FINAL Drainage Study and Stormwater Quality Plan

Original Date: October 5, 2022 Final: December 15, 2023

Prepared by: Matthew Eggen, P.E.

<u>NOTE</u>

City of Steamboat Springs plan review and approval is only for general conformance with City design criteria and the City code. The City is not responsible for the accuracy and adequacy of the design, dimensions, and elevations that shall be confirmed and correlated at the job site. The City of Steamboat Springs assumes no responsibility for the completeness or accuracy of this document

TABLE OF CONTENTS

CERTIFICATION	ii
INTRODUCTION AND LOCATION	. 1
DRAINAGE CRITERIA AND METHODOLOGY	. 2
EXISTING SITE CONDITIONS	.3
PROPOSED SITE CONDITIONS	.4
STORMWATER QUALITY	.6
CONCLUSIONS	.7
LIMITATIONS	.7

FIGURES	Figure 1: Vicinity Map (within text)
	Figure 2: Existing Drainage Plan
	Figure 3: Proposed Site Level Drainage Plan
APPENDIX A	Hydrologic Calculations
APPENDIX B	Hydraulic Calculations
APPENDIX C	Water Quality Calculations
APPENDIX D	Ownership and Maintenance Plan
APPENDIX E	City Forms & Checklists:
	Form 3 Drainage Study Checklist
	Attachement A Scope and Approval Form
	Form 4 Stormwater Quality Plan Checklist
	Project Sheet(s)
	Design Checklist SWQCV Standard

i

CERTIFICATION

I hereby affirm that this Drainage Study and Stormwater Quality Plan for Amble Site Improvements was prepared by me (or under my direct supervision) for the owners thereof and is, to the best of my knowledge, in accordance with the provisions of the City of Steamboat Springs Storm Drainage Criteria and approved variances. I understand that the City of Steamboat Springs does not and will not assume liability for drainage facilities designed by others.

Matthew Eggen, P.E. State of Colorado No. 50740

\land

INTRODUCTION AND LOCATION

The purpose of this drainage study and stormwater quality plan is to develop an analysis of stormwater runoff and drainage structures required for Amble Site Improvements. Included in this study are all the base data, methods, assumptions, and calculations for the stormwater management system for the development of the property.

The facts and opinions expressed in this report are based on Landmark Consultants, Inc.'s (Landmark's) understanding of the project and data gathered from:

- Site visit (spring 2023)
- Steamboat Springs GIS data
- NRCS soil maps
- FEMA FIRM Community Panel Numbers 08107-CO883-D (February 4, 2005)
- Detailed field survey by Landmark Consultants, Inc.
- Citywide Stormwater Master Plan, March 2013.
- References listed at the end of this report

The subject property is approximately 4.31 acres in size. It is in the Northeast ¼ of Section 28, Township 6 North, Range 84 West of the 6th Principal Meridian, City of Steamboat Springs, Routt County, Colorado.

Specifically, the site is located in the center of Mount Werner Circle, south of the Steamboat Grand and north of the West Condominiums. The proposed construction will be limited to a disturbance area of approximately 5.94-acres below 7000-feet in elevation.

Figure 1- Vicinity Map

The existing site sits atop a knoll of native vegetation grasses. Cutting through the site are three (3) asphalt trails/accesses running generally north to south. The two on the east are pedestrian trails and the western asphalt access is an emergency access road for the Steamboat Grand. There also exists a gondola tram line with five (5) tram towers that runs east to west.

The project proposes the construction of a paved internal private access roadway to access lot 1, a paved emergency access to the Steamboat Grand, and over lot grading of Lot 1. One proposed water quality/detention facility will receive the runoff from the impervious and snowstorage surfaces.

DRAINAGE CRITERIA AND METHODOLOGY

Landmark prepared this report in accordance with *City of Steamboat Springs Engineering Standards, Section 5.0, Drainage Criteria* effective September 2007 and updated July 2019. The methods used by Landmark are described below and the actual calculations are presented in the Appendices. The scope of

Design Rainfall and Runoff Frequency

Landmark used the 5-year, 24-hour storm to analyze the minor storm event and the 100-year, 24-hour storm for the major storm event. Landmark used the Rational Method to determine peak runoff of small basins to design the on-site storm water runoff infrastructure associated with this project. The minimum time of concentration (t_c) used for this analysis is 5 minutes, based on the recommendations for urbanized watersheds found in Section 5.2.6.1 of the *Drainage Criteria*.

Storm Sewer Design

Storm sewers were designed and evaluated using Autodesk's Storm and Sanitary Sewer Analysis, which uses hydrodynamic routing. Storm sewers were sized to convey the minor storm event so that the HGL does not exceed the ground elevation however, the storm sewers convey the major storm event as well. In general, channels and roadside ditches are designed so that the Froude number during the major storm does not exceed 0.8.

Stormwater Quality

The project uses the WQCV design standard to provide stormwater quality treatment in the form of a sand filter designed per the parameters recommended in Volume 3 of the Mile High Flood District's Criteria Manual. This standard was chosen due to the expected low pollutant load and its widespread applicability.

EXISTING SITE CONDITIONS

The historic condition of the site is an undeveloped lot (4.35 acres) that is vacant and covered with native grasses. In this report the term "historic condition" refers to the conditions of the site prior to any construction activity and may also be referred to as the "pre-development condition" or "existing condition".

Figure 2: Existing Conditions shows the features of the site prior to development.

Currently the site is vacant (except for the three (3) asphalt surfaced trails/accesses) and covered by wellestablished native grasses, shrubs, and trees. The site slopes to the east and to the west from a large knoll which delineates the drainage.

The existing site is evaluated as two drainage basins. Basin H1 contains the west draining slopes of Lot 1 and the Tram Lot, as well as the westerly portion of the West Condominiums development. Basin H1 drainage is collected in a roadside ditch on the east side of Mt Werner Circle and routed into an existing 24" CMP culvert under Mt Werner Circle and outfalls into the Wildhorse Meadows subdivision, which ultimately outfalls to a storm sewer system under Ski Town Park and into the Yampa River.

Basin H2 contains the east draining slopes of Lot 1, and a portion of the grand building, Mt Werner Circle, and the West Condominiums. Basin H2 drainage is collected in a series of roadside ditches and culverts, which ultimately outfalls into Burgess Creek and from there into the Yampa River.

A review of the NRCS soil data for the area indicates the site is dominated by NRCS HSG C soils which are soils having a slow infiltration rate when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.

FEMA FLOODPLAIN

Landmark reviewed FEMA FIRM Community Panel Numbers 08107-CO883-D (February 4, 2005) and no portions of the property are within the 100yr and 500yr floodplains.

PROPOSED SITE CONDITIONS

This project proposes the construction of a paved internal private access roadway to access lot 1, a paved emergency access to the Steamboat Grand, and over lot grading of Lot 1. Lot 1 is expected to be developed for multifamily condominium and the Tram Lot is expected to be developed for an aerial tramway and related facilities. Table 6-3 from Urban Drainage for recommended percentage imperviousness values was used to estimate future development imperviousness. Lot 1 was assumed at 70% impervious (slightly less than the 75% recommended for "Apartments" as there will be small portions of the lot not developed due to steep slopes). The Tram Lot was assumed at 20% impervious (Conservative estimate for impervious improvements to include tram towers, access paths, and covered tram turn station). The total disturbed area (including all of Lot 1 and the Tram Lot) is expected to be about 5.94-acres. The proposed development is shown in Figure 3: Proposed Conditions.

The site is divided into subbasins, D1.a-D1.f & D2. Basins D1.a-D1.f drain to the west and outfall to the culvert under Mt Werner Circle to the Wildhorse Meadows Subdivision. Basin D1.a consists of mainly existing, undisturbed areas, and a small portion of the proposed internal private access roadway. The proposed portion of basin D1.a will be routed into a proposed roadside ditch, which will outfall directly into the existing culvert under Mt Werner Circle. Basin D1.b-D1.f consists of the remainder of the west draining developed areas which include the internal private access, emergency access, Lot 1 and the Tram Lot. Basin D1.b-D1.f will be routed through swales and culverts to the proposed water quality/detention facility on the western side of the Tram Lot. The proposed facility will outfall into the existing culvert under Mt Werner Circle.

Basin D2 consists of east draining portions of Lot 1 and the Tram Lot. Drainage from these areas will remain historical as there is no proposed increase run-off.

	Table 1: Basin Hydrology Summary								
Basin	Total Area	~ "					Q ₁₀₀		
	(acres)	%Imp	C ₅	C ₁₀₀	T _c (min)	(crs)	(cts)		
H1	6.59	19%	0.25	0.55	12.61	4.23	19.89		
H2	5.00	53%	0.42	0.61	8.39	6.60	21.18		
D1.a	2.58	37%	0.34	0.58	9.22	2.63	9.72		
D1.b	1.51	20%	0.26	0.55	5.00	1.50	6.98		
D1.c	0.41	22%	0.27	0.56	8.35	0.35	1.57		
D1.c.1	0.42	41%	0.35	0.58	7.14	0.50	1.81		
D1.d	0.13	39%	0.35	0.58	7.27	0.16	0.57		
D1.e	1.18	41%	0.36	0.58	5.00	1.62	5.79		
D1.f	1.58	50%	0.40	0.60	5.00	2.42	7.96		
D2	4.26	66%	0.49	0.65	8.39	6.70	19.32		

Table 1 summarizes and compares the hydrological characteristics of the developed site and the existing site:

Table 2 summarizes the design points for the developed site:

Table 2: Design Point Summary								
Design						0	0	
Point	Total Area (acres)	%lmp	C₅	C100	T _c (min)	Q₅ (cfs)	(cfs)	
WQ-1	4.81	36%	0.33	0.55	10.35	4.55	16.37	
H1	7.39	36%	0.34	0.61	14.55	5.75	22.80	
DP1	2.34	24%	0.28	0.58	10.81	1.81	8.17	

Detention

The proposed development will increase the imperviousness of the site to 36% in at the design point H1 (basins D1.a - D1.f), resulting in an increase in estimated peak runoff for both the minor and major storm. A decrease in estimated peak runoff for both the minor and major storm in basin D2 as compared to basin H2 as the size of the basin has been decreased (see Table 1). The pond (pond WQ-1) will provide detention to restrict flows to historic values at H1. Table 3 summarized the detention release rates:

Table 3: Allowable Outflow for Detention Calculation							
Design Storm	Q _H	Q _{UD}	Q _A				
5-Year	4.23	2.63	1.60				
100-Year	19.89	9.72	10.17				

Q_H Historic peak flow (cfs)

Q_{UD} Undetained flow (cfs)

Q_A Allowable peak flow from detention facility (cfs)

The required volume estimates for the design storms are $V_5=1,835$ -ft³ and $V_{100}=3,854$ -ft³.

Table 4 in the next section summarizes the pond volumes and other parameters.

Storm System

Storm sewer systems in general will be made up of ADS drain basins and corrugated HDPE pipe in sizes from 12" to 24". The underdrains in the ponds will be 4" HDPE perforated pipe and the outlet structure's will be CDOT type C inlets. All basin, storm-system, swale, and water quality calculations are included in the appendices.

