Structural Closeout Assistance

KL&A, Inc. 1717 Washington Avenue, Suite 100 Golden, Colorado 80401 Telephone: (303) 384-9910

October 25, 2023

Matt Disney Deneuve Construction Services 2334 Spruce St., Suite B Boulder, CO 80302

Re: Failed Inspection Report

Dear Mr. Disney:

The purpose of this letter is to provide a response to a failed county inspection report dated July 31st, 2023, for the Steamboat Basecamp project located at 1901 Curve Plaza in Steamboat Springs, Colorado. A copy of the inspection report is enclosed for record.

KL&A understands that multiple light pole standards were installed around the site. The light pole bases are 18" diameter, extend 2'-0" above grade and embed 5'-0" minimum into grade. The light poles are 4" diameter x20'-0" tall. Anchor bolts supplied by the light pole manufacturer with the poles are $\frac{3}{4}$ " diameter x17" long 'L-Bolts'.

KL&A understands that the concrete bases were cast in place before the light poles and anchor bolts were delivered to the site. KL&A is aware that Deneuve substituted 5/8" diameter all-thread rod for the manufacturer supplied L-Bolts. The threaded rod was installed with a nut at the bottom and 18" embedment.

KL&A performed calculations for the pole anchorage, attached. Per the calculation, the 5/8" diameter all-thread rods are adequate for the demand loads on the light standards.

If you have any questions, please feel free to call.

Sincerely,

Andrew Smith, PE, SE Project Engineer

Reviewed By: Peter Kelly, PE, SE Project Manager, Engineer of Record

INSPECTION REPORT

Report Issued:	Jul 31, 2023 Insp	ection Result	t:	FAILED	
Permit Number:	SPREL221585				
Issuance Date:	Oct 25, 2022				
Property Address:	1901 CURVE PLZ;				
Applicant:	CENTRAL ELECTRIC, LLC				
Contractor:	CENTRAL ELECTRIC, LLC 2659 Jac	ob Cir #4 STEAN	ЛВО	AT SPGS,, CO	80487
	(970) 846-8379				
To construct:	Steamboat basecamp				
	Temp power and new electrical f	or new building			

On this day we have inspected your construction for **Electrical Rough-in Inspection** and we find the following result of the inspection. If there are any questions, please call the inspector at the address below.

Comments: While on site for ceiling rough inspection noticed uninspected parking lot pole bases on closer examination notice telltale sign of yellow paint on the end of all thread as opposed to UL listed anchor bolts. Correctional will require demolition of pole bases and inspected installation or an engineer special inspection letter stating that all thread for anchor bolts will suffice.

Corrections:

Sincerely,

Tom Cook Electrical Plan Reviewer/Inspector tcook@co.routt.co.us

KLEZA Title STEAMBOAT BASECAMP Date 10/23 Job no. 21304 Subject LIGHTPOLE ANCHORAGE BY APS Sheet 1 of Engineers & Builders STANDARD LIGHTPOLE ANCHIRAGE WIND DESIGN LOADS RISK CATEGORY : II BASIC WIND SPEED, V=115 MPH (VASD= BAMPH) EXPOSURE CATEGORY: C $(P_{a} = 0.57 \text{ }^{2})$ (W= 22*) WIND DIRECTIONALITY FACTOR, Ka=1.0 20:02 KZE=1.0 TOPOGRAPHIC FACTUR, 4" tole VELOCITY PRESSURE EXPOSURE COEFFICIENT, KZ = 0.94 (1107)GIROUND ELEVATION FACTOR. Ke=0.785 VELOCITY PRESSURE, Qn=0.00256K2K2tKoKeV2 = 25 PSF Mu ASCE 7-16 \$29.4 - WIND WADS ON OTHER STRUCTURES 2:0 F= 9= GC+ AL 肥 111311 GUST EFFECT FACTOR, G = 0.35 5:0" POLE: FORCE COEFFICIENT, CF = 1.2 PROSECTER AREA, AC = 0.33 FT/FT Ī FPOLE = 91 GC+ AF = B.S PLF FIXTURES. FORCE COEFFICIENT, CF=1.3 PROJECTED AREA. AF = 2(0.57 F) = 1.14 FT2 FEIXTURES = QL G Cf Af = 32# MOMENT C BASE, Mu = FFIXTURE HFIXTURE + FPOLE HFOLE Z My = 2340 FT-LB SHEAR C BASE Vy = FEIXTURE + FROME UPOLE Yu = 202#

CALCULATIONS CONTINUE FOLLOWING PAGES

Specifier's comments:			
Fastening point:			
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Phone I Fax:		E-Mail:	
Address:		Specifier:	
Company:		Page:	1

