

Structural Calculations

Basecamp Steamboat Townhomes – TH1

Anthem Job # 22-048

1950 Curce Court Steamboat Springs, CO 80487

Sept. 6th, 2022

Table of Contents

Design Criteria	03
Gravity Design	35
Lateral Design	143
Foundation Design	249

DESIGN CRITERIA

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338

JOB NO. SHEET NO. SHEET NO. CALCULATED BY DATE DATE DATE

CS2018 Ver 2019.05.15

www.struware.com

STRUCTURAL CALCULATIONS

FOR

BASECAMP STEAMBOAT TOWNHOMES

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder Golden Steamboat	JOB NO.	SHEET NO.
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE
	CHECKED BY	DATE

www.struware.com

Code Search

Code: International Building Code 2018

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

Risk Category =	II
Wind factor =	1.00
Snow factor =	1.00
Seismic factor =	1.00

Type of Construction:

Fire Rating:

U	Roof =	0.0 hr
	Floor =	0.0 hr

Building Geometry:

Roof angle (θ)	3.00 / 12	14.0 deg
Building length (L)	40.0 ft	
Least width (B)	120.0 ft	
Mean Roof Ht (h)	48.5 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

<u>Roof</u>	0 to 200 sf:	20 psf
	200 to 600 sf:	24 - 0.02Area, but not less than 12 psf
	over 600 sf:	12 psf

Floor:

Typical Floor	40 psf
Partitions	15 psf
Lobbies & first floor corridors	100 psf
Corridors above first floor	80 psf
Balconies (1.5 times live load)	60 psf

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder Golden Steamboat	JOB NO.	SHEET NO.
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE
	CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings

Kz = Kh (case 1) =	1.09	Edge Strip (a) =
Base pressure (qh) =	24.6 psf	End Zone (2a) =
GCpi =	+/-0.18	Zone 2 length =

Wind Pressure Coefficients

	C	ASE A			CASE B	
		θ = 14 deg				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.48	0.66	0.30	-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	-0.69	-0.51	-0.87
3	-0.44	-0.26	-0.62	-0.37	-0.19	-0.55
4	-0.37	-0.19	-0.55	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.72	0.90	0.54	-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	-1.07	-0.89	-1.25
3E	-0.63	-0.45	-0.81	-0.53	-0.35	-0.71
4E	-0.56	-0.38	-0.74	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

Ultimate Wind Surface Pressures (psf)

1	16.2 7.3	-6.6	-15.5
2	-12.5 -21.4	-12.5	-21.4
3	-6.3 -15.1	-4.7	-13.5
4	-4.8 -13.6	-6.6	-15.5
5		14.2	5.4
6		-2.7	-11.5
1E	22.2 13.4	-7.4	-16.2
2E	-21.9 -30.7	-21.9	-30.7
3E	-11.0 -19.8	-8.6	-17.4
4E	-9.2 -18.1	-7.4	-16.2
2E 3E 4E 5E		19.4	10.6
6E		-6.1	-15.0

Parapet

Windward parapet = Leeward parapet =

0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0)

Horizontal MWFRS Simple Diaphragm Pressures (psf)

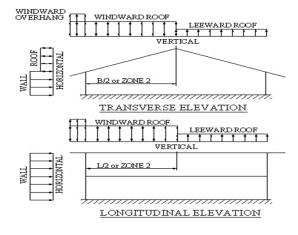
Transverse direction (normal to L)				
Interior Zone:	Wall	20.9 psf		
	Roof	-6.2 psf **		
End Zone:	Wall	31.5 psf		
	Roof	-10.9 psf **		

Longitudinal direction (parallel to L)

Interior Zone: Wall 17.0 psf

End Zone: Wall 25.6 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).


The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

Windward roof

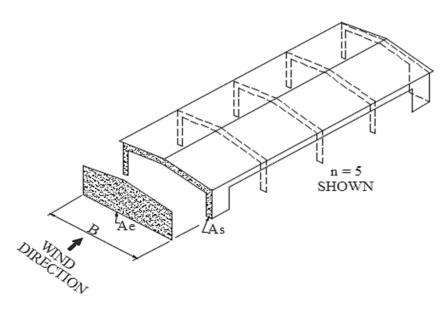
overhangs =

17.2 psf (upward) add to windward roof pressure

4.0 ft 8.0 ft 20.0 ft

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder Golden Steamboat	JOB NO.	SHEET NO.
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE
	CHECKED BY	DATE

