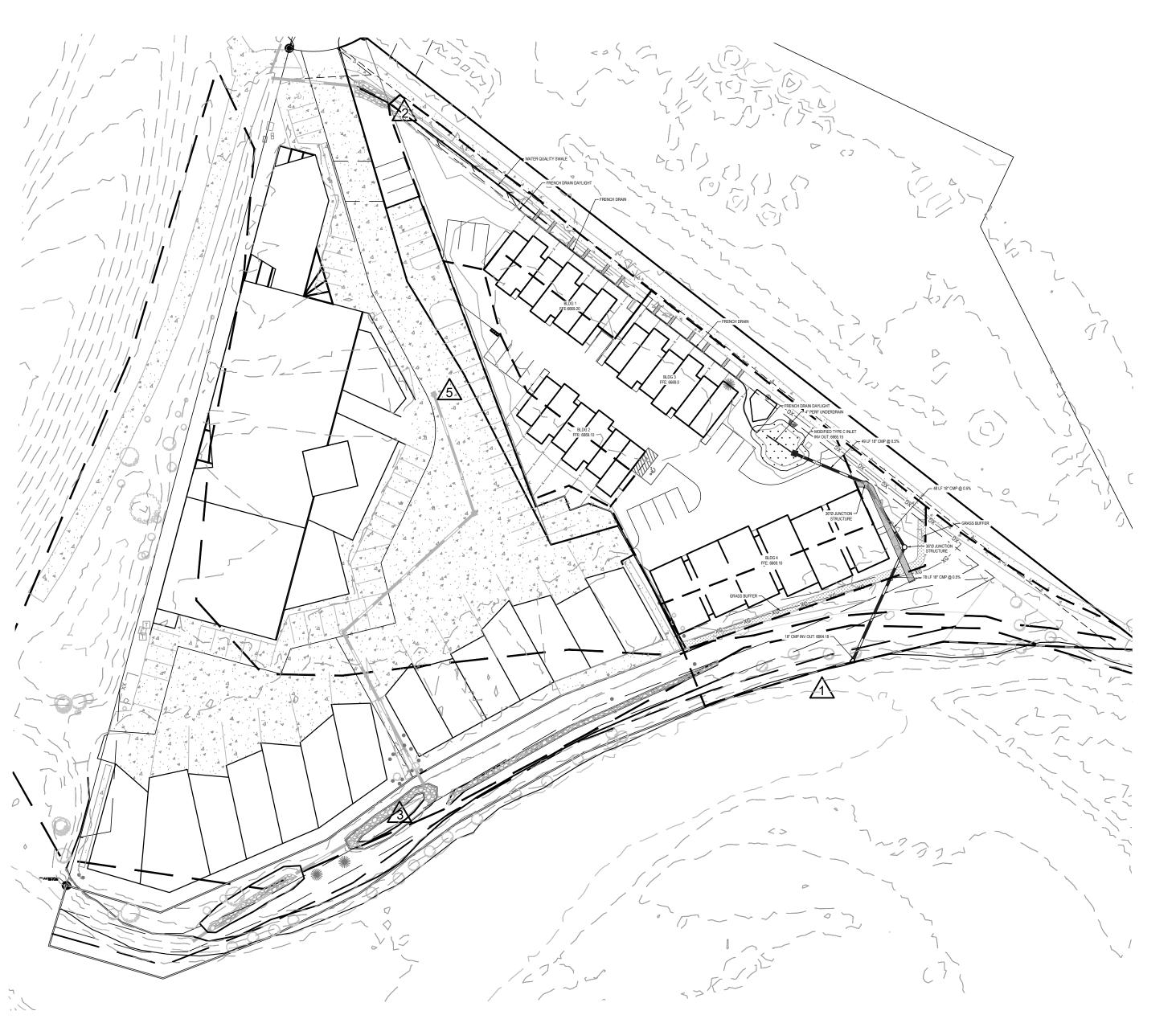
- 6. RIGHT-OF-WAY, ADJACENT OWNERSHIP & ACCESS
- A. ACCESS INFORMATION AND DETAILS: CORE TRAIL AND BRIDGE LANE
- B. A RIGHT—OF—WAY PERMIT SHOULD NOT BE REQUIRED FOR TEMPORARY OBSTRUCTIONS. MAINTENANCE CREWS SHOULD PLACE MUTCD APPROVED TRAFFIC CONTROL DEVICES (ORANGE CONES AND/OR BARRICADES) AROUND ALL VEHICLES AND EQUIPMENT THAT ARE TEMPORARILY WITHIN THE RIGHT OF WAY.
- 7. <u>Hydraulic design</u>