STORMWATER QUALITY

Water quality in the Yampa River is degraded by the washing-off of accumulated deposits on the urban landscape of Steamboat Springs. Metals, salts, sand, gravel, trash, debris, and organics (including oil and gasoline) all accumulate on the streets and in parking lots of Steamboat Springs over the course of time. During a rainstorm event, these pollutants are washed into the Yampa River and its tributaries. Water quality problems caused by these pollutants include turbid water, nutrient enrichment, bacterial contamination, reduction in dissolved oxygen, and increased stress on aquatic life. The most prevalent pollutant in Steamboat Springs is sediment. BMP's included in this project are designed to minimize the amount of sediment leaving the site and entering the waterways.

Potential Pollutant Sources: The following are anticipated pollutant sources for this project:

- 1. Routine maintenance involving fertilizers, pesticides, detergents, fuels, solvents, oils, etc.
- 2. On site waste management practices (waste piles, dumpsters, etc.)

BMP Selection:

From the Mile High Flood District's (MHFD) *Urban Storm Drainage Criteria Manual* (USDCM), Volume 3, BMP selection involves many factors such as physical site characteristics, treatment objectives, aesthetics, safety, maintenance requirements, and costs. As each site is unique, there is not a standard BMP that can be implemented for every application and therefore there may be multiple solutions including standalone BMPs or 'treatment trains' that combine multiple BMPs to achieve the water quality objectives.

Water Quality Capture Volume:

The water quality capture volume (WQCV) is calculated following Section 5.12.7.1 of the *Design Criteria*. A drain time coefficient of 0.8 is used, based on the MHFD's recommended minimum drain time of 12 hours for SF's.

Table 4: Water Quality Pond Summary V₁₀₀ + Sand Filter Bioretention Detention² WQCV¹ Detention² Total Volume Flat Area Flat Area wocv V₅ Basin (ft³) (ft^3) V₁₀₀ (ft^3) (ft^2) (ft^2) (ft³) (ft³) Required Provided Required Provided Provided Required WQ-1 935 1,574 1495 1,574 2,229 6,082 1,835 3.854 6,624 Total Treated Area (acres) 4.24 5.04 Total Disturbed area (acres) 84% Percent Treated (%)

Table 4 summarizes the requirements and designs of the Water Quality Ponds:

These facilities treat approximately 84% of the site leaving 0.80-acres, or 16% of the site area untreated. A separate water quality facility for a portion of basin D2 is not feasible as it would require locating the treatment pond on a steep slope or within the right-of-way near the Gondola Transit Center that is currently looking to redevelop.

The calculations for the WQCV and BMP sizing have been included in the appendices.

Site operation can significantly manage stormwater quality and care should be exercised to monitor and maintain the BMPs described. An Operation and Maintenance Plan is included in Appendix D.

CONCLUSIONS

The improvements for the proposed development include the construction of a paved internal private access roadway to access lot 1, a paved emergency access to the Steamboat Grand, and over lot grading of Lot 1, and one water quality (sand filter)/ detention pond.

Runoff from the project will maintain historical drainage patterns with all flow discharging to the existing culvert under Mt Werner Circle to the west and to the existing roadside ditch to the east.

The runoff from developed areas will be treated in the sand filter. Although the proposed development will increase the estimated peak flows from the site, the sand filter pond will also provide detention for the project by restricting flows to historic values.

In order to operate as intended, on-going maintenance and inspection of storm systems, swales and the sand filters will be required.

LIMITATIONS

This study is intended to estimate and analyze peak stormwater runoff volumes generated by hydrologic events in order to evaluate existing drainage infrastructure and design new infrastructure needed to manage these flows. It does not account for groundwater, springs, or seeps and is not intended to be used for the evaluation or design of foundation drains or roof drains.

Basin delineations, areas, and soil characteristics are based on those described in the Report. Actual conditions may vary. Landmark's assumptions, recommendations and opinions are based on this information and the proposed site plan. If any of the data is found to be inaccurate or the proposed site plan is changed, Landmark should be contacted to review this report and make any necessary revisions.

The data, opinions, and recommendations of this report are applicable to the specific design elements and location that is the subject of this report. This report is not applicable to any other design elements

 \land

or to any other locations. Any and subsequent users accept any and all liability resulting from any use or reuse of the data, opinions, and recommendation without the prior written consent of Landmark Consultants, Inc.

Landmark Consultants, Inc. has no responsibility for construction means, methods, techniques, sequences, or procedures, or for safety precautions or programs in connection with the construction, for the acts or omissions of the contractor, or any other person performing any of the construction, or for the failure of any of them to carry out the construction in accordance with the Final Construction Drawings and Specifications.

The only warranty or guarantee made by Landmark Consultants, Inc. in connection with the services performed for this project is that such services are performed with the care and skill ordinarily exercised by members of the profession practicing under similar conditions, at the same time, and in the same or similar locality. No other warranty, expressed or implied, is made or intended by rendering such services or by furnishing written reports of the findings.

REFERENCES

- 1. <u>Section 5.0 Drainage Criteria</u>, City of Steamboat Springs Department of Public Works, July 2019.
- 2. <u>Drainage Criteria Manual (Volumes 1 3)</u>, Mile High Flood District's (MHFD), 2019
- 3. <u>Hydraulic Design of Energy Dissipators for Culverts and Channels (HEC 14)</u>, Federal Highway Administration, September 1983
- 4. <u>Hydraulic Design of Highway Culverts (HDS-5)</u>, Federal Highway Administration, September 2001
- 5. <u>Procedures for Determining Peak Flows in Colorado</u>, Natural Resource Conservation Service, 1984
- 6. <u>Urban Hydrology for Small Watersheds (TR-55)</u>, Natural Resource Conservation Service, June 1986
- 7. <u>Citywide Stormwater Master Plan</u>, City of Steamboat Springs, Colorado, SEH, March 2013.

</

APPENDIX A

HYDROLOGIC CALCULATIONS

Land Use or	Percentage Imperviousness
Surface Characteristics	(%)
Business:	
Downtown Areas	95
Suburban Areas	75
Residential lots (lot area only):	
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 – 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

Table 6-3. Recommended percentage imperviousness values

Total or Effective	NRCS Hydrologic Soil Group A								
% Impervious	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year		
2%	0.01	0.01	0.01	0.01	0.04	0.13	0.27		
5%	0.02	0.02	0.02	0.03	0.07	0.15	0.29		
10%	0.04	0.05	0.05	0.07	0.11	0.19	0.32		
15%	0.07	0.08	0.08	0.1	0.15	0.23	0.35		
20%	0.1	0.11	0.12	0.14	0.2	0.27	0.38		
25%	0.14	0.15	0.16	0.19	0.24	0.3	0.42		
30%	0.18	0.19	0.2	0.23	0.28	0.34	0.45		
35%	0.21	0.23	0.24	0.27	0.32	0.38	0.48		
40%	0.25	0.27	0.28	0.32	0.37	0.42	0.51		
45%	0.3	0.31	0.33	0.36	0.41	0.46	0.54		
50%	0.34	0.36	0.37	0.41	0.45	0.5	0.58		
55%	0.39	0.4	0.42	0.45	0.49	0.54	0.61		
60%	0.43	0.45	0.47	0.5	0.54	0.58	0.64		
65%	0.48	0.5	0.51	0.54	0.58	0.62	0.67		
70%	0.53	0.55	0.56	0.59	0.62	0.65	0.71		
75%	0.58	0.6	0.61	0.64	0.66	0.69	0.74		
80%	0.63	0.65	0.66	0.69	0.71	0.73	0.77		
85%	0.68	0.7	0.71	0.74	0.75	0.77	0.8		
90%	0.73	0.75	0.77	0.79	0.79	0.81	0.84		
95%	0.79	0.81	0.82	0.83	0.84	0.85	0.87		
100%	0.84	0.86	0.87	0.88	0.88	0.89	0.9		
Total or Effective			NRCS Hydrologic Soil Group B						
TOTAL OF LATECHIVE			пксэ пуаг	ologic Soli	Group B				
% Impervious	2-Year	5-Year	10-Year	25-Year	Group B 50-Year	100-Year	500-Year		
% Impervious	2-Year 0.01	5-Year 0.01	10-Year 0.07	25-Year 0.26	50-Year 0.34	100-Year 0.44	500-Year 0.54		
With the second secon	2-Year 0.01 0.03	5-Year 0.01 0.03	10-Year 0.07 0.1	25-Year 0.26 0.28	50-Year 0.34 0.36	100-Year 0.44 0.45	500-Year 0.54 0.55		
With the second secon	2-Year 0.01 0.03 0.06	5-Year 0.01 0.03 0.07	NRCS Hydr 10-Year 0.07 0.1 0.14	25-Year 0.26 0.28 0.31	50-Year 0.34 0.36 0.38	100-Year 0.44 0.45 0.47	500-Year 0.54 0.55 0.57		
Solution Effective % Impervious 2% 5% 10% 15%	2-Year 0.01 0.03 0.06 0.09	5-Year 0.01 0.03 0.07 0.11	10-Year 0.07 0.1 0.14 0.18	25-Year 0.26 0.28 0.31 0.34	50-Year 0.34 0.36 0.38 0.41	100-Year 0.44 0.45 0.47 0.5	500-Year 0.54 0.55 0.57 0.59		
10tal of Effective % Impervious 2% 5% 10% 15% 20%	2-Year 0.01 0.03 0.06 0.09 0.13	5-Year 0.01 0.03 0.07 0.11 0.15	10-Year 0.07 0.1 0.14 0.18 0.22	25-Year 0.26 0.28 0.31 0.34 0.38	50-Year 0.34 0.36 0.38 0.41 0.44	100-Year 0.44 0.45 0.47 0.5 0.52	500-Year 0.54 0.55 0.57 0.59 0.61		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 25%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17	5-Year 0.01 0.03 0.07 0.11 0.15 0.19	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26	25-Year 0.26 0.28 0.31 0.34 0.38 0.41	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47	100-Year 0.44 0.45 0.47 0.5 0.52 0.54	500-Year 0.54 0.55 0.57 0.59 0.61 0.63		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 25% 30%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 25% 30% 35%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 25% 30% 35% 40%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32	INCCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68		
Solution Effective % Impervious 2% 5% 10% 15% 20% 25% 30% 35% 40% 45%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.55 0.58	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7		
Solution Content of Effective % Impervious 2% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.42 0.46	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66	500-Year 0.54 0.55 0.57 0.69 0.61 0.63 0.65 0.66 0.68 0.7 0.72		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.42 0.46 0.5	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56 0.6	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.52 0.55 0.58 0.61 0.63	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.74		
Window 2% 5% 10% 15% 20% 30% 35% 40% 45% 50% 55%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.49	INCCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.42 0.46 0.5 0.54	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56 0.6 0.63	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 35% 30% 35% 40% 45% 50% 60% 65%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.72 0.74 0.76 0.77		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 65% 70%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.54 0.58	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.42 0.46 0.5 0.54 0.58 0.62	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56 0.66 0.66 0.69	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75	500-Year 0.54 0.55 0.57 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.72 0.74 0.76 0.77 0.79		
Window 2% 5% 10% 15% 20% 35% 30% 35% 40% 45% 50% 60% 65% 70% 75%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.36 0.4 0.45 0.49 0.54 0.58 0.63	INCCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62 0.66	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66 0.69 0.72	Solution Solution	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.72 0.74 0.76 0.77 0.79 0.81		
Window 2% 5% 10% 15% 20% 35% 30% 35% 40% 45% 50% 60% 65% 70% 75% 80%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6 0.64	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.63 0.67	INCCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.62 0.66 0.7	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.56 0.66 0.63 0.66 0.72 0.75	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.77	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78 0.8	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.72 0.74 0.74 0.76 0.77 0.79 0.81 0.83		
10tal of Effective % Impervious 2% 5% 10% 15% 20% 35% 30% 35% 40% 45% 50% 60% 65% 70% 75% 80% 85%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6 0.64 0.69	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.54 0.58 0.63 0.67 0.72	NRCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.62 0.66 0.7 0.74	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5 0.53 0.66 0.63 0.66 0.72 0.75 0.78	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.77 0.8	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78 0.8 0.82	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.74 0.74 0.76 0.77 0.79 0.81 0.83 0.85		
With the second secon	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6 0.64 0.69 0.74	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.58 0.63 0.67 0.72 0.76	10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62 0.74 0.74	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.47 0.5 0.53 0.66 0.63 0.66 0.72 0.75 0.78 0.81	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.77 0.8 0.83	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78 0.8 0.82 0.84	500-Year 0.54 0.55 0.57 0.69 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.72 0.74 0.74 0.76 0.77 0.79 0.81 0.83 0.85 0.87		
Window 2% 5% 10% 15% 20% 35% 30% 35% 40% 45% 50% 60% 65% 70% 75% 80% 85% 90% 95%	2-Year 0.01 0.03 0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33 0.37 0.42 0.42 0.46 0.5 0.55 0.6 0.64 0.69 0.74 0.79	5-Year 0.01 0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.63 0.67 0.72 0.76	INCCS Hydr 10-Year 0.07 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.62 0.66 0.7 0.74 0.78 0.82	25-Year 0.26 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.53 0.56 0.66 0.69 0.72 0.75 0.78 0.81 0.85	Group B 50-Year 0.34 0.36 0.38 0.41 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.77 0.8 0.83 0.86	100-Year 0.44 0.45 0.47 0.5 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78 0.8 0.82 0.84 0.87	500-Year 0.54 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.72 0.74 0.76 0.77 0.79 0.81 0.83 0.85 0.87 0.88		