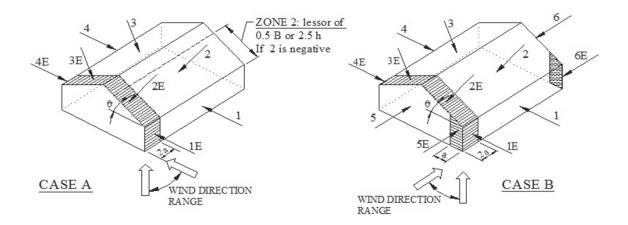

Wind Loads - h≤60' Longitudinal Direction MWFRS On Open or Partially

Enclosed Buildings with Transverse Frames and Pitched Roofs

Base pressure (qh) = $\begin{array}{c} 24.6 \text{ psf} \\ \text{GCpi} = +/-0.18 \text{ Enclosed bldg, procdure doesn't apply} \\ \text{Roof Angle } (\theta) = 14.0 \text{ deg} \end{array}$

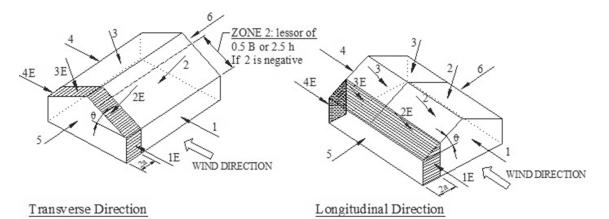
ASCE 7-16 procedure

100 0 0


	B=	120.0 ft
	# of frames (n) =	5
Solid are of end wall inclu	uding fascia (Às) =	1,500.0 sf
F	Roof ridge height =	56.0 ft
	Roof eave height =	41.0 ft
	area if soild (Ăe) =	5,820.0 sf
	· · · ·	
Longidinal Directional Force (F) = pAe	
p= qh [(GCpf)windward -(GCpf)leewa	rd] K _B K _S	
Solidarity ratio (Φ) =	0.258	
n =	5	
KB =	0.6	
KS =	0.855	
Zones 5 & 6 area =	5,641 sf	
5E & 6E area =	179 sf	
(GCpf) windward - (GCpf) leeward] =	0.701	
p =	8.8 psf	
·	•	
Total force to be resisted by MWFRS (F) =	51.4 kips appli	ed at the centroid
, ()	• • •	end wall area Ae

Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building.

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES


Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones

NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder Golden Steamboat	JOB NO.	SHEET NO.	
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE	
	CHECKED BY	DATE	

Wind Loads :	ASCE 7- 16		
Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2 Type of roof	115 mph 89.1 mph II C Enclosed Building +/-0.18 0.85 1.087 1.087 Sawtooth		
Topographic Factor (I	≺zt)		∠≰
Topography	Flat		Speed-up
Hill Height (H)	0.0 ft	H< 15ft;exp C	V(z)
Half Hill Length (Lh)	0.0 ft	∴ Kzt=1.0	\vee (ζ) x(upwind) x(downwind)
Actual H/Lh =	0.00		H/2
Use H/Lh =	0.00		
Modified Lh =	0.0 ft		
From top of crest: x =	0.0 ft		and a start of the
Bldg up/down wind?	downwind		ESCARPMENT
H/Lh= 0.00	$K_1 = 0.000$		
x/Lh = 0.00	$K_2 = 0.000$		V(z)
z/Lh = 0.00	K ₃ = 1.000		Z A Speed-up
At Mean Roof Ht:)/(7) 月
Kzt =	$(1+K_1K_2K_3)^2 = 1.00$		H/2 + H/2

AXISYMMETRICAL	
AAISTIVIIVIETRIGAL	HILL

<u>Gust</u>	Effect	Factor
h	1 =	48.5 ft
В	=	120.0 ft
/z (0.6h)) =	29.1 ft

Flexible structure if natural frequen	icy < 1 Hz (T > 1 second).	
If building h/B>4 then may be flexible and should be investigated.		
h/B = 0.40	Rigid structure (low rise bldg)	