FLOWRATES POND (CFS)		
B.A. DESIGN EVENT (1.25 YEAR)	0.56	CFS
B.B. MINOR EVENT (5-YEAR)	1.28	CFS
B.C. MAJOR EVENT (100-YEAR)	3.46	CFS
FLOWRATES SWALE (CFS)		
B.A. DESIGN EVENT (1.25 YEAR)	0.04	CFS
B.B. MINOR EVENT (5-YEAR)	0.17	CFS
B.C. MAJOR EVENT (100-YEAR)	0.96	CFS
FLOWRATES BUFFER (CFS)		
B.A. DESIGN EVENT (1.25 YEAR)	0.09	CFS
B.B. MINOR EVENT (5—YEAR)	0.23	CFS
B.C. MAJOR EVENT (100-YEAR)	0.82	CFS

- 8. <u>Sensitive area, wetlands & permits</u>
- A. WETLANDS ARE NOT PRESENT AT THE SITE.

GRASS-LINED SWALE
N.T.S.

SAND FILTER DETENTION POND N.T.S.


MAINTENANCE NOTES

PROTECTION

SUGGESTED O&M: PROTECT POND FROM FUTURE CONSTRUCTION ACTIVITIES. KEEP FREE OF OBSTRUCTIONS AND EXCESSIVE USE.

THE PROPERTY OWNER OR MANAGER SHALL BE RESPONSIBLE FOR OPERATION AND MAINTENANCE ACTIVITIES.

410 S. Lincoln Ave, Unit 15

P.O. Box 775966

Steamboat Springs, CO 80487

(970)-871-6772

10/22/25 REVISIONS INT 10/22/25 PER DRT COMMENTS CFB

1940 BRIDGE LANE EAMBOAT SPRINGS , CO 8048

Horizontal Scale

Contour Interval = 2 ft

DATE: 8-1-2025

JOB #: 2349-002

DRAWN BY: MDM

DESIGN BY: CFB

REVIEW BY: FPSE

IF THIS DRAWING IS PRESENTED IN A FORMAT OTHER THAN 24" X 36", THE GRAPHIC SCALE SHOULD BE UTILIZED.

RATIONS AND INTENANCE

OPEF

SHEET#

O&M

Appendix G: Standard Forms No. 3 & No. 4	

Standard Form No. 3 Final Drainage Study Checklist

Instructions:

- 1. The applicant shall identify with a "check mark" if information is provided with letter. If applicant believes information is not required, indicate with "N/A" and attach separate sheet with explanation.
- 2. The reviewer will determine if information labeled "N/A" is required and whether additional information must be submitted.

I. General	
x B. Report bound (co x C. Drawings that ar x_ 36) included	d legible in 8½" x 11" format. omb, spiral, or staple – no notebook). re 8½ x 11 or 11 x 17 bound within report, larger drawings (up to 24 in a pocket attached to the report. Drawings shall be at ar and scale to be legible and include project area.
II. Cover	
x C. Preparer's name	inal Drainage Study. ubdivision, Original Date, Revision Date. r, firm, address, phone number. submittal and revisions; "FINAL" once approved.
III. Title Sheet	
x C. Note: City of Ste conformance wit for the accuracy be confirmed and	Stamp, signature, and date from licensed Colorado PE. eamboat Springs plan review and approval is only for general th City design criteria and the City code. The City is not responsible and adequacy of the design, dimensions, and elevations that shall d correlated at the job site. The City of Steamboat Springs consibility for the completeness or accuracy of this document.
IV. Introduction	
pertinent background background pertinent backgroun	te location, size in acres, existing and proposed land use, and any ound info. ing application type and plan set date and preparer. reports for adjacent development.
V. Drainage Criteria and M	Methodology Used
x B. Identify the runof x C. Identify culvert a x D. Identify detention	ainfall and storm frequency. If calculation method used. Ind storm sewer design methodology. In discharge and storage methodology. IS methodologies and parameters, if HEC-HMS is used.