Table 6-5.Runoff coefficients, c

Total or Effective	NRCS Hydrologic Soil Group C									
% Impervious	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year			
2%	0.01	0.05	0.15	0.33	0.40	0.49	0.59			
5%	0.03	0.08	0.17	0.35	0.42	0.5	0.6			
10%	0.06	0.12	0.21	0.37	0.44	0.52	0.62			
15%	0.1	0.16	0.24	0.4	0.47	0.55	0.64			
20%	0.14	0.2	0.28	0.43	0.49	0.57	0.65			
25%	0.18	0.24	0.32	0.46	0.52	0.59	0.67			
30%	0.22	0.28	0.35	0.49	0.54	0.61	0.68			
35%	0.26	0.32	0.39	0.51	0.57	0.63	0.7			
40%	0.3	0.36	0.43	0.54	0.59	0.65	0.71			
45%	0.34	0.4	0.46	0.57	0.62	0.67	0.73			
50%	0.38	0.44	0.5	0.6	0.64	0.69	0.75			
55%	0.43	0.48	0.54	0.63	0.66	0.71	0.76			
60%	0.47	0.52	0.57	0.65	0.69	0.73	0.78			
65%	0.51	0.56	0.61	0.68	0.71	0.75	0.79			
70%	0.56	0.61	0.65	0.71	0.74	0.77	0.81			
75%	0.6	0.65	0.68	0.74	0.76	0.79	0.82			
80%	0.65	0.69	0.72	0.77	0.79	0.81	0.84			
85%	0.7	0.73	0.76	0.79	0.81	0.83	0.86			
90%	0.74	0.77	0.79	0.82	0.84	0.85	0.87			
95%	0.79	0.81	0.83	0.85	0.86	0.87	0.89			
100%	0.83	0.85	0.87	0.88	0.89	0.89	0.9			

 Table 6-5. Runoff coefficients, c (continued)

Figure 6-1. Runoff coefficient vs. watershed imperviousness NRCS HSG A

Figure 6-2. Runoff coefficient vs. watershed imperviousness NRCS HSG B

Figure 6-3. Runoff coefficient vs. watershed imperviousness NRCS HSG C and D

Time, minutes

106° 48' 40" W

346500

346600

Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
50F	Routt loam, 25 to 65 percent slopes, very stony	С	53.8	70.3%
52A	Slocum loam, 0 to 3 percent slopes	C/D	6.3	8.2%
133	Lintim loam, 3 to 25 percent slopes	С	16.4	21.4%
Totals for Area of Intere	st		76.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

< l

APPENDIX B

HYDRAULIC CALCULATIONS

	CIVIL ENGINEERS SURVEYORS
CONSULTANTS, INC.	141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494

141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494 www.LANDMARK-CO.com

								BA.	SIN RUNOFF COEF	FICIENT CALCULA	TIONS						
			Percent														
Cha	racter of Surface	•	Impervious		IDF			Soil Type									
Asphalt	Parking and Walk	ways	100%		Steamboat	Springs NOA	Ą	С									
	Gravel		40%														
	Roof		90%														
Lawn	is and Landscapin	ıg	2%														
Assumed	Imperviousness ((Lot 1)	70%														
Assumed In	nperviousness (Tr	ram Lot)	20%														
			Area of Asphalt	Area of Asphalt	Area of	Area of			Area of	Area of						5-year	100-year
			Parking and	Parking and	Gravel	Gravel	Area of	Area of	Lawns and	Lawns and	Assumed	Assumed	Assumed	Assumed		Composite	Composite
	Basin Area	Basin Area	Walkways	Walkways	Surfaces	Surfaces	Roof	Roof	Landscaping	Landscaping	Imperviousness	Imperviousness	Imperviousness	Imperviousness	Percent	Runoff	Runoff
Basin ID	(sq.ft.)	(acres)	(sq.ft.)	(acres)	(sq.ft)	(acres)	(sq.ft.)	(acres)	(sq.ft.)	(acres)	(sq.ft.)	(acres)	(sq.ft.)	(acres)	Impervious	Coefficient	Coefficient
H1	287133.00	6.59	43666.00	1.00	0.00	0.00	6017.00	0.14	237450.00	5.45	0.00	0.00	0.00	0.00	19%	0.25	0.55
H2	217961.00	5.00	78961.00	1.81	0.00	0.00	37954.00	0.87	101046.00	2.32	0.00	0.00	0.00	0.00	53%	0.42	0.61
D1.a	112208.00	2.58	38970.00	0.89	0.00	0.00	0.00	0.00	65109.00	1.49	0.00	0.00	8129.00	0.19	37%	0.34	0.58
D1.b	65830.00	1.51	6672.00	0.15	0.00	0.00	0.00	0.00	30267.00	0.69	0.00	0.00	28891.00	0.66	20%	0.26	0.55
D1.c	17771.00	0.41	3643.00	0.08	0.00	0.00	0.00	0.00	14128.00	0.32	0.00	0.00	0.00	0.00	22%	0.27	0.56
D1.c.1	18402.00	0.42	1239.00	0.03	0.00	0.00	6749.00	0.15	10414.00	0.24	0.00	0.00	0.00	0.00	41%	0.35	0.58
D1.d	5845.00	0.13	2212.00	0.05	0.00	0.00	0.00	0.00	3633.00	0.08	0.00	0.00	0.00	0.00	39%	0.35	0.58
D1.e	51353.00	1.18	1465.00	0.03	0.00	0.00	0.00	0.00	3188.00	0.07	20801.00	0.48	25899.00	0.59	41%	0.36	0.58
D1.f	68763.00	1.58	7297.00	0.17	12308.00	0.28	0.00	0.00	18238.00	0.42	30920.00	0.71	0.00	0.00	50%	0.40	0.60
D2	185693.00	4.26	74420.00	1.71	0.00	0.00	37954.00	0.87	28485.00	0.65	7081.00	0.16	37753.00	0.87	66%	0.49	0.65

PROJECT:	2571-001
DESIGNER:	Matthew Eggen
DATE:	12/15/2023
POND ID:	

I.	&NDMARK
A	CONSULTANTS, INC.

Overland Flow, Time of Concentration:

CIVIL ENGINEERS | SURVEYORS 141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494 www.LANDMARK-CO.com

BASIN TIME OF CONCENTRATION CALCULATIONS

 $T_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{\frac{1}{3}}}$ Gutter/Swale Flow, Time of Concentration: $T_t = L / 60V$ $T_c = T_i + T_t$ (Equation RO-2)

Intensity, i From Figures 3.3.1-2 (Area II) Velocity (Gutter Flow), $V = 20 \cdot S^{\frac{1}{2}}$ Velocity (Swale Flow), V = $15 \cdot S^{\frac{1}{2}}$ **Rational Equation: Q** = **CiA** (Equation RO-1)

Rational Equa																			
		Overland	Flow 1		Conveyance			Swale	Flow 1		Conveyance			Swale I	Flow 2		Time of	Concentrat	tion
																	Comp.	- T	Actual
		Length, L	Slope, S	Ti			Length, L	Slope, S	Velocity, V	T _t			Length, L	Slope, S	Velocity, V	T _t	T _c	$\frac{L}{-+10}$	Τ _c
Basin(s)	C ₅ *	(ft)	(%)	(min)		κ	(ft)	(%)	(ft/s)	(min)		κ	(ft)	(%)	(ft/s)	(min)	(min)	180	(min)
H1	0.25	100	35.70	4.71	Short Pasture and Lawns	7	515	4.30	4.15	5.91	Short Pasture and Lawns	7	355	18.20	8.53	1.98	12.61	15.39	12.61
H2	0.42		N/A	N/A	Shallow Paved Swales	20	726	4.00	4.00	3.03	Short Pasture and Lawns	7	451	4.00	4.00	5.37	8.39	16.54	8.39
D1.a	0.90	100	7.30	1.89	Shallow Paved Swales	20	140	4.10	4.05	0.58	Grassed Waterway	15	1200	3.90	3.95	6.75	9.22	18.00	9.22
D1.b	0.26		NA	N/A	Grassed Waterway	15	331	1.60	2.53	2.91	Shallow Paved Swales	20			N/A	N/A	2.91	11.84	5.00
D1.c	0.27	100	10.00	7.06	Shallow Paved Swales	20	169	1.20	2.19	1.29	Shallow Paved Swales	20			N/A	N/A	8.35	11.49	8.35
D1.c.1	0.35	100	10.10	6.34	Shallow Paved Swales	20	253	7.00	5.29	0.80	Shallow Paved Swales	20			N/A	N/A	7.14	11.96	7.14
D1.d	0.35	100	7.50	7.04	Shallow Paved Swales	20	73	7.00	5.29	0.23	Short Pasture and Lawns	7			N/A	N/A	7.27	10.96	7.27
D1.e	0.36		NA	N/A	Shallow Paved Swales	20	330	3.50	3.74	1.47	Grassed Waterway	15	85	6.00	4.90	0.39	1.86	12.31	5.00
D1.f	0.40		NA	N/A	Shallow Paved Swales	20	500	1.00	2.00	4.17	Shallow Paved Swales	20			N/A	N/A	4.17	12.78	5.00
D2	0.49		N/A	N/A	Shallow Paved Swales	20	726	4.00	4.00	3.03	Short Pasture and Lawns	7	451	4.00	4.00	5.37	8.39	16.54	8.39