G =

0.85 Using rigid structure default

Rigi	d Structure	Flexible or Dyn	namically Se	nsitive St	tructure		
ē =	0.20	34 rcy (η ₁) =	0.0 Hz				
ł =	500 ft	Damping ratio (β) =	0				
z _{min} =	15 ft	/b =	0.65				
с =	0.20	/α =	0.15				
$g_Q, g_v =$	3.4	Vz =	107.5				
$L_z =$	487.6 ft	N ₁ =	0.00				
Q =	0.87	R _n =	0.000				
$I_z =$	0.20	R _h =	28.282	η =	0.000	h =	48.5 ft
G =	0.86 use G = 0.85	R _B =	28.282	η =	0.000		
		R _L =	28.282	η =	0.000		
		g _R =	0.000				
		R =	0.000				
		Gf =	0.000				

Enclosure Classification

Test for Enclosed Building:

Boulder Golden Steamboat	JOB NO.	SHEET NO.
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE
	CHECKED BY	DATE

Test for Open Building:	All walls are at least 80% open. Ao ≥ 0.8Ag	
Test for Partially Enclosed Buil	ing: Predominately open on one side only	
Ao ≥ 1.1Aoi Ao > smaller of Aoi / Agi ≤ 0.20 Where: Ao = the total area of o Ag = the gross area of Aoi = the sum of the are	Input Test Ao 500.0 sf Ao ≥ 1.1Aoi Ag 600.0 sf Ao > 4' or 0.01Ag YES Aoi 1000.0 sf Aoi / Agi ≤ 0.20 YES Partially Enclosed Building. Must satisfy all of the following: Y' or 0.01 Ag enings in a wall that receives positive external pressure. hat wall in which Ao is identified. as of openings in the building envelope (walls and roof) not including Ao. ss surface areas of the building envelope (walls and roof) not including Ag.	

Test for Partially Open Building:

A building that does not qualify as open, enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Ground Elevation Factor (Ke)

Grd level above sea level =	6668.0 ft		Ke =	0.7855
Constant =	0.00256	Adj Constant = 0.00201		

Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338 JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

JOB NO. SHEET NO. CALCULATED BY DATE CHECKED BY DATE

Ultimate Wind Pressures

Wind Loads - Components & Cladding : h ≤ 60'

Kh (case 1) =	1.09	h =	48.5 ft
Base pressure (qh) =	24.6 psf	a =	4.0 ft
Minimum parapet ht =	0.0 ft	GCpi =	+/-0.18
Roof Angle (θ) =	14.0 deg	qi = qh =	24.6 psf
Type of roof = \$	Sawtooth		

Root	(GCp +/- Gcp	pi		Surface Pr	essure (psf)		
Area	10 sf	50 sf	100 sf	500 sf	10 sf	50 sf	100 sf	500 sf
Negative Zone 1	-2.38	-1.93	-1.73	-1.28	-58.5	-47.4	-42.6	-31.4
Negative Zone 2	-3.38	-2.72	-2.44	-1.78	-83.0	-66.9	-59.9	-43.7
Span A Negative Zone 3	-4.28	-4	-3.88	-2.28	-105.2	-98.3	-95.3	-56.0
Span B,C&D Neg. Zone 3	-2.78	-2.78	-2.78	-2.08	-68.3	-68.3	-68.3	-51.1
Positive Zone 1	0.88	0.76	0.7	0.58	21.6	18.6	17.3	16.0
Positive Zone 2	1.28	1.07	0.98	0.98	31.4	26.3	24.1	24.1
'Positive Zone 3	0.98	0.91	0.88	0.88	24.1	22.4	21.6	21.6

Use	r input
75 sf	300 sf
-44.6	-35.0
-62.8	-48.9
-96.6	-68.5
-68.3	-56.6
17.8	16.0
25.0	24.1
21.9	21.6

per de la composition de la co

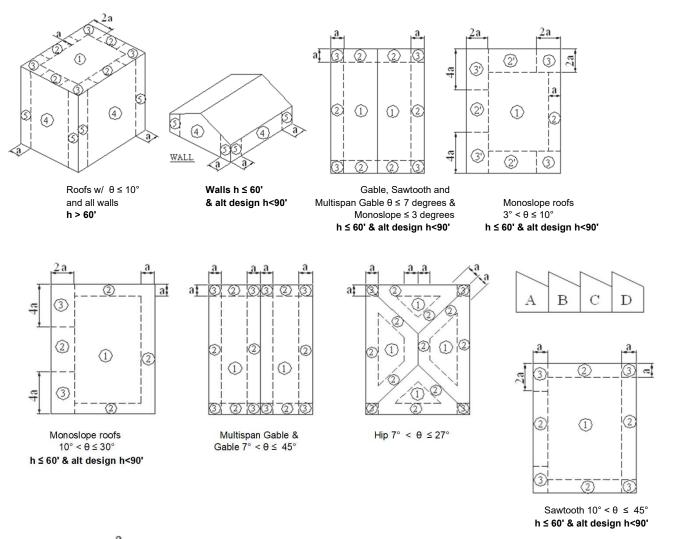
.0 psf		Surta	ce Pressure	e (pst)		
Solid Parapet Pressure	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
CASE A: Zone 2 :	0.0	0.0	0.0	0.0	0.0	0.0
Span A Zone 3 :	0.0	0.0	0.0	0.0	0.0	0.0
Span B,C&D Zone 3 :	0.0	0.0	0.0	0.0	0.0	0.0
CASE B : Interior zone :	0.0	0.0	0.0	0.0	0.0	0.0
Corner zone :	0.0	0.0	0.0	0.0	0.0	0.0