VI. Existing Conditions (Pre-Development/Historic)

x x x x	 A. Indicate ground cover, imperviousness, topography, and size of site (acres). B. Describe existing stormwater system (sizes, materials, etc.). C. Describe other notable features (canals, major utilities, etc.). D. Note site outfall locations and ultimate outfall location (typically Yampa River). E. Note capacity of existing system and identify any constraints. F. Identify NRCS soil type. G. Discuss any existing easements. H. Identify the FEMA Map reviewed, if site is in floodplain/way, and zone designation.
VII. Pro	oposed Conditions
x	A. Indicate ground cover, imperviousness, topography, and disturbed area (acres). B. Describe proposed stormwater system (sizes, materials, etc.). C. Describe proposed outlets, and indicate historic and proposed flow for each. D. Include calculations for all culverts, ditches, ponds, etc. in appendix. E. Include a summary table for the 5- and 100-year events showing historic flow and
Х	proposed flow for total site and each basin. F. Discuss proposed easements.
x	G. Describe off-site flows to be passed thru site.
x	H. Summarize any impacts to downstream properties or indicate none. Reference CLOMR/LOMR and impacts.
	I. Detention Ponds.
x	Indicate pond volume and area (size and depth) requirement.
Х	2. Indicate release rates.
x	3. Discuss outfall design, location, and overflow location.
x_	Discuss maintenance requirements.
	J. Curb and Gutter
	Indicate gutter capacity.
n/a	2. Indicate curb capacity.
n/a	Indicate design velocity
n/a	Indicate design depth of flow in street.
	K. Culverts
_x	Indicate whether each culvert is under inlet or outlet control.
	2. Show that headwater is less than the maximum allowable.
_x	
_x	4. Indicate required and provided flow rates.
_x	· · ·
.,	L. Inlets
x	Indicate inlet capacity. Indicate the type of inlet(s) yeard.
x	 Indicate the type of inlet(s) used. M.Channels
v	
— <u>`</u> —	 Indicate design velocity (and type of dissipation if required). Indicate required and provided flow capacity.
^_	3. Show critical cross-section(s) including water surface.
^_	N. Site Discharge
x	Discuss use and design of detention to ensure discharge is less than or equal
	to historic flow.
x	 Provide documentation that downstream facilities are adequate and no adverse impacts to downstream property owners (i.e. no rise certification)

VIII. Post Construction Stormwater Management __x__ A. Discuss in general terms which permanent BMP practices will be used to control pollutant and sediment discharge after construction is complete. Exhibit A, Storm Water Quality Plan shall be attached that will give details (see separate checklist) IX. Conclusions __x__ A. Provide general summary. __x__ B. Note if site complies with criteria and any variances to criteria. x C. Indicate if peak proposed flow is less than, equal to, or greater than peak historic flow for each outfall, design point, and for the total site. __x__ D. List proposed new stormwater system requirements. X. References __x__ A. Provide a reference list of all criteria, master plans, drainage reports and technical information used. XI. Tables n/a A. Include a copy of all tables prepared for the study. XII. Figures x A. Vicinity Map. x B. Site Plan (include the horizontal and vertical datum used and all benchmarks). C. Existing conditions. 1. Delineate existing basin boundaries. Χ___ 2. Delineate offsite basins impacting the site. _n/a**_** 3. Show existing and proposed topography at an interval of at least 2-ft. __X___ 4. Show existing runoff flow arrows. 5. Show existing stormwater features (structures, sizes, materials, etc.). 6. Show floodplain limits and information. 7. For each basin show bubble with basin number, acreage and % impervious. __X___ 8. For each outlet show bubble with acreage and historic flow and proposed flow or provide information in summary table on figure. D. Proposed Conditions 1. Delineate proposed basin boundaries. 2. Show proposed runoff flow arrows. 3. Show existing and proposed topography at an interval of at least 2-ft. 4. For each basin show bubble with basin number, acreage and percent impervious or provide a summary table or figure. 5. For each outlet show bubble with acreage, historic flow, and proposed flow or __X___ provide a summary table or figure. 6. Show floodplain limits and information. 7. Show proposed building footprints and FFE for commercial and multi-family 8. Show property lines and easements (existing and proposed).

in lieu of labeling all facilities, if applicable.