Note: C_5 for overland flow is C value for that segment of flow, not overall basin C_5

(Equation RO-3)

PROJECT:	2571-001
DESIGNER:	Matthew Eggen
DATE:	12/15/2023
POND ID:	

CIVIL ENGINEERS | SURVEYORS

141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494 www.LANDMARK-CO.com

	COMBINED RUNOFF COEFFICIENT CALCULATIONS																	
			Percent															
	Character of Surface		Impervious															
	Asphalt Parking and Walkways		100%															
	Gravel		40%															
	Roof		90%															
	Lawns and Landscaping		2%															
	Assumed Imperviousness		70%															
	Assumed Imperviousness (Tram Lot)		20%															
				Area of Asphalt	Area of Asphalt					Area of	Area of						5-year	100-year
				Parking and	Parking and	Area of Gravel	Area of Gravel	Area of	Area of	Lawns and	Lawns and	Assumed	Assumed	Assumed	Assumed		Composite	Composite
Design		Basin Area	Basin Area	Walkways	Walkways	Surfaces	Surfaces	Roof	Roof	Landscaping	Landscaping	Imperviousness	Imperviousness	Imperviousness	Imperviousness	Percent	Runoff	Runoff
Point	Combined Basin IDs	(sq.ft.)	(acres)	(sq.ft.)	(acres)	(sq.ft)	(acres)	(sq.ft.)	(acres)	(sq.ft.)	(acres)	(sq.ft.)	(acres)	(sq.ft.)	(acres)	Impervious	Coefficient	Coefficient
WQ-1	D1.b + D1.c+D1.d+D1.e+D1.f	227964.00	4.81	21289.00	0.49	12308.00	0.28	0.00	0.00	69454.00	1.59	51721.00	1.19	54790.00	1.26	36%	0.33	0.55
H1	D1.a+D1.b+D1.c+D1.d+D1.e+D1.f	340172.00	7.39	60259.00	1.38	12308.00	0.28	0.00	0.00	134563.00	3.09	51721.00	1.19	62919.00	1.44	36%	0.34	0.61
DP1	D1.b+D1.c+D1.c.1	102003.00	2.34	11554.00	0.27	0.00	0.00	6749.00	0.15	54809.00	1.26	0.00	0.00	28891.00	0.66	24%	0.28	0.58

PROJECT:	2571-001
DESIGNER:	Matthew Eggen
DATE:	12/15/2023
POND ID:	

141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494

www.LANDMARK-CO.com

COMBINED TIME OF CONCENTRATION COMPUTATIONS

Overland Flow, Time of Concentration: 205(1 1 $C) \overline{I}$

$$T_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{\frac{1}{3}}}$$
 (Equation RO-3)

Gutter/Swale Flow, Time of Concentration:

 $T_{t} = L / 60V$

 $T_c = T_i + T_t$ (Equation RO-2)

Intensity, i From Figures 3.3.1-2 (Area II)

Velocity (Gutter Flow), $V = 20 \cdot S^{\frac{1}{2}}$

Velocity (Swale Flow), V = 15·S^½ Rational Equation: Q = CiA (Equation RO-1)

	Overland Flow 1				Conveyance		Swale Flow 1				Conveyance	Swale Flow 2				Time of Concentration				
			Length,	Slope,				Length,	Slope,					Length,	Slope,	Velocity,		Comp.	$\frac{L}{100} + 10$	Actual
Design			L L	S	T _i			L	S	Velocity, V	T _t			L	S	V	T _t	T _c	180	Τ _c
Point	Basin(s)	C ₅	(ft)	(%)	(min)		K	(ft)	(%)	(ft/s)	(min)		K	(ft)	(%)	(ft/s)	(min)	(min)		(min)
WQ-1	D1.b + D1.c+D1.d+D1.e+D1.f	0.33	100	10.00	6.54	Shallow Paved Swales	20	301	8	5.51	0.91	Grassed Waterway	15	331	1.60	2.53	2.91	10.35	14.07	10.35
H1	D1.a+D1.b+D1.c+D1.d+D1.e+D1.f	0.34	100	7	7.22	Shallow Paved Swales	20	140	4	4.05	0.58	Grassed Waterway	15	1200	4	3.95	6.75	14.55	18.00	14.55
DP1	D1.b+D1.c+D1.c.1	0.28	100	10.00	7.00	Shallow Paved Swales	20	301	8	5.51	0.91	Grassed Waterway	15	331	1.60	2.53	2.91	10.81	14.07	10.81

DESIGNER:	Matthew Eggen
DATE:	12/15/2023
POND ID:	

								Flow,	Q₅ per	Flow,	
Design		Area, A	Tc			Intensity, I ₅	Intensity, I ₁₀₀	Qs	Acre	Q ₁₀₀	Q ₁₀₀ per Acre
Point	Basin(s)	(acres)	(min)	C ₅	C ₁₀₀	(in/hr)	(in/hr)	(cfs)	(cfs/ac)	(cfs)	(cfs/ac)
WQ-1	D1.b + D1.c+D1.d+D1.e+D1.f	4.81	10.35	0.33	0.55	2.85	6.22	4.55	0.95	16.37	3.40
H1	D1.a+D1.b+D1.c+D1.d+D1.e+D1.f	7.39	14.55	0.34	0.61	2.32	5.06	5.75	0.78	22.80	3.09
DP1	D1.b+D1.c+D1.c.1	2.34	10.81	0.28	0.58	2.78	6.07	1.81	0.77	8.17	3.49

CIVIL ENGINEERS | SURVEYORS

141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494 www.LANDMARK-CO.com

PROJECT:	2571-001
DESIGNER:	Matthew Eggen
DATE:	12/15/2023
POND ID:	

						1	ABLES		
		Tal	ble 1: Basin I	Hydrology Su	immary				
Basin	Total Area		1	1	, ,	0.	0		
Dasin	(acres)	%lmp	C₅	C100	T _c (min)	(cfs)	(cfs)		
H1	6.59	19%	0.25	0.55	12.61	4.23	19.89		
H2	5.00	53%	0.42	0.61	8.39	6.60	21.18		
D1.a	2.58	37%	0.34	0.58	9.22	2.63	9.72		
D1.b	1.51	20%	0.26	0.55	5.00	1.50	6.98		
D1.c	0.41	22%	0.27	0.56	8.35	0.35	1.57		
D1.c.1	0.42	41%	0.35	0.58	7.14	0.50	1.81		
D1.d	0.13	39%	0.35	0.58	7.27	0.16	0.57		
D1.e	1.18	41% 50%	0.36	0.58	5.00	2 42	5.79		
D2	4 26	66%	0.49	0.65	8 39	6.70	19.32		
02	7.20	00/0	0.45	0.05	0.55	0.70	15.52	l	
Design									
Point	Total Area			_			Q ₁₀₀		
11/0 1	(acres)	%Imp	U5	0.55	1 _c (min)	(CTS)	(CIS)		
WQ-1	4.81	36%	0.33	0.55	10.35	4.55	16.37		
H1	/.39	36%	0.34	0.61	14.55	5.75	22.80		
DLT	2.34	24%	0.28	0.58	10.81	1.81	8.17		
Table 3	: Allowable Ou	utflow for De	etention Calc	ulation					
Design	Storm	Q _H	Q _{UD}	Q _A	Q _H	Historic peak flo	ow (cfs)		
5-Year		4.23	2.63	1.60	Q _{UD}	Undetained flow	v (cfs)		
100-Year		19.89	9.72	10.17	Q _A	Allowable peak	flow from deten	tion	
					<u>.</u>	facility (cfs)			
			Tab	ole 4: Water C	uality Pond	Summary			
	Sand I	Filter	Biore	tention	WOCV1	Detention ²	Detention ²	V ₁₀₀ +	Total Volume
Basin	Flat A	Area	Flat	Area	(ft ³)	V ₅	V ₁₀₀ (ft ³)	wocv	(ft ³)
	(ft)	(1	t ⁻)	,	(ft ³)	-100 (**)	(ft ³)	(,
	Required	Provided	Required	Provided		Requ	ired		Provided
WQ-1	935	1,574	1495	1,574	2,229	1,835	3,854	6,082	6,624
					Total Treated Area (acres)				4.24
						Percent Tr	area (acres)		5.04
L						reitent If	caleu (70)		54%

LANDMARK CONSULTANTS, INC.	CIVIL ENGINEERS SURVEYORS 141 9th Street ~ P.O. Box 774943 Steamboat Springs, Colorado 80477 (970) 871-9494 www.LANDMARK-CO.com	PROJECT: DESIGNER: DATE: POND ID:	2571-001 Matthew Eggen 12/15/2023
	CRITICAL FLOW COMPUTATION		
$Fr = \frac{v}{\sqrt{gD_k}}$		(5.7.2)	
Where: Fr = Froude numb v = velocity (ft/s) g = gravitational A = channel flow T = top width of f D _h = hydraulic dep			

	FR	V	G	а	t	Dh	DESIGN %	Check Dam Slope
DP-1	0.78	2.86	32.2	3.18	7.56	0.42	1.50%	1.50%
D1.e	0.76	3.04	32.2	2.00	4.00	0.50	5.20%	1.50%
D1.a	0.78	3.43	32.2	2.88	4.80	0.60	4.20%	1.50%

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 14 2023

D1.a - Top of Ditch Check

Trapezoidal		Highlighted	
Bottom Width (ft)	= 3.00	Depth (ft)	= 0.70
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 10.12
Total Depth (ft)	= 1.25	Area (sqft)	= 3.08
Invert Elev (ft)	= 6885.00	Velocity (ft/s)	= 3.29
Slope (%)	= 1.50	Wetted Perim (ft)	= 6.13
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.62
		Top Width (ft)	= 5.80
Calculations		EGL (ft)	= 0.87
Compute by:	Q vs Depth		
No. Increments	= 50		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

D1.a - Bottom of Ditch Check

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 2.00, 2.00	Depth (ft)	= 1.20
Total Depth (ft)	= 2.00	Q (cfs)	= 9.888
,		Area (sqft)	= 2.88
Invert Elev (ft)	= 6885.00	Velocity (ft/s)	= 3.43
Slope (%)	= 1.50	Wetted Perim (ft)	= 5.37
N-Value	= 0.035	Crit Depth, Yc (ft)	= 1.09
		Top Width (ft)	= 4.80
Calculations		EGL (ft)	= 1.38
Compute by:	Q vs Depth		
No. Increments	= 50		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jun 13 2023

DP1 100 YEAR CHANNEL FLOW

Triangular

Side Slopes (z:1)	= 6.00, 3.00	Depth (ft)	= 0.84
Total Depth (ft)	= 3.00	Q (cfs)	= 9.093
		Area (sqft)	= 3.18
Invert Elev (ft)	= 6898.00	Velocity (ft/s)	= 2.86
Slope (%)	= 1.50	Wetted Perim (ft)	= 7.77
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.77
		Top Width (ft)	= 7.56
Calculations		EGL (ft)	= 0.97
Compute by:	Q vs Depth		
No. Increments	= 50		