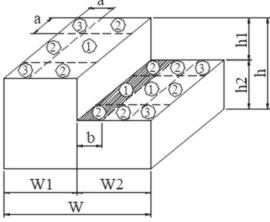
V

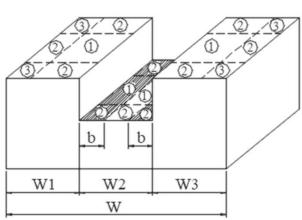
<u>Walls</u>	GCp +/- GCpi			Surface Pressure at h				
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-1.28	-1.10	-1.05	-0.98	-31.4	-27.1	-25.8	-24.1
Negative Zone 5	-1.58	-1.23	-1.12	-0.98	-38.8	-30.1	-27.5	-24.1
Positive Zone 4 & 5	1.18	1.00	0.95	0.88	29.0	24.7	23.3	21.6

	0.0 0.0
	input
46 sf	input 83 sf
46 sf -28.6	83 sf -27.5
46 sf	83 sf

User input

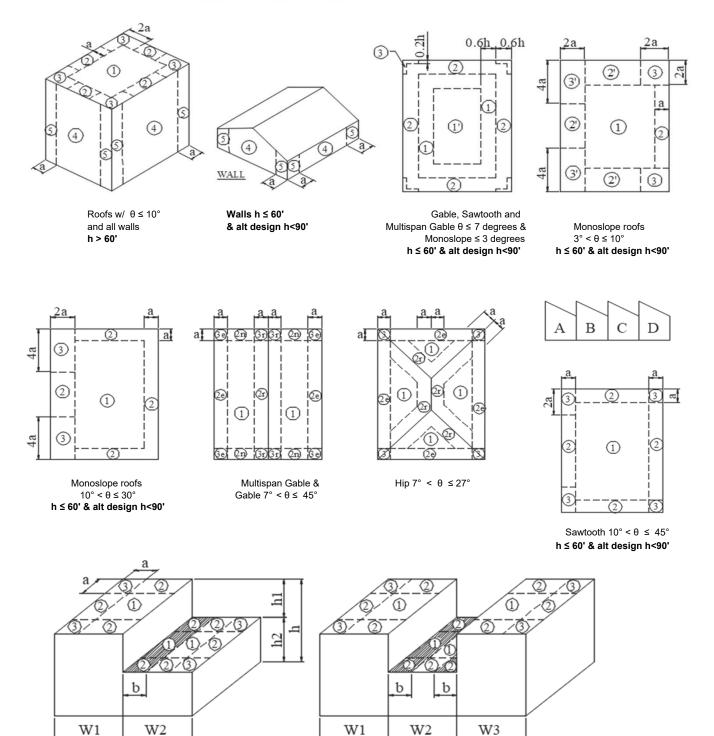

40 sf


0.0 0.0 0.0


JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder Golden Steamboat	JOB NO.	SHEET NO.	
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE	
	CHECKED BY	DATE	

Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier



Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

Boulder Golden Steamboat	JOB NO.	SHEET NO.	
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE	
	CHECKED BY	DATE	

Location of C&C Wind Pressure Zones - ASCE 7-16

Stepped roofs θ ≤ 3° h ≤ 60' & alt design h<90'