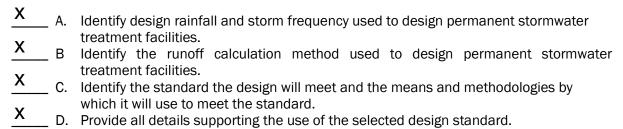
9. Label public and private facilities. A general note can be placed on the plans

XIII. Appendices	
x A. Runoff Calculationsx B. Culvert Calculationsx C. Pond Calculationsx D. Other Calculations.	
Acknowledgements	
Standard Form No. 3 was prepared by:Matthew McLeod, P.E	_1/3/25
Attach Exhibit A – Storm Water Quality Plan (see Standard Form No. 4)	Date

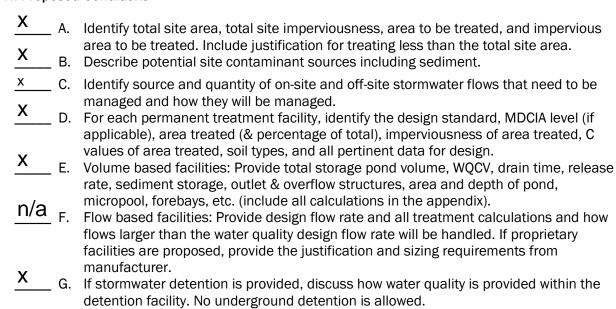
Standard Form No. 4 Stormwater Quality Plan Checklist

This list is not an exhaustive list of every possible item that may be required or requested in a Stormwater Quality Plan but provides a general guideline for preparation of the Stormwater Quality Plan.

Instructions:

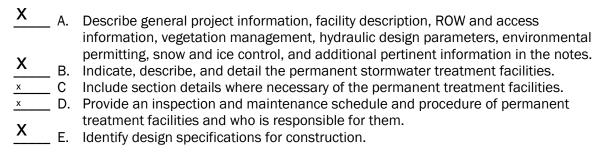

- 1. The applicant shall identify with a "check mark" if information is provided within the Stormwater Quality Plan. If applicant believes information is not required, indicate with "N/A" and attach separate sheet with explanation. If information is included with the associated drainage letter or study, indicated with a "D."
- 2 The reviewer will determine if information labeled "N/A" is required and whether

	ional information must be submitted.
I. General	
<u>n/a</u> B.	Report typed and legible in $8\frac{1}{2}$ " x 11" format. Report bound (comb, spiral, or staple – no notebook) and in digital PDF format. Drawings that are 11" x 17" bound within letter, larger drawings (up to 24" x 36") included in a pocket attached to the letter, and a digital PDF copy. Drawings shall be at an appropriate size and scale to be legible and include project area.
II. Cover	
<u>x</u> B. <u>x</u> C.	Report Type – Stormwater Quality Plan. Project Name, Subdivision or Development, Original Date, Revision Date. Preparer's name, firm, address, and phone number. "DRAFT" for 1st submittal and revisions; "FINAL" once approved.
III. Title She	et
	Table of Contents. Certification, PE Stamp, signature and date from licensed Colorado PE (for Final). Note: City of Steamboat Springs plan review and approval is only for general conformance with City design criteria and City code. The City is not responsible for the accuracy and adequacy of the design, dimensions, and elevations that shall be confirmed and correlated at the job site. The City of Steamboat Springs assumes no responsibility for the completeness or accuracy of this document.
IV. Introduct	ion and Background
<u>×</u> A.	Description of site location, study limits, size in acres, existing and proposed land use, soil data, permeability of the site, drainage patterns, and any pertinent background info.
<u>x</u> B.	State purpose and goal of Stormwater Quality Plan and report along with any special requirements of the desired outcome.