Highlighted

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jun 13 2023

BASIN D1.e 100 YEAR CHANNEL FLOW

Triangular

Triangular		nigniignied	
Side Slopes (z:1)	= 2.00, 2.00	Depth (ft)	= 1.00
Total Depth (ft)	= 2.00	Q (cfs)	= 6.080
,		Area (sqft)	= 2.00
Invert Elev (ft)	= 6932.42	Velocity (ft/s)	= 3.04
Slope (%)	= 1.50	Wetted Perim (ft)	= 4.47
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.90
		Top Width (ft)	= 4.00
Calculations		EGL (ft)	= 1.14
Compute by:	Q vs Depth		
No. Increments	= 50		

Highlighted

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

BASIN D1.e - Top of Ditch Check

Trapezoidal	
-------------	--

Trapezoidal		Highlighted	
Bottom Width (ft)	= 3.00	Depth (ft)	= 0.53
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 5.976
Total Depth (ft)	= 1.25	Área (sqft)	= 2.13
Invert Elev (ft)	= 6885.00	Velocity (ft/s)	= 2.81
Slope (%)	= 1.50	Wetted Perim (ft)	= 5.35
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.45
		Top Width (ft)	= 5.10
Calculations		EGL (ft)	= 0.65
Compute by:	Q vs Depth		
No. Increments	= 50		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jun 13 2023

= 0.20 = 1.664 = 0.26 = 6.33 = 3.91 = 0.31 = 3.70 = 0.82

BASIN D1.c 100 YEAR GUTTER FLOW

Gutter

Gutter		Highlighted
Cross SI, Sx (ft/ft)	= 0.020	Depth (ft)
Cross SI, Sw (ft/ft)	= 0.083	Q (cfs)
Gutter Width (ft)	= 2.00	Area (sqft)
Invert Elev (ft)	= 6905.53	Velocity (ft/s)
Slope (%)	= 7.00	Wetted Perim (ft)
N-Value	= 0.015	Crit Depth, Yc (ft)
		Spread Width (ft)
Calculations		EGL (ft)
Compute by:	Q vs Depth	
No. Increments	= 50	

MHFD-Inlet, Version 5.01 (April 2021) AREA INLET IN A SWALE

Amble Site Improvements	
Inlet 01	
T_{MAX} T_{MAX} T_{T}	This worksheet uses the NRCS vegetal retardance method to determine Manning's n. d _{MAX} For more information see Section 7.2.3 of the USDCM.
Analysis of Trapezoidal Grass-Lined Channel Using SCS Method	
NRCS Vegetal Retardance (A, B, C, D, or E) Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope Bottom Width Left Side Slope Right Side Sloe	A, B, C, D, or E = C n = see details below S ₀ = 0.0400 ft/ft B = 1.25 ft Z1 = 0.33 ft/ft Z2 = 0.33 ft/ft
Check one of the following soil types:	Choose One:
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _{MAX}) Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A	Non-Cohesive Cohesive Paved
	Minor Storm Major Storm
Maximum Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} = 16.00 16.00 ft
Maximum Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} = 1.50 1.50 ft
Allowable Channel Capacity Based On Channel Geometry	Minor StormMajor Storm
MINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} = 11.0 11.0 cfs
MAJOR STORM Allowable Capacity is based on Depth Criterion	$d_{\text{allow}} = \frac{1.50}{1.50} \text{ft}$
Water Donth in Channel Raced On Decign Peak Flow	
Design Dealt Elow	
Water Denth	$V_0 = 2.0 $
Minor storm max. allowable capacity GOOD - greater than the design fl Major storm max. allowable capacity GOOD - greater than the design fl	ow given on sheet 'Inlet Management' low given on sheet 'Inlet Management'
Inlet Design Information (Input)	
Type of Inlet User-Defined	Inlet Type = User-Defined
Angle of Inclined Grate (must be <= 30 degrees) Width of Grate Length of Grate Open Area Ratio Height of Inclined Grate Clogging Factor Grate Discharge Coefficient Orifice Coefficient Weir Coefficient	$\theta = 0.00 \text{ degrees}$ $W = 2.33 \text{ ft}$ $L = 2.33 \text{ ft}$ $A_{RATIO} = 0.70 \text{ ft}$ $H_B = 0.00 \text{ ft}$ $C_f = 0.50 \text{ ft}$ $C_d = N/A \text{ C}_0 = 0.64 \text{ C}_W = 2.05 \text{ ft}$ MINOR MATOR
Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)	d = 0.91 1.44
Total Inlet Intercention Canacity (assumes clogged condition)	$0_{2} = 9.3$ 11.7 cfs
Bynassed Flow	$O_{\rm h} = 0.0 0.0 cfs$
Capture Percentage = Oa/Oo	$C_{0}^{0} = 100 100 \%$

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 16	5 Combination]
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 = [$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o = [$	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =[0.1	0.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	85	81	%

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 16	5 Combination]
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 = [$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o = [$	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =[0.3	1.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	0.5	cfs
Capture Percentage = Q_a/Q_o =	C% =	80	68	%

Max Vel (ft/s): Max Depth (ft):

Node ID:	Structure	re · (66)	PR CURB	INLET 03 Out-1F	21 1+35	
Rim (ft):	6903	3.50	6905	48		
Invert (ft):	6903	3.12	6901	.86 690	/0.64	
Min Pipe Cover (ft):	0.0	05	2.	12		
Max HGL (ft):	6903	3.12	6902	123 690	,0.95	
Link ID:		Pipe	- (48)	P1 1+35		
Length (ft):		8.8	39	48.69	· · · · ·	
Dia (ft):		0.3	33	1.50		
Slope (ft/ft):		0.01	00	0.0250		
Up Invert (ft):		6903	.12	6901.86		
Dn Invert (ft):		6903	.03	6900.64		
Max Q (cfs):		0.0)0	1.69		
Max Vel (ft/s):		0.0	0	5.83		
Max Depth (ft):		0.0)0	0.32		

Node ID:	Structu	re · (67)	PR CURB	INLET 05 Out-11	Pipe · (16)	
Rim (ft):	692	2.25	6924	4.26		
Invert (ft):	692	1.86	6920	1.63 69	20.27	
Min Pipe Cover (ft):	0.	05	2.	13		
Max HGL (ft):	692	1.86	6920	3.90 69	20.51	
Link ID:		Pipe -	(49)	Pipe - (16)		
Length (ft):		6.2	2	35.70		
Dia (ft):		0.3	3	1.50		
Slope (ft/ft):		0.0100		0.0100		
Up Invert (ft):		6921	.86	6920.63		
Dn Invert (ft):		6921.80		6920.27		
Max Q (cfs):	0.00		0	0.60		
Max Vel (ft/s):	0.00		0	3.14		
Max Depth (ft):		0.0	0	0.24		

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Outlet Structure - 5-year Weir + 100-year Inlet Overflow Weir

Compound Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.34
Bottom Length (ft)	= 12.00	Q (cfs)	= 10.32
Total Depth (ft)	= 1.60	Area (sqft)	= 4.63
Length, x (ft)	= 0.50	Velocity (ft/s)	= 2.23
Depth, a (ft)	= 1.00	Top Width (ft)	= 12.00
Calculations			
Weir Coeff. Cw	= 3.33		
Compute by:	Q vs Depth		
No. Increments	= 50		

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Nov 27 2023

Outlet Structure - 5-year Weir

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.96
Bottom Length (ft)	= 0.50	Q (cfs)	= 1.566
Total Depth (ft)	= 1.00	Area (sqft)	= 0.48
		Velocity (ft/s)	= 3.26
Calculations		Top Width (ft)	= 0.50
Weir Coeff. Cw	= 3.33		
Compute by:	Q vs Depth		
No. Increments	= 50		

</

APPENDIX C

WATER QUALITY CALCULATIONS

	CIVIL ENGINEERS SURVEYORS	PROJECT:	2571-001				
		DESIGNER:	Matthew Egg	gen			
LANDIVIARK	141 9th Street ~ P.O. Box 774943	DATE:	12/15/2023				
CONSULTANTS, INC.	Steamboat Springs, Colorado 80477	POND ID:					
	(970) 871-9494 www.LANDMARK-CO.com						
WQCV DE	SIGN CALCULATION - 12	HOUR DRA	AIN TIME				
	Sand Filter or Bioretention (Ra	ain Garden)					
REQUIRED STORAGE & SAND FIL	TER SIZE:	•					
F	BASIN AREA (AC) = 4.81 < INP	UT from impervious	calcs				
BASIN IMPERVIOUS	SNESS PERCENT = <u>36%</u> < INP	UT from impervious	calcs				
BASIN IMPERVI	OUSNESS RATIO = 0.3568 < CAL	CULATED					
	d6 (in) = 0.34 < INP	UT depth of average	e runoff producir	ng storm			
WQCV (w	vatershed inches) = 0.11 < CAL	CULATED from MH	FD Vol.3, Equa	tion 3-1			
	V (ft³) = 2,229 < CAL	CULATED from MH	FD Vol.3, Equa	tion 3-2			
SAND FILTER A _f , Minimum F	lat Filter Area (ft ²) = <u>935</u> < CAL	CULATED from US	CDM Vol.3, Equ	ation SF-2			
BIORETENTION A _f , Minimum F	lat Filter Area (ft ²) = 1,495 < CAL	CULATED from US	CDM Vol.3, Equ	ation B-2			
4" UNDERDRAIN ORIFICE:							
Ponc	I Bottom Elev (ft) = 6895.30 < INP	UT per grading plan					
Underdrain ir	nvert at outlet (ft) = <u>6893.03</u> < INP	UT per plan					
Distance to ce	enter of orifice (ft) = 2.31 < CAL	CULATED		3/8" MIN. TO			
				CLOGGING			
Ori	fice Diameter (in) = 1.06 < CAL	CULATED					
				Typical Manning's n			
	Q₁₀₀ (cfs) = 10.17 < INP	UT from runoff calcs	_	Values			
				Material n			
	120% * Q100 12.2 < CAL	CULATED		CMP 0.024			
		UT beend on hime he	atorial	HDPE 0.020			
		or based on pipe in	alenai	NCP 0.012			
	S₀ 0.01 ft/ ft < INPUT per plan						
d₁₀₀ (in) 22.38 in							
^s Calculate only if a stand alone waterquality pond (no detention)							

</

APPENDIX D

OWNERSHIP AND MAINTENANCE PLAN

WQ-1 SAND FILTER OWNERSHIP AND MAINTENANCE PLAN CONSTRUCTED IN [MONTH, YEAR], MAINTENANCE TO BE PERFORMED BY AMBLE

LEGAL DESCRIPTION:	LOT 1 & TRAM LOT, THE KNOLL SUBDIVISION
A. RECEIVING WATER: PROPERTY OWNER: CONTACT NAME: ADDRESS:	YAMPA RIVER STEAMBOAT SKI & RESORT CORPORATION 2305 MT. WERNER CIR STEAMBOAT SPRINGS, CO 80487
PHONE NUMBER:	
EMAIL:@	COM
D. AGENCY RESPONSIBI	E
FOR MAINTENANCE:	STEAMBOAT SKI & RESORT CORPORATION
CONTACT NAME:	
ADDRESS:	2305 MT. WERNER CIR
	STEAMBOAT SPRINGS, CO 80487
PHONE NUMBER:	
EMAIL:@	COM
	MATTHEW ECCEN DE
ADDRESS	141 9TH STREET STEAMBOAT SPRINGS CO
	070-871-0404
FMAIL: matte	@landmark-co.com

THIS FACILITY IS A SAND FILTER DETENTION POND THAT WILL RELEASE THE WATER QUALITY CAPTURE VOLUME OVER 12-HOUR AND DETAIN RUNOFF SO THAT THE PEAK 5-YEAR AND 100-YEAR STORM EVENTS LEAVING THE WHOLE SITE ARE LESS THAN OR EQUAL TO PRE-DEVELOPMENT CONDITIONS. THE FACILITY HAS BEEN ADOPTED AND APPROVED BY STEAMBOAT RESORT DEVELOPMENT COMPANY AS PART OF THE AMBLE SITE IMPROVEMENTS PROJECT. IT WILL RECEIVE RUNOFF FROM 4.81 ACRES AND WILL OCCUPY A PARCEL OF 0.36 ACRES THAT WILL BE USED TO PROVIDE VOLUME BASED WATER QUALITY TREATMENT, MAINTENANCE, & ACCESS OPERATIONAL ACTIVITIES.