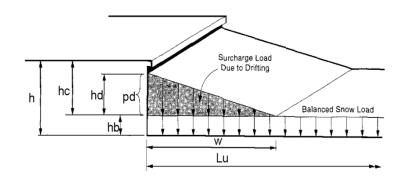
W

W

						T TOWNHOMES
Boulder Golden S			JO	B NO.		SHEET NO.
(303) 848-8497 (970) 300-3338		CALCULATE			DATE
			CHECKE	D BY		DATE
Vind Loads - Other S	Structure	es: ASCE 7- 16			Ultimat	e Wind Pressure
Wir Gust Effect Fa	nd Factor = actor (G) = Kzt =	1.00 0.85 Ultimate Wind S 1.00 Expo	Speed = osure =	115 mph C		
A. Solid Freestanding W	alls & Sol	lid Signs (& open sig	ans with le	ess than 30% or	<u>pen)</u>	
		s/h =	1.00		Case A & B	
Dist to sign top (h)	8.0 ft	B/s =	25.00		C _f =	1.30
Height (s)	8.0 ft	Lr/s =	0.00	F = qz G	Cf As =	21.2 As
Width (B)	200.0 ft	Kz =	0.849		As =	10.0 sf
Wall Return (Lr) =		qz =	19.2 psf		F =	212 lbs
Directionality (Kd)	0.85					
Percent of open area		Open reduction			<u>CaseC</u>	
to gross area		factor =	1.00	Horiz dist from		
				windward edge		=qzGCfAs (psf)
	!	Case C reduction factors	0.00	0 to s	3.29	53.7 As
		Factor if s/h>0.8 =	0.80	s to 2s	2.07	33.7 As
	,	Wall return factor	4.00	2s to 3s	1.59	25.9 As
		for Cf at 0 to s =	1.00	3s to 4s	1.31 1.23	21.3 As 20.1 As
				4s to 5s 5s to 10s	0.78	20.1 AS 16.0 As
				>10s	0.78	16.0 As
. Open Signs & Single-Pl	ano Onon i	Frames (openings 30°	/ or more		0.44	10.0 43
Height to centroid of Af (z)		rames (openings 50)		or gross arear	Kz =	0.849
				Base pressu		19.2 psf
Width (zero if round)	0.0 ft			_		
Diameter (zero if rect		D(qz)^.5 =	8.76		$GC_fA_f =$	17.9 Af
Percent of open area		=	0.65	Solid A	rea: A _f =	10.0 sf
to gross area Directionality (Kd)	35.0% 0.85	C _f =	1.1		F =	179 lbs
. Chimneys, Tanks, & Sin	nilar Struc	<u>tures</u>				
Height to centroid of Af (z)	15.0 ft				Kz =	0.849
Cross-Section	Square			Base pressu	ıre (qz) =	20.3 psf
Directionality (Kd)	0.90				,	h/D = 15.00
Height (h)	15.0 ft					
Width (D)	1.0 ft					
	N/A					
Type of Surface	1 1/7 1					<u>d normal to face)</u>
Type of Surface		ind along diagonal)		<u>S</u>	<u>Square (win</u>	
Type of Surface		ind along diagonal) Cf = 1.28		<u>c</u>	C _f =	1.67
Type of Surface	<u>Square (wi</u>					
Type of Surface	<u>Square (wi</u>	Cf = 1.28			C _f =	1.67
Type of Surface	<u>Square (wi</u>	Cf = 1.28 G Cf Af = 22.1 Af			$C_f =$ G C _f A _f =	1.67 28.8 Af
	<u>Square (wi</u>	Cf = 1.28 G Cf Af = 22.1 Af Af = sf			$C_{f} =$ G C _f A _f = A _f =	1.67 28.8 Af 10.0 sf
). Trussed Towers	<u>Square (wi</u> F = qz C	Cf = 1.28 G Cf Af = 22.1 Af Af = sf			$C_{f} =$ G C _f A _f = A _f =	1.67 28.8 Af 10.0 sf
). Trussed Towers Height to centroid of Af (z)	<u>Square (win</u> F = qz G 15.0 ft	Cf = 1.28 G Cf Af = 22.1 Af Af = sf		F = q _z ($C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$	1.67 28.8 Af 10.0 sf 288 lbs 0.849
D. Trussed Towers Height to centroid of Af (z) \in =	<u>Square (win</u> F = qz G 15.0 ft 0.27	Cf = 1.28 G Cf Af = 22.1 Af Af = sf			$C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$	1.67 28.8 Af 10.0 sf 288 lbs
D. Trussed Towers Height to centroid of Af (z) \in = Tower Cross Section	<u>Square (win</u> F = qz C 15.0 ft 0.27 triangle	Cf = 1.28 G Cf Af = 22.1 Af Af = sf		F = q _z (Base pressu	$C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$ $Kz =$ $Kz =$ $Kz =$ $Kz =$	1.67 28.8 Af 10.0 sf 288 lbs 0.849 21.4 psf
9. Trussed Towers Height to centroid of Af (z) \in =	<u>Square (win</u> F = qz G 15.0 ft 0.27	Cf = 1.28 G Cf Af = 22.1 Af Af = sf		F = q _z ($C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$ $Kz =$ $Ire (qz) =$ $d factor =$	1.67 28.8 Af 10.0 sf 288 lbs 0.849
 D. Trussed Towers Height to centroid of Af (z) ∈ = Tower Cross Section Member Shape 	Square (win F = qz C 15.0 ft 0.27 triangle flat	Cf = 1.28 G Cf Af = 22.1 Af Af = sf		F = q _z (Base pressu Diagonal wind Round membe	$C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$ $Ire (qz) =$ $I factor =$ $r factor =$ $r factor =$ $Triangular C$	1.67 28.8 Af 10.0 sf 288 lbs 0.849 21.4 psf 1 1.000 cross Section
 D. Trussed Towers Height to centroid of Af (z) ∈ = Tower Cross Section Member Shape 	Square (win F = qz C 15.0 ft 0.27 triangle flat	Cf = 1.28 G Cf Af = 22.1 Af Af = sf		F = q _z (Base pressu Diagonal wind Round membe	$C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$ $Ire (qz) =$ $I factor =$ $r factor =$ $\frac{riangular C}{C_{f}} =$	1.67 28.8 Af 10.0 sf 288 lbs 0.849 21.4 psf 1 1.000 cross Section 2.38
). Trussed Towers Height to centroid of Af (z) ∈ = Tower Cross Section Member Shape	Square (win F = qz C 15.0 ft 0.27 triangle flat	Cf = 1.28 G Cf Af = 22.1 Af Af = sf F = 0 lbs		F = q _z (Base pressu Diagonal wind Round membe <u>1</u> F = q _z ($C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$ $Ire (qz) =$ $I factor =$ $r factor =$ $\frac{riangular C}{C_{f}} =$ $G C_{f} A_{f} =$	1.67 28.8 Af 10.0 sf 288 lbs 0.849 21.4 psf 1 1.000 <u>cross Section</u> 2.38 43.4 Af
D. Trussed Towers Height to centroid of Af (z) ∈ = Tower Cross Section Member Shape	Square (win F = qz C 15.0 ft 0.27 triangle flat	Cf = 1.28 G Cf Af = 22.1 Af Af = sf		F = q _z (Base pressu Diagonal wind Round membe <u>1</u> F = q _z ($C_{f} =$ $G C_{f} A_{f} =$ $A_{f} =$ $F =$ $Kz =$ $Ire (qz) =$ $I factor =$ $r factor =$ $\frac{riangular C}{C_{f}} =$	1.67 28.8 Af 10.0 sf 288 lbs 0.849 21.4 psf 1 1.000 cross Section 2.38