 $\underline{n/a}$ C. List any project stakeholders and/or requestors.

x D. Describe the background of the flooding source and any previous studies.

V. Design Criteria and Methodology Used



VI. Proposed Conditions

VII. Operation and Maintenance Plan Requirements

See template 0&M plan and guidance document.

Acknowledgements

Include appropriate Project Sheet(s) and Design Checklist(s) (See Section 5.12) Include this form as part of the Stormwater Quality Plan.

Appendix H: Project Sheets – Base Design Standards & WQCV Standard

PROJECT SHEET – BASE DESIGN STANDARDS (Site is not constrained)

Complete a Project Sheet for each project that includes Permanent Stormwater Treatment Facilities.

SITE INFORMATION

Project Name	: Eddyline T	ownhomes	
Project Locati	on: 1940 Br	ridge Lane, Steamboat Springs, CO	
Submitted Da	te: August 2	2025	Submitted By: Four Points Surveying and Engineering
Acreage Distu	rbed: ~1.1	acres	
Existing Imper	vious: 4%		New Net Impervious: ~60%
Review Date:			Reviewed By:
Preparer	City	Requirements	
		Design Details are included for all Treat	ment Facilities
	List or include a description of any source controls or other non-structural practices:		ce controls or other non-structural

DESIGN STANDARDS

Multiple Design Standards may be used on a site, as necessary, to meet the requirements, but only one Design Standard may be used for each treatment facility's tributary area. Evaluation of suitability of permanent stormwater treatment facilities is based on meeting the specified Design Standard and ease of long-term maintenance. Facilities must be designed in accordance with the most current versions of the City's Engineering Standards and Volume 3 of the USDCM and meet the specific requirements for each Design Standard used.

- 1. Indicate below, which Design Standard(s) will be used for the project, and
- 2. Complete a separate, corresponding Design Standards checklist for each facility (e.g., WQCV)

Design Standard	Quantity	Tributary Area	Location/Identifying information
WQCV	951 cu. ft.	0.60 acres	See drainage exhibit. SE corner of property.
Pollutant Removal	min 80%	0.20 acres	See drainage report. North side of property, replaces existing swale
Runoff Reduction			

DESIGN CHECKLIST - Water Quality Capture Volume (WQCV) Standard

WQCV STANDARD Criteria

Treatment facilities must be designed to provide treatment and/or infiltration of the WQCV for 100% of the site. Under certain conditions, up to 20% of the site may be excluded, not to exceed 1 acre. This may apply if it is not practicable to capture runoff from portions of the site and where it is not practicable to construct a separate treatment facility for those same portions of the site.

Complete checklist if using the WQCV Standard to meet Design Standard requirements.

Project Name: Eddyline Townhomes

Preparer City Requirements
Facilities provide treatment and/or infiltration of the WOCV for 100% of the site

I I O D G I O I	910	rtoquironto	
		Facilities provide treatment and/or infiltration of the WQCV for 100% of the site	
		% of site treated: 100% of the parking lot and grav	vel area.
		Facility Type: Sand Filter (SF), Grass Buffer and Grass Lined Swale	Facility Location: SF-Southeast corner of Lot, Buffer, south of BLDG 4, Swale-No
		See Drainage Report section: Water Quality	

If less than 100% of the site is treated, complete the following:

Preparer	City	Requirements
		% of site not treated by control measures (not to exceed 20% or 1 acre):
		Provide explanation of why the excluded area is impractical to treat: Undeveloped portion of the site adjacent to the Yampa River.
		Provide explanation of why another facility is not practicable for the untreated area: There is no development proposed near the Yampa River or even inside the flood plain.

Appendix I: Standard Form No. 5	i	

Standard Form No. 5 Drainage and Stormwater Treatment Scope Approval Form

Prior to starting a development plan and before the first drainage submittal, a Drainage and Stormwater Treatment Scope Approval Form must be submitted for review and signed by the City Engineer. A signed form shall also be included in every drainage submittal as Attachment A. This Scope Approval Form is for City requirements only. Values may be approximate. The City encourages supporting calculations and figures to be attached.