3. INSPECTION & MAINTENANCE FREQUENCY & PROCEDURE

A. THE FOLLOWING ITEMS SHOULD BE INSPECTED:

TABLE 1: MAINTENANCE ACTIVITY/FREQUENCY						
ACTIVITY	REQUIRED FREQUENCY					
INSPECTION TO CONFIRM INFILTRATION RATE AFTER RAINFALL; MAINTAIN AS NECESSARY. DEBRIS AND LITTER REMOVAL	TWICE ANNUALLY. ONE TIME TO OCCUR IN SPRING AFTER SNOWMELT FROM CONTRIBUTING BASIN IS COMPLETE.					
MOWING, IRRIGATION	AS NEEDED TO MAINTAIN VEGETATIVE HEALTH					
INSPECTION OF UNDERDRAIN VIA CLEAN-OUT; REMOVE SEDIMENT/DEBRIS IF PRESENT	WHEN PONDING LASTS LONGER THAN 24 HOURS					
SCARIFY TOP 2" OF SAND WITH RAKE	WHEN PONDING LASTS LONGER THAN 24 HOURS AND UNDERDRAIN IS NOT CLOGGED					
REPLENISH TOP 3" OF FILTER MEDIA WITH CLEAN COARSE SAND (AASHTO C-33 OR CDOT CLASS C FILTER MEDIA) TO THE ORIGINAL ELEVATION	AFTER SCARIFICATION 3 TIMES					
SEDIMENT REMOVAL AND REPLACEMENT OF MEDIA. SEE TABLE 2 FOR MEDIA SPECIFICATIONS.	WHEN PONDING LASTS 24 HOURS, UNDERDRAIN IS NOT CLOGGED AND SCARIFICATION DOES NOT RESTORE INFILTRATION					

REVISIONS TO MAINTENANCE FREQUENCY:

- B. TRAFFIC CONTROL: NONE
- C. THE FACILITY DOES NOT REQUIRE CONFINED SPACE ENTRY PROCEDURES
- D. DEWATERING AND WATER CONTROL: NA
- E. SEDIMENT, DEBRIS, & TRASH REMOVAL & DISPOSAL:

REMOVAL SHALL BE CONDUCTED IF THERE IS PRESENCE OF TRASH OR DEBRIS AT INSPECTION. SEDIMENT AND DEBRIS SHALL BE REMOVED MANUALLY USING A SHOVEL OR RAKE AND DISPOSED OF AT A LICENSED FACILITY. THE LONGEST DISTANCE BETWEEN THE EDGE OF AN ACCESS ROAD AND THE FAR CORNER OF A STRUCTURE REQUIRING SEDIMENT REMOVAL IS 25 FEET.

- F. VEGETATION MANAGEMENT SEE SECTION 4 OF THE NOTES ON THIS SHEET.
- G. WETLAND AREAS ARE NOT ANTICIPATED.
- SEE SECTION 8.0 OF THE NOTES ON THIS SHEET.
- H. DESCRIBE ADDITIONAL REQUIRED MAINTENANCE PROCEDURES AND FREQUENCIES.-NA SEE TABLE 1
- I. MATERIALS TESTING OF SEDIMENT REMOVED FROM SITE IS NOT REQUIRED.

4. EQUIPMENT, STAFFING, AND VEGETATION MANAGEMENT

- A. EQUIPMENT REQUIRED: MAY INCLUDE BUT IS NOT LIMITED TO MOWERS, PUMPS, HOSES, SHOVELS, BUCKETS, RAKES, EXCAVATORS, WEED KILLERS, GENERATORS, SPRAYERS, DATA LOG/INSPECTION REPORTS.
- B. STAFFING: A MINIMUM OF 1 STAFF MEMBER IS REQUIRED TO MAINTAIN TREATMENT FACILITY.
- C. SEED: SEED MIX SHALL BE PROVIDED AFTER CONSTRUCTION
- D. MOWING: AS DESIRED
- E. WEEDS & UNDESIRABLE VEGETATION: NOXIOUS WEEDS AND OTHER UNDESIRABLE VEGETATION SHALL BE REMOVED BY RAKING SAND FILTER.

5. SNOW AND ICE CONTROL

A. FACILITY IS NOT LOCATED WITHIN A SNOW STORAGE AREA AS DEFINED IN THE COMMUNITY DEVELOPMENT CODE.

9. MISCELLANEOUS I

A. PROJECT SURVEY: EXISTING CONDITION SUPPLEMENTED WITI PROJECT BENCHMAR

TABLE 2: POND MATERIALS

			MASS PER SQUARE	CENT PASSING MESH SIEVE
		SIEVE SIZE	CLASS B	CLASS C
		37.7mm (1.5")	100	
FILTER	CDOT FILTER MATERIAL	19.0 mm (0.75")		100
MATERIAL	(CLASS B OR C)	4.75 mm (No. 4)	20-60	60-100
		1.18 μm (No. 16)	10-30	
		300 μm (No. 50)	0-10	10-30
		150 μm (No. 100)		0-10
		75 μm (No. 200)	0-3	0-3
		MAX. SLOT	MIN. (OPEN AREA
DIDE	PIPE Ø AND TYPE	WIDTH (in.)	(F	PER ft.)
	4" SLOTTED PVC	0.032	1	.90 in ²

- 6. RIGHT-OF-WAY, AD
- A. RIGHT-OF-WAY DESCH
- B. ADJACENT OWNERSH
 - OWN 2120 |
 - STEA
- C. ACCESS INFORMATION A WATER QUALITY EA NEEDS.
- D. MAINTENANCE OPER RIGHT-OF-WAY PERM

7. HYDRAULIC DESIGI

- A. FLOW RATES (CFS): INFL
- BASE FLOW:
 0

 WQ EVENT:
 NA

 5-YEAR:
 4.55
- 100-YEAR: 16.37 B. VOLUMES, DEPTHS, &

ITEM

- SANDFILTER/ DETENTION POND
 - WQCV
 - 5-YEAR 100-YEAR
- C. WQCV DRAIN TIME =
- 8. SENSITIVE AREAS,
- THE SITE HAS NO KNO STATES ASSOCIATED

									\sim
DJACEI RIPTION HIP: ADJ IER: WE MT WE	NT OWNERS N: MT. WERNI JACENT PROF ST CONDO H RNER CIRCLI I SPRINGS, C	SHIP, & ACC ER CIRCLE, 1 PERTY TO TH IOMEOWNER E O 80487	CESS 100-FT ROW HE SOUTH IS: 25 ASSOC					141 9th Street ~ P.O. Box 774943 Steamboat Sorings Colorado 80477	(970) 871-9494 www.LANDMARK-CO.com
ON AND ASEMEN ATIONS IIT IS NO	DETAILS: THI IT HAS BEEN WILL NOT IM DT REQUIRED	e facility is provided f ipact or oe d.	S ACCESSED FOR ACCESS BSTRUCT RIG	VIA MT WERNI AND MAINTEN HT-OF-WAY AI	ER CIRCLE. IANCE ND A		VUV	CONSULTANTS, INC.	
OW CFS CFS	V W OUTFLOW 0 NA CFS 1.57 CFS CFS 10.32 CFS						A		
12 HOU , WETL OWN W WITH 1	S: <u>VOLUME</u> 6,624 CF 2,448 CF 1,835 CF 4,176 CF RS ANDS, & PE ETLANDS OR FHE PROJECT	WSEL 6896.50 6897.30 6758.00 ERMITS WORK WITH	DEPTH 3.8' 1.2' 2.2' 2.54'	INVERT 6892.83 ERS OF THE UI	<u>AREA</u> 1,574 SF NITED	These drawings are instruments of	service provided by Landmark Consultants, Inc. and are not to be	used for any type of construction or contracting unless signed and sealed	by a Proressional Engineer in the cemploy of Landmark Consultants, Inc.
NFORMATION S AND TOPOGRAPHIC INFORMATION PER CITY GIS DATA AND LANDMARK CONSULTANTS, INC. ARCHIVED SURVEY FIELD DATA. KK: 3" BRASS CAP 2' BELOW GRADE NORTHING: 1412537.95 EASTING: 2636559.73 NAVD88 EL: 6935.31 COORDINATE SYSTEM: THE COORDINATE SYSTEM IS COLORADO COORDINATE SYSTEM: NORTH ZONE, NAD83 (2011), NAVD88, COMBINE SCALE FACTOR: (N)1415866.11(E)2636677.13, 1.000368966.						MAINTENENCE PLAN			
						2571-001	12/15/2023	MCE	Y:LCI

DR

SHEET

Of 3 Sheets

< l

APPENDIX E

CITY FORMS & CHECKLISTS

Standard Form No. 3 Final Drainage Study Checklist

Instructions:

- 1. The applicant shall identify with a "check mark" if information is provided with letter. If applicant believes information is not required, indicate with "N/A" and attach separate sheet with explanation.
- 2. The reviewer will determine if information labeled "N/A" is required and whether additional information must be submitted.

I. General

- \mathbf{X} A. Report typed and legible in $8\frac{1}{2}$ " x 11" format.
- X B. Report bound (comb, spiral, or staple no notebook).
- X C. Drawings that are 8½ x 11 or 11 x 17 bound within report, larger drawings (up to 24 x 36) included in a pocket attached to the report. Drawings shall be at an appropriate size and scale to be legible and include project area.

II. Cover

- _____ A. Report Type Final Drainage Study.
- **X** B. Project Name, Subdivision, Original Date, Revision Date.
- X C. Preparer's name, firm, address, phone number.
- **X** D. "DRAFT" for 1st submittal and revisions; "FINAL" once approved.

III. Title Sheet

- X A. Table of Contents.
- **X** B. Certification, PE Stamp, signature, and date from licensed Colorado PE.
- X C. Note: City of Steamboat Springs plan review and approval is only for general conformance with City design criteria and the City code. The City is not responsible for the accuracy and adequacy of the design, dimensions, and elevations that shall be confirmed and correlated at the job site. The City of Steamboat Springs assumes no responsibility for the completeness or accuracy of this document.