Boulder Golden Steamboat	JOB NO.	SHEET NO.	
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE	
	CHECKED BY	DATE	

Snow Loads : ASCE 7-16 Nominal Snow Forces Roof slope 14.0 deg = Horiz. eave to ridge dist (W) = 60.0 ft Roof length parallel to ridge (L) = 40.0 ft Type of Roof Sawtooth. etc. Ground Snow Load Pg = 104.0 psf **Risk Category** = Ш Importance Factor | = 1.0 Thermal Factor Ct = 1.00 Ce = **Exposure Factor** 1.1 Pf = 0.7*Ce*Ct*I*Pg = 80.1 psf **Unobstructed Slippery Surface** no Sloped-roof Factor Cs = 1.00 **Balanced Snow Load** = 80.1 psf Near ground level surface balanced snow load = 104.0 psf Rain on Snow Surcharge Angle 1.20 deg Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge = 0.0 psf Ps plus rain surcharge 80.1 psf = NOTE: Alternate spans of continuous beams Minimum Snow Load Pm = 20.0 psf shall be loaded with half the design roof snow Uniform Roof Design Snow Load = 80.1 psf load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs... Unbalanced Snow Loads - for Sawtooth, Multiple Folded Plates & Barrel Vault roofs only


Unbalanced snow loads must be applied

Ridge or Crown snow load =	40
Vallev snow load =	145

0.0 psf = 0.5*Pf 5.6 psf = 2*Pf/Ce 1.45 ft of snow 5.29 ft of snow NOTE: Valley snow shall not be higher than snow at the ridge.