Project Information		
Project name:	Eddyline Towhomes	
Project location:	1940 & 1960 Bridge Lane, Steamboat Springs, CO	
Developer name/contact info:	Kruse Builde	rs- Calais Kruse - 229-798-2145
Drainage engineer name/contact info:	Walter Ma	gill, PE 970-871-1161
Application Type:	Development	Plan
Proposed Land Use:	Residential H	ousing
Project Site Parameters	S	
Total parcel area (acres	s):	2.17
Disturbed area (acres):		~1.3
Existing impervious are applicable):	ea (acres, if	~2.0
Proposed new impervio	ous area (acres):	~0.7
Proposed total impervious area (acres):		~0.7
Proposed number of project outfalls:		2
Number of additional parking spaces:		±16
Description and site percentage of existing cover/land use(s):		The site has multiple live/work units and work spaces already constructed on the adjacent property. The existing site is vacant with the core trail along the northeast property line.
Description and site percentage of proposed cover/land use(s):		The development will propose residential units dispersed through four buildings with access drive, parking and infrastructure.
Expected maximum proposed conveyance gradient (%):		7%
Description of size (acres) and cover/land use(s) of offsite areas draining to the site		No offsite areas appear to drain to the site.

Type of Study Required: Drainage Letter Final Drainage Study	☐ Conceptual Drainage Study■ Stormwater Quality Plan			
Hydrologic Evaluation: Rational Method CUHP/SWMM	HEC-HMS Other			
Project Drainage				
Number of subbasins to be evaluated:	3-6			
Presence of pass through flow (circle):	YES NO			
Description of proposed stormwater conveyance on site:	Sheet flow, storm sewer and swales as needed to convey water to the proposed ponds and outfalls.			
Project includes roadway conveyance as part of design evaluation (circle):	YES NO			
Description of conveyance of site runoff downstream of site, identify any infrastructure noted in Stormwater Master Plan noted as lacking capacity for minor or major storm event:	Various grass swales and culverts, eventually out to Yampa River, which is in close proximity along the southern property line.			
Detention expected onsite (circle):	YES NO			
Presence of Floodway or Floodplain on site (circle):	(YES) NO			
Anticipated modification of Floodway or Floodplain proposed (circle):	YES NO			
Describe culvert or storm sewer conveyance evaluative method:	mannings			
Permanent Stormwater Treatment Facility Design Standard (check all that apply with only one standard per tributary basin):				
■ WQCV Standard				
Constrained Redevelopment WQCV Standard				
Constrained Redevelopment TSS Standard				
Constrained Redevelopment Infiltration Standard				
☐ Does not Require Permanent Stormwater Treatment (attach Exclusion Tracking Form)				

Project Permanent Stormwater Treatment			
Justification of choice of proposed design standard, including how the site meets the constrained redevelopment standard, infiltration test results, etc.:	Water quality will be handled through a porous landscape detention pond on site.		
Concept-level permanent stormwater treatment facility design details (type, location of facilities, proprietary structure selection, treatment train concept, etc.):	To be determined with final report.		
Proposed LID measures to reduce runoff volume:	None		
Will treatment evaluation include off-site, pass through flow (circle):	YES NO N/A		

м	n	o		va	е
А	w	м	w	ve	

Matthew McLeod, PE - Four Points Surveying & Engineering		7/24/25 248-444-3268
Prepared By: (Insert drainage engineer name & firm)	Date	Phone number
Approved By:		
Printed Name: City Engineer	Date	

August 06, 2025

Matthew McLeod PO Box 775966 Steamboat Springs, CO 80477

RE: Approval Letter for Preconsultation - Drainage Scope Approval Form or Waiver Request for Eddyline Townhomes (PL20250250)

Dear Matthew McLeod,

The following are approved:

1. Drainage & Stormwater Treatment Scope Approval Form

If you have any questions or concerns please contact me at (970) 871-7019 or via email at acamano@steamboatsprings.net.

Sincerely,

Adan Camano Staff Engineer