IV. Introduction

- X A. Description of site location, size in acres, existing and proposed land use, and any pertinent background info.
- X B. Reference planning application type and plan set date and preparer.
- X C. Identify drainage reports for adjacent development.

V. Drainage Criteria and Methodology Used

- ____ A. Identify design rainfall and storm frequency.
- **X** B. Identify the runoff calculation method used.
- <u>x</u> C. Identify culvert and storm sewer design methodology.
- <u>X</u> D. Identify detention discharge and storage methodology.
- **X** E. Discuss HEC-HMS methodologies and parameters, if HEC-HMS is used.

VI. Existing Conditions (Pre-Development/Historic)

- X A. Indicate ground cover, imperviousness, topography, and size of site (acres).
- **X** B. Describe existing stormwater system (sizes, materials, etc.).
- X C. Describe other notable features (canals, major utilities, etc.).
- X D. Note site outfall locations and ultimate outfall location (typically Yampa River).
- **x** E. Note capacity of existing system and identify any constraints.
- X F. Identify NRCS soil type.
- X G. Discuss any existing easements.
- X H. Identify the FEMA Map reviewed, if site is in floodplain/way, and zone designation.

VII. Proposed Conditions

- <u>X</u> A. Indicate ground cover, imperviousness, topography, and disturbed area (acres).
- X B. Describe proposed stormwater system (sizes, materials, etc.).
- **X** C. Describe proposed outlets and indicate historic and proposed flow for each.
- **x** D. Include calculations for all culverts, ditches, ponds, etc. in appendix.
- X E. Include a summary table for the 5- and 100-year events showing historic flow and proposed flow for total site and each basin.
- <u>X</u> F. Discuss proposed easements.
- **X** G. Describe off-site flows to be passed thru site.
- X H. Summarize any impacts to downstream properties or indicate none. Reference CLOMR/LOMR and impacts.
 - I. Detention Ponds.
 - 1. Indicate pond volume and area (size and depth) requirement.
 - 2. Indicate release rates.
 - 3. Discuss outfall design, location, and overflow location.
 - 4. Discuss maintenance requirements.
- J. Curb and Gutter
 - _ 1. Indicate gutter capacity.
 - 2. Indicate curb capacity.
 - 3. Indicate design velocity
 - 4. Indicate design depth of flow in street.
 - K. Culverts

X

Х

- 1. Indicate whether each culvert is under inlet or outlet control.
- 2. Show that headwater is less than the maximum allowable.
- x 3. Indicate design velocity.
- x 4. Indicate required and provided flow rates.
- X 5. Discuss whether outlet protection is required and what will be used.
 - L. Inlets
- x 1. Indicate inlet capacity.
- X 2. Indicate the type of inlet(s) used.
 - M.Channels
 - 1. Indicate design velocity (and type of dissipation if required).
- x 2. Indicate required and provided flow capacity.
 - 3. Show critical cross-section(s) including water surface.
 - N. Site Discharge
- X 1. Discuss use and design of detention to ensure discharge is less than or equal to historic flow.
- X 2. Provide documentation that downstream facilities are adequate and no adverse impacts to downstream property owners (i.e. no rise certification)

VIII. Post Construction Stormwater Management

X A. Discuss in general terms which permanent BMP practices will be used to control pollutant and sediment discharge after construction is complete. Exhibit A, Storm Water Quality Plan shall be attached that will give details (see separate checklist)

IX. Conclusions

- <u>X</u> A. Provide general summary.
- **X** B. Note if site complies with criteria and any variances to criteria.
- ____ C. Indicate if peak proposed flow is less than, equal to, or greater than peak historic flow for each outfall, design point, and for the total site.
- X D. List proposed new stormwater system requirements.

X. References

____ A. Provide a reference list of all criteria, master plans, drainage reports and technical information used.

XI. Tables

X A. Include a copy of all tables prepared for the study.

XII. Figures

- ____ A. Vicinity Map.
- ____ B. Site Plan (include the horizontal and vertical datum used and all benchmarks). C. Existing conditions.
 - 1. Delineate existing basin boundaries.
 - 2. Delineate offsite basins impacting the site.
- X X X X X X X X 3. Show existing and proposed topography at an interval of at least 2-ft.
- 4. Show existing runoff flow arrows.
- 5. Show existing stormwater features (structures, sizes, materials, etc.).
- 6. Show floodplain limits and information.
 - 7. For each basin show bubble with basin number, acreage and % impervious.
- 8. For each outlet show bubble with acreage and historic flow and proposed flow or provide information in summary table on figure.
 - **D.** Proposed Conditions
 - 1. Delineate proposed basin boundaries.
- 2. Show proposed runoff flow arrows. Х
 - 3. Show existing and proposed topography at an interval of at least 2-ft.
- Х 4. For each basin show bubble with basin number, acreage and percent impervious or provide a summary table or figure.
- X 5. For each outlet show bubble with acreage, historic flow, and proposed flow or provide a summary table or figure.
- 6. Show floodplain limits and information.
- 7. Show proposed building footprints and FFE for commercial and multi-family
- 8. Show property lines and easements (existing and proposed).
- 9. Label public and private facilities. A general note can be placed on the plans in Х lieu of labeling all facilities, if applicable.

XIII. Appendices

- <u>X</u> A. Runoff Calculations.
- <u>X</u> B. Culvert Calculations.
- <u>x</u> C. Pond Calculations.
- ____ D. Other Calculations.

Acknowledgements

Standard Form No. 3 was prepared by: <u>Matthew Eggen</u> 12/1

1<u>2/15/20</u>23 Date

Include Attachment A – Scope Approval Form (see Standard Form No. 5) Include Attachment B – Storm Water Quality Plan (see Standard Form No. 4)

PROJECT SHEET – BASE DESIGN STANDARDS (Site is not constrained)

Complete a Project Sheet for each project that includes Permanent Stormwater Treatment Facilities.

SITE INFORMA	TION		
Project Name:	The /	Amble	
Project Locatio	on: Stea	amboat Springs, CO	
Submitted Dat	e: 12	2/15/23	Submitted By: Landmark Consultants, In
Acreage Distu	⁻ bed: 6.	.43	
Existing Imper	vious: 2	6%	New Net Impervious: 36%
Review Date:			Reviewed By:
Preparer	City	Requirements	
w/ CD's		Design Details are included f	or all Treatment Facilities
		List or include a description of practices:	of any source controls or other non-structural
		Select BMP ba Maintain existir	sed on expected pollutant type - snow storage g drainage pattern

DESIGN STANDARDS

Multiple Design Standards may be used on a site, as necessary, to meet the requirements, but only one Design Standard may be used for each treatment facility's tributary area. Evaluation of suitability of permanent stormwater treatment facilities is based on meeting the specified Design Standard and ease of long-term maintenance. Facilities must be designed in accordance with the most current versions of the City's Engineering Standards and Volume 3 of the USDCM and meet the specific requirements for each Design Standard used.

- 1. Indicate below, which Design Standard(s) will be used for the project, and
- 2. Complete a separate, corresponding Design Standards checklist for each facility (e.g., WQCV)

Design Standard	Quantity	Tributary Area	Location/Identifying information
WQCV	2,448-ft3	4.81-acres	WQ-1
Pollutant Removal			
Runoff Reduction			

Standard Form No. 4 Stormwater Quality Plan Checklist

This list is not an exhaustive list of every possible item that may be required or requested in a Stormwater Quality Plan but provides a general guideline for preparation of the Stormwater Quality Plan.

Instructions:

- 1. The applicant shall identify with a "check mark" if information is provided within the Stormwater Quality Plan. If applicant believes information is not required, indicate with "N/A" and attach separate sheet with explanation. If information is included with the associated drainage letter or study, indicated with a "D."
- 2. The reviewer will determine if information labeled "N/A" is required and whether additional information must be submitted.

I. General

- - X A. Report typed and legible in $8\frac{1}{2}$ " x 11" format.
 - _ B. Report bound (comb, spiral, or staple no notebook) and in digital PDF format.
 - \mathbf{x} C. Drawings that are 11" x 17" bound within letter, larger drawings (up to 24" x 36") included in a pocket attached to the letter, and a digital PDF copy. Drawings shall be at an appropriate size and scale to be legible and include project area.

II. Cover

- A. Report Type Stormwater Quality Plan.
- B. Project Name, Subdivision or Development, Original Date, Revision Date.
- C. Preparer's name, firm, address, and phone number.
- X D. "DRAFT" for 1st submittal and revisions; "FINAL" once approved.

III. Title Sheet

Х	A.	Table of Contents.
---	----	--------------------

- _ B. Certification, PE Stamp, signature and date from licensed Colorado PE (for Final).
- C. Note: City of Steamboat Springs plan review and approval is only for general conformance with City design criteria and City code. The City is not responsible for the accuracy and adequacy of the design, dimensions, and elevations that shall be confirmed and correlated at the job site. The City of Steamboat Springs assumes no responsibility for the completeness or accuracy of this document.

IV. Introduction and Background

- X A. Description of site location, study limits, size in acres, existing and proposed land use. soil data, permeability of the site, drainage patterns, and any pertinent background info.
- X___ B. State purpose and goal of Stormwater Quality Plan and report along with any special requirements of the desired outcome.
 - C. List any project stakeholders and/or requestors.
 - X_{-} D. Describe the background of the flooding source and any previous studies.

V. Design Criteria and Methodology Used

- <u>X</u> A. Identify design rainfall and storm frequency used to design permanent stormwater treatment facilities.
- <u>X</u> B Identify the runoff calculation method used to design permanent stormwater treatment facilities.
- X C. Identify the standard the design will meet and the means and methodologies by which it will use to meet the standard.
- X D. Provide all details supporting the use of the selected design standard.

VI. Proposed Conditions

- X A. Identify total site area, total site imperviousness, area to be treated, and impervious area to be treated. Include justification for treating less than the total site area.
- X B. Describe potential site contaminant sources including sediment.
- X C. Identify source and quantity of on-site and off-site stormwater flows that need to be managed and how they will be managed.
- X D. For each permanent treatment facility, identify the design standard, MDCIA level (if applicable), area treated (& percentage of total), imperviousness of area treated, C values of area treated, soil types, and all pertinent data for design.
- X E. Volume based facilities: Provide total storage pond volume, WQCV, drain time, release rate, sediment storage, outlet & overflow structures, area and depth of pond, micropool, forebays, etc. (include all calculations in the appendix).
- X F. Flow based facilities: Provide design flow rate and all treatment calculations and how flows larger than the water quality design flow rate will be handled. If proprietary facilities are proposed, provide the justification and sizing requirements from manufacturer.
- X G. If stormwater detention is provided, discuss how water quality is provided within the detention facility. No underground detention is allowed.

VII. Operation and Maintenance Plan Requirements

See template O&M plan and guidance document.

- X A. Describe general project information, facility description, ROW and access information, vegetation management, hydraulic design parameters, environmental permitting, snow and ice control, and additional pertinent information in the notes.
- <u>X</u> B.
- B. Indicate, describe, and detail the permanent stormwater treatment facilities.
- C Include section details where necessary of the permanent treatment facilities.D. Provide an inspection and maintenance schedule and procedure of permanent treatment facilities and who is responsible for them.
 - X E. Identify design specifications for construction.