Windward Snow Drifts 1 - Against walls, parapets, etc

Upwind fetch	lu =	220.0 ft
Projection height	h =	5.2 ft
Snow density	g =	27.5 pcf
Balanced snow height	hb =	2.91 ft
-	hd =	5.24 ft
	hc =	2.29 ft
hc/hb >0.2 = 0.8	Therefore, d	esign for drift
Drift height (hc)	=	2.29 ft
Drift width	w =	18.32 ft
Surcharge load:	pd = γ*hd =	63.0 psf
Balanced Snow load:	=_	80.1 psf
		143.1 psf
Windward Snow Drifts 2 - Aga	ainst walls, pai	rapets, etc
Upwind fetch	lu =	160.0 ft
Projection height	h =	4.0 ft
Snow density	g =	27.5 pcf
Balanced snow height	hb =	2.91 ft
-	hd =	4.60 ft
	hc =	1.09 ft
hc/hb >0.2 = 0.4	Therefore, d	esign for drift
Drift height (hc)	=	1.09 ft
Drift width	w =	8.72 ft
Surcharge load:	pd = γ*hd =	30.0 psf
Balanced Snow load:	=	80.1 psf

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

Nominal Snow Forces

Boulder Golden Steamboat	JOB NO.	SHEET NO.
(303) 848-8497 (970) 300-3338	CALCULATED BY	DATE
	CHECKED BY	DATE

ASCE 7-16

Lu

hd

pd

hb

hc

h

Snow Loads - from adjacent building or roof:

Roof slope Horiz. eave to ridge dist (W) Roof length parallel to ridge (L) Projection height (roof step) h Building separation s	= = = =	igher Roof 14.0 deg 60.0 ft 40.0 ft	Lower Roof 0.25 / 12 = 1 24.0 ft 4.5 ft 30.0 ft 0.0 ft	I.2 deg
Type of Roof	Sa	wtooth, etc.	Monoslope	
Ground Snow Load Pg	=	104.0 psf	104.0 psf	
Risk Category	=	II	11	
Importance Factor	=	1.0	1.0	
Thermal Factor Ct	=	1.10	1.20	
Exposure Factor Ce	=	1.0	1.1	
Pf = 0.7*Ce*Ct*I*Pg Unobstructed Slippery Surface	=	80.1 psf no	96.1 psf no	
Sloped-roof Factor Cs	=	1.00	1.00	
Balanced Snow Load Ps	=	80.1 psf	96.1 psf	
Rain on Snow Surcharge Angle Code Maximum Rain Surcharge Rain on Snow Surcharge Ps plus rain surcharge Minimum Snow Load Pm	= = =	1.20 deg 5.0 psf 0.0 psf 80.1 psf 20.0 psf	0.48 deg 5.0 psf 0.0 psf 96.1 psf 20.0 psf	
Uniform Roof Design Snow Load	=	80.1 psf	96.1 psf	

=

NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code.

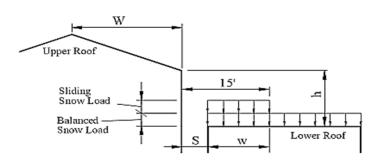
> Surcharge Load Due to Drifting

> > Balanced Snow Load

Leeward Snow Drifts - from adjacent higher roof

Building Official Minimum

Upper roof length	lu =	38.7 ft
Snow density	γ =	27.5 pcf
Balanced snow height	hb =	3.49 ft
	hc =	26.51 ft
hc/hb >0.2 = 7.6	Therefore, d	lesign for drift
Adj structure factor	=	1.00
Drift height (hd)	=	3.25 ft
Drift width	w =	13.00 ft
Surcharge load:	pd = γ*hd =	89.5 psf
Balanced Snow load:	=	96.1 psf
		405 0 ()


185.6 psf Leeward drift controls

Windward Snow Drifts - from low roof against high roof

Lower roof length	lu =	24.0 ft
Adj structure factor	=	1.00
Drift height	hd =	1.91 ft
Drift width	w =	7.66 ft
Surcharge load:	pd = γ*hd =	52.7 psf
Balanced Snow load:	=	96.1 psf
		148.8 psf