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 36 5/8
Item number:	not available
Effective embedment depth:	h _{ef} = 18.000 in.
Material:	ASTM F 1554
Evaluation Service Report:	Hilti Technical Data
Issued I Valid:	- -
Proof:	Design Method ACI 318-14 / CIP
Stand-off installation:	without clamping (anchor); restraint level (anchor plate): 2.00; e _b = 1.500 in.; t = 0.500 in.
	Hilti Grout: CB-G EG, epoxy, f _{c,Grout} = 14,939 psi
Anchor plate ^R :	$I_x \times I_y \times t = 9.000$ in. x 9.000 in. x 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	Round HSS (AISC), HSS4X.125; (L x W x T) = 4.000 in. x 4.000 in. x 0.125 in.
Base material:	cracked concrete, 4000, f _c ' = 4,000 psi; h = 84.000 in.
Reinforcement:	tension: condition B, shear: condition B;
	edge reinforcement: none or < No. 4 bar

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hitti AG, FL-9494 Schaan Hitti is a registered Trademark of Hitti AG, Schaan

www.hilti.com				
Company: Address:		Page: Specifier:		2
Phone I Fax:		E-Mail:		
Design:	Concrete - Oct 25, 2023	Date:		10/25/2023
Fastening point:				
1.1 Design result	ts			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 0; V_y = 202;$	no	63
		$M_x = -28,080; M_y = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reaction	s [lb]			
Tension force: (+	Tension, -Compres	sion)		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	2,099	50	0	50
2	2,099	50	0	50
3	0	50	0	50
4	0	50	0	50
max. concrete co max. concrete co resulting tension resulting compres	mpressive strain: mpressive stress: force in (x/y)=(0.00 ssion force in (x/y)=	0/-2.825): (0.000/3.865):	0.11 [‰] 490 [psi] 4,197 [lb] 4,197 [lb]	

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity � N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	2,099	9,831	22	OK
Pullout Strength*	2,099	10,170	21	OK
Concrete Breakout Failure**	4,197	6,685	63	OK
Concrete Side-Face Blowout, direction y-**	4,197	22,393	19	ОК

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

3.1 Steel Strength

N _{sa} = A _{se.N} f _{uta}	ACI 318-14 Eq. (17.4.1.2)
$\phi N_{sa} \ge N_{ua}$	ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.23	58,000

Calculations

N_{sa} [lb] 13,108

Results

N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
13,108	0.750	9,831	2,099

3.2 Pullout Strength

N _{pN}	$= \Psi_{c,p} N_p$	ACI 318-14 Eq. (17.4.3.1)
N _p	$= 8 A_{brg} f_{c}$	ACI 318-14 Eq. (17.4.3.4)
φ Ν _{pN}	≥ N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

$\Psi_{c,p}$	A _{brg} [in. ²]	λ_{a}	f _c [psi]
1.000	0.45	1.000	4,000
Calculations			
N _p [lb]			
14,528	_		
Results			
N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
14,528	0.700	10,170	2,099

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

3.3 Concrete Breakout Failure

N _{cbg}	$= \begin{pmatrix} A_{Nc} \\ \overline{A_{Nc0}} \end{pmatrix} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-14 Eq. (17.4.2.1b)
φ N _{cbg}	$\geq N_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \leq 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
6.267	0.000	0.000	3.750	1.000
c _{ac} [in.]	k _c	λ _a	ŕ _c [psi]	
-	24	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
172.92	353.44	1.000	1.000	0.820	1.000	23,812
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
9,549	0.700	6,685	4,197	-		

Company:		Page:	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

3.4 Concrete Side-Face Blowout, direction y-

$ \begin{array}{ll} N_{sb} & = 160 \; c_{a1} \; \sqrt{A} \\ N_{sbg} & = \alpha_{group} \; N_{sb} \\ \varphi \; N_{sbg} \geq N_{ua} \\ \alpha_{group} & = \left(1 + \frac{s}{6 \; c_{a1}}\right) \end{array} $	$\overline{\Lambda_{brg}} \lambda_a \sqrt{\dot{f_c}}$	ACI 318-14 Eq. (17.4.4.1) ACI 318-14 Eq. (17.4.4.2) ACI 318-14 Table 17.3.1.1 see ACI 318-14, Section 17.4.4.2, Eq. (17.4.4.2)			
Variables					
c _{a1} [in.]	c _{a2} [in.]	A _{bra} [in. ²]	λ_{a}	ŕ _c [psi]	s [in.]
3.750	3.750	0.45	1.000	4,000	5.650
Calculations					
α_{group}	N _{sb} [lb]				
1.251	25,569	_			
Results					
N _{sbg} [lb]	ϕ_{concrete}	φ N _{sbg} [lb]	N _{ua,edge} [lb]		
31,989	0.700	22,393	4,197		

www.hilti.com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Oct 25, 2023	Date:	10/25/2023