Acknowledgements

Standard Form No. 4 prepared by: <u>Matthew Eggen</u> <u>12/15/202</u>3

Date

Include appropriate Project Sheet(s) and Design Checklist(s) (See Section 5.12) Include this form as part of the Stormwater Quality Plan.

Standard Form No. 5 Drainage and Stormwater Treatment Scope Approval Form

Prior to starting a development plan and before the first drainage submittal, a Drainage and Stormwater Treatment Scope Approval Form must be submitted for review and signed by the City Engineer. A signed form shall also be included in every drainage submittal as Attachment A. This Scope Approval Form is for City requirements only. Values may be approximate. The City encourages supporting calculations and figures to be attached.

Project Information					
Project name:	Lot 1, The Knoll Deve	lopment Rights Withdrawal and Resubdivision Plat			
Project location:	Steamboat Grand R	esort Hotel			
Developer name/contact info:	Steamboat Resort Development 3501 Wazee Street, Denver CO	t Company. 80215			
Drainage engineer name/contact info:	Landmark Consultants, Inc. matte@landmark-co.com (970) 819-9494				
Application Type:	Preliminary Plat				
Proposed Land Use:	Resort Residential				
Project Site Parameters	S				
Total parcel area (acres	s):	13.9			
Disturbed area (acres):	:	4.34			
Existing impervious are applicable):	ea (acres, if	0.38			
Proposed new impervic	ous area (acres):	1.96			
Proposed total impervio	ous area (acres):	2.06			
Proposed number of pr	roject outfalls:	2			
Number of additional p	parking spaces:	0			
Description and site per cover/land use(s):	ercentage of existing	13.52 acres - Open space, pervious area 0.38 acres - Asphalt Trail, pavements, building			
Description and site pe proposed cover/land u	ercentage of se(s):	0.68 acres - Pavements 1.28 acres - ~70% impervious development of proposed lot 1			
Expected maximum pro gradient (%):	oposed conveyance	38%			
Description of size (acr use(s) of offsite areas of	es) and cover/land draining to the site	NA			

CITY OF STEAMBOAT SPRINGS ENGINEERING STANDARDS

Type of Study Required:							
 Drainage Letter Final Drainage Study 	Conceptual Drainage Study Stormwater Quality Plan						
Hydrologic Evaluation:							
X Rational Method CUHP/SWMM	HEC-HMS Other						
Project Drainage							
Number of subbasins to be evaluated:	2						
Presence of pass through flow (circle):	YES NO						
Description of proposed stormwater conveyance on site:	storm water will generally be collected in swales and pipes on the west side of the parcel and conveyed to the on-site WQ/Detention basin. Storm water on the east side of the parcel will not convey additional flows and therefore be left as is.						
Project includes roadway conveyance as part of design evaluation (circle):	YES NO						
Description of conveyance of site runoff downstream of site, identify any infrastructure noted in Stormwater Master Plan noted as lacking capacity for minor or major storm event:	The western site stormwater will leave the site at an existing culvert under Mount Werner Circle which outfalls into Wildhorse Meadows. The outfall pipe is not listed as a "Problem or Need" in the Citywide Stormwater Plan.						
Detention expected onsite (circle):	YES NO						
Presence of Floodway or Floodplain on site (circle):	YES NO						
Anticipated modification of Floodway or Floodplain proposed (circle):	YES NO						
Describe culvert or storm sewer conveyance evaluative method:	HY-8, Autodesk Storm and Sanitary Sewer Analysis						

Permanent Stormwater Treatment Facility Design Standard (check all that apply with only one standard per tributary basin):

🗙 WQCV Standard 🛛 TSS Standard 🗌 Infiltration Standard

Constrained Redevelopment WQCV Standard

Constrained Redevelopment TSS Standard

Constrained Redevelopment Infiltration Standard

Does not Require Permanent Stormwater Treatment (attach Exclusion Tracking Form)

CITY OF STEAMBOAT SPRINGS ENGINEERING STANDARDS

Project Permanent Stormwater Treatment	
Justification of choice of proposed design standard, including how the site meets the constrained redevelopment standard, infiltration test results, etc.:	Proposed improvements require detention to maintain historic discharge rates and water quality treatment due to increased impervious surface area.
Concept-level permanent stormwater treatment facility design details (type, location of facilities, proprietary structure selection, treatment train concept, etc.):	One bioretention basin will treat the WQCV and also provide adequate detention for the 5-year and 100-year storms.
Proposed LID measures to reduce runoff volume:	One bioretention basin will treat the WQCV and also provide adequate detention for the 5-year and 100-year storms.
Will treatment evaluation include off-site, pass through flow (circle):	YES NO

Approvals

Matthew Eggen, Landmark Consultants, Inc	. 9/21/22	(970)819-8893
Prepared By: (Insert drainage engineer name & firm)	Date	Phone number
Approved By:		
		APPROVED
Printed Name: City Engineer	Date	to be generally in accordance with CITY ENGINEERING STANDARDS
		10/04/2022

8	0		0	(I 1 ind	ORTH 80 N FEET) ch = 80	ft.	160		240 Fe	et	These serv used continued	A A A A A A A A A A A A A A A A A A A	CONSULTANTS, INC.	CIVIL ENGINEERS SURVEYORS	pipel and the second se	(970) 871-9494 ~ www.LANDMARK-CO.com
											C o	n s u	lta	nts	<u>, </u>	<u>1 C</u>
EGE	ND:															
OPOSED OPOSED OPOSED OPOSED STING M STING M OPOSED OPOSED OPOSED STING R ODD HAZ	STORM STORM MAJOR MINOR (IAJOR CC INOR CC SWALE CURB & BOUNDA LOT LIN CIGHT OF ARD LIM	SEWER INLET ((CONTOL CONTOL DNTOUR DNTOUR GUTTEI ARY E WAY ITS	CURB & A JR JR R	REA)				6805 6805 								
STING B	ASIN BASIN	EVATIO	NN .				0).10								
STING S	POT ELE	VATION	Л					00.10	ЭX							
OPOSED OPOSED STING C	OVERLA CHANNE	ND FLO ELIZED F	W DIREC FLOW DIF OW DIRE	TION W/	'SLOPE I W/ SLOP	e BASIN	ID	2.0%	%)% =							
OTE	то ⁻ ES:	TAL AR (ACRI	EA ES) BAS		RMATION	— PER	CENT IM	PERVI	ous		SCRIPTION:					
APPRO OF TH AREA SHALL RESPO ALL PI BENCI BENCI ELEVA FACILI ADJUS ENSUI SEE S AND F ALL CI OTHEI	OXIMATE E DEVEL OF THE V BE RES DNSIBLE ROJECT HMARK F ATIONS F ITIES (SU STMENT RE A COM OILS REF RECOMMI URB SPC R SPOTS	WHEN : OPER T WORK. PONSIB FOR FO DATA IS REFEREN OR IMPFICH AS F BASED (VSISTEN PORT FC ENDATIO ARE FIN	SHOWN (O VERIF) BEFORE LE FOR L IR ALL UN ON VER NCES. ROVEMEI PROPOSE DN ACTU IT SECTIO DR PAVEI DNS. WN ARE NISHED (ON THES THE EX COMME OCATIN NKNOWN TICAL DA NTS THA ED GUTT AL CONI ON WITH MENT, SI FLOWLII GRADE E	SE DRAWII (ISTENCE NCING NE G ALL UNI I UNDERG ATUM; NA' T ARE CC ERS ALOI DITIONS. (I SMOOTH UBGRADE NE ELEVA LEVATION	NGS. IT S OF ALL U W CONST DERGROU ROUND U WD 88. SE NTROLLE NG EXISTI COORDIN/ I TRANSIT AND MAT TIONS, UP	HALL BE T NDERGRO TRUCTION JND UTILIT ITILITIES. E NOTES D BY ADJA NG ASPHA ATE WITH IONS WHE TERIAL PR	HE RES DUND UT THE CC IES AND SHEET F ACENT E ACENT E ACENT E ACENT E SHEET F ACENT E ENACON EPARAT	PONSIB TILITIES ONTRAC O SHALL FOR EXISTING Y REQUI CER TO CESSARY FION, DES HERWISI	LITY N THE TOR BE RE <u>7</u> . SIGN E. ALL	NO. DATE: BY: D	2571-001	12/15/2023	Matthew Eggen	hatte@landmark-co.com	
Pagin	Total Area	Tab	le 1: Basin I	Hydrology ٤	Summary							ROJECT:	ATE:	CONTACT:	:MAIL: m	
Basin H1 H2	(acres) 6.59	%Imp 19% 53%	C ₅ 0.25	C ₁₀₀ 0.55	T _c (min) 12.61 8.39	u₅ (cfs) 4.23 6.60	4100 (cfs) 19.89 21.18	-				_ <u> </u>			ш	_
D1.a D1.b	2.58 1.51 0.41	37% 20% 22%	0.34	0.58	9.22	2.63 1.50 0.35	9.72 6.98 1 57	-								
D1.c.1 D1.d	0.42	41% 39%	0.35	0.58	7.14	0.50	1.81 0.57 5.79	-								
D1.6 D1.f D2	1.18 1.58 4.26	50% 66%	0.40	0.60	5.00 5.00 8.39	2.42	7.96 19.32					S		_		
Design Point WQ-1 H1 DP1	Total Area (acres) 4.81 7.39 2.34	%Imp 36% 36% 24%	C5 0.33 0.34 0.28	n Point Su C ₁₀₀ 0.55 0.61 0.58	T _c (min) 10.35 14.55 10.81	Q5 (cfs) 4.55 5.75 1.81	Q ₁₀₀ (cfs) 16.37 22.80 8.17				(n Drawing		ge Plar		
Table 3: A Design Year X-Year	llowable Ou Storm	tflow for D Q_H 4.23 19.89	etention Cal Qub 2.63 9.72	culation Q _A 1.60 10.17	Q _H Q _{UD} Q _A	Historic peak Undetained fl Allowable pe facility (cfs)	flow (cfs) low (cfs) ak flow from d	etention			-	onstructic		Draina	,	
D1	Sand Flat /	Filter Area	Table Bioret Flat	e 4: Water (tention Area	Quality Pond	Summary Detention ² V ₅	Detention ² V ₁₀₀	V ₁₀₀ + WQCV	Total Volu	ıme		ך י ש		<u>j</u>)	
WQ-1	(ft Required 935	2) Provided 1,574	(1 Required 1495	t²) Provided 1,574	(ft [*]) 2,229	(ft ³) Requ 1,835 Total Treated Total Disturbe Percent Tr	(ft ³) iired 3,854 A rea (acres) ed area (acres) reated (%)	(ft ³) 6,082	(IT) Provide	d 5.624 4.24 5.04 84%	Ē	I he Amble		Existin		
CALL 2 DIG, GF	Know wh Cal BUSINESS I RADE, OR EX UNDERGROU	OTIFICA COLORA DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL	TION CE DO DO Iow. e you die cor the ma ber utilitie	NTER OF g. FORE YOU RKING OF ES.	= NC	DT VAL	SSINGLA RADO CALLESO SSION CALLESO SSION ATURE	LICENCE 49/25 10/25	ALL	AL		F	SHE	EET	2	