4 Shear load

	Load V _{ua} [lb]	Capacity ∮ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	50	4,090	2	OK
Steel failure (with lever arm)*	50	495	11	OK
Pryout Strength**	202	25,823	1	OK
Concrete edge failure in direction y+**	202	2,837	8	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= 0.6 A _{se.V} f _{uta}	ACI 318-14 Eq. (17.5.1.2b)
ϕV_{stee}	l ≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

$\frac{A_{se,V}[in.^2]}{0.23}$	f _{uta} [psi] 58,000			
Calculations				
V _{sa} [lb] 7,865				
Results				
V _{sa} [lb]	ϕ_{steel}	ϕ_{eb}	φ V _{sa} [lb]	V _{ua} [lb]
7,865	0.650	0.800	4,090	50

www.hilti.com

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

4.2 Steel failure (with lever arm)

$V^{M}_{\rm s}$	$=\frac{\alpha_{M} \cdot M_{s}}{L_{b}}$	bending equation for stand-off
M_s	$= M_{s}^{0} \left(1 - \frac{N_{ua}}{\phi N_{sa}} \right)$	resultant flexural resistance of anchor
M_s^0	= (1.2) (S) (f _{u,min})	characteristic flexural resistance of anchor
$\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$		reduction for tensile force acting simultaneously with a shear force on the anchor
S	$=\frac{\pi(d)^3}{32}$	elastic section modulus of anchor bolt at concrete surface
L _b	$= z + (n)(d_0)$	internal lever arm adjusted for spalling of the surface concrete
ϕV^M_s	$\geq V_{ua}$	ACI 318-14 Table 17.3.1.1

Variables

α_{M}	f _{u,min} [psi]	N _{ua} [lb]	φ N _{sa} [lb]	z [in.]	n	d ₀ [in.]
2.00	58,000	2,099	9,831	1.750	0.500	0.625
Calculations						
M _s ⁰ [in.lb]	$\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$	M _s [in.lb]	L _b [in.]			
998	0.787	785	2.062			
Results						
V_s^M [lb]	ϕ_{steel}	ϕV_s^M [lb]	V _{ua} [lb]			
761	0.650	495	50			
761	0.650	495	50			

www.hilti.com

Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

4.3 Pryout Strength

V_{cpg}	$= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1b)
ϕV_{cpg}	$\geq V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{\text{ cp},\text{N}}$	$= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	2.500	0.000	0.000	3.750
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	∞	24	1.000	4,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
172.92	56.25	1.000	1.000	1.000	1.000	6,000
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_		
36,890	0.700	25,823	202	-		

www.hilti.com

Company:		Page:	9
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

4.4 Concrete edge failure in direction y+

V_{cbg}	$= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
φ V _{cbg}	$\geq V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Vc}	see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
A_{Vc0}	= 4.5 c_{a1}^2	ACI 318-14 Eq. (17.5.2.1c)
$\psi_{\text{ec,V}}$	$= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi_{\text{ed},\text{V}}$	$= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\psi_{\text{ h,V}}$	$=\sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-14 Eq. (17.5.2.8)
V_{b}	$= \left(7 \left(\frac{l_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
3.750	3.750	0.000	1.000	84.000
l _e [in.]	λ_{a}	d _a [in.]	f _c [psi]	$\psi_{\text{ parallel},V}$
5.000	1.000	0.625	4,000	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ ec,V}}$	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
73.97	63.28	1.000	0.900	1.000	3,852
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]		
4,053	0.700	2,837	202		

5 Combined tension and shear loads

β _N	β _V	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.628	0.102	5/3	49	OK	

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

www.hilti.com			
Company:		Page:	10
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Engineering calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength!
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/

Fastening meets the design criteria!

www.hilti.com			
Company:		Page:	11
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023
Fastening point:			
7 Installation da	ata		
		Anchor type and diameter: Hex Head ASTM F 1554 GR.	
		36 5/8	
Profile: Round HSS (AISC), HSS4X.125; (L x W x T) = 4.000 in. x 4.000 in. x		Item number: not available	

0.125 in.

Hole diameter in the fixture: $d_f = 0.687$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

Anchor type and diameter: Hex Head ASTM F 1554 GH 36 5/8 Item number: not available Maximum installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 18.000 in.

Minimum thickness of the base material: 18.922 in.

Hilti Hex Head headed stud anchor with 18 in embedment, 5/8, Steel galvanized, installation per instruction for use

Coordinates Anchor [in.]

c _{+y}
0 9.400
50 9.400
0 3.750
0 3.750

www.hilti.com				
Company:		Page:	12	
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Oct 25, 2023	Date:	10/25/2023	
Fastening point:				

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.