Sliding Snow - onto lower roof

1921.9 plf
128.1 psf
8.15 ft
128.1 psf
<u>96.1 psf</u>
224.2 psf
15.00 ft

Anthem Struct	ural			IOB TITLE	BASECAMP S	STEAMBO	DAT TOWNHOM	ES
Boulder Golden Ste (303) 848-8497 (970) 3				JOB NO LATED BY ECKED BY			SHEET NO. DATE DATE	
Seismic Loads:	BC 2018						Strength Leve	I Forces
Risk Category : Importance Factor (I) : Site Class :	ІІ 1.00 С							
Ss (0.2 sec) = S1 (1.0 sec) =	59.70 %g 10.30 %g							
Fa = 1.261 Fv = 1.500	use 0.84	Sms = Sm1 =	0.500 0.155	S _{DS} = S _{D1} =	0.333 0.103	-	ın Category = ın Category =	C B
Seismic Design Category =	с							
Redundancy Coefficient ρ = Number of Stories	1.30 4							
Structure Type: / Horizontal Struct Irregularities:N Vertical Structural Irregularities:1	lo plan Irregul	arity	omo Soft Story					
DESIGN COEFFICIENTS AN Response Modification Coe Over-Strength F Deflection Amplification F	efficient (R) = Factor (Ωo) = Factor (Cd) = S _{DS} =	6.5 2.5 4 0.333						
Seismic Load	S _{D1} = I Effect (E) =	0.103 Eh +/-Ev = ρ	o C _E +/- 0.2S _{DS} D	=	= 1.3Qe +/- 0		Q _E = horizontal	seismic fora
Special Seismic Load I PERMITTED ANALYTICAL I			o G _E +/- 0.2S _{DS} D	=	= 2.5Qe +/- 0	.067D	D = dead loac	
Simplified Analysis	- Use Equivale	nt Lateral Forc	e Analysis					
Equivalent Lateral-Forc Building period		Permittec 0.020				Cu =	1.69	
Approx fundamental User calculated fundamenta Long Period Transition I	l period (T) Period (TL) :	$C_T h_n^x =$	sec 4	x= 0.75	Tmax	= CuTa = Use T =		
	e coef. (Cs) = exceed Cs = ss than Cs = USE Cs =	S _{DS} I/R = Sd1 I /RT = 0.044SdsI =	0.051 0.043 0.015 0.043		043144			
Madalogo			Design Base S					
Model & Seismic Respo	onse Analysis	-	Permitted (see	code for p	rocedure			
ALLOWABLE STORY DRIF	I							

Structure Type: All other structures

Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below level

Anthem Structural	JOB TITLE BASECAMP STEAMBOAT TOWNHOME		
Boulder Golden Steamboat (303) 848-8497 (970) 300-3338	JOB NO. CALCULATED BY CHECKED BY	SHEET NO. DATE DATE	
Strength Level Forces	Seismic Desig	n Category (SDC)= C le = 1.00	
<u>CONNECTIONS</u> Force to connect smaller portions of structure to re	mainder of structure	Sds = 0.333	

or $Fp = 0.05w_{p} =$ 0.05 W_n Use Fp = 0.05 w_p w_p = weight of smaller portion

Beam, girder or truss connection for resisting horizontal force parallel to member

 F_{P} = no less than 0.05 times dead plus live load vertical reaction

0.044 W_p

Anchorage of Structural Walls to elements providing lateral support

Fp = not less than 0.2KaleWp Flexible diaphragm span Lf = Enter Lf to calculate Fp for flexible diaphragm Fp =0.4SdskaleWp = 0.133 Wp, but not less than 0.2Wp (rigid diaphragm) ka= 1 Fp = 0.200 Wp but Fp shall not be less than 5 psf

MEMBER DESIGN

Bearing Walls and Shear Walls (out of plane force)

Fp = 0.4SdsleWw =	0.133 w _w		
but not less than	0.10 w _w	Use Fp =	0.13 w _w

Diaphragms

 $Fp = 0.133 Sdsw_{p} =$

Fp = 0.2ISdsWp + Vpx = 0.067 Wp + Vpx

ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS

Architectural Component : Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass): Parapets and cantilever interior nonstructural walls

Importance Factor (Ip) : 1.0					
Component Amplification Factor $(a_p) =$	2.5	h=	48.5 feet		
Comp Response Modification Factor ($\dot{R_p}$) =	2.5	z=	50.0 feet	z/h =	1.00
Over-Strength Factor (Ωo) =	2				
Fp = 0.4a _p SdsIpWp(1+2z/h)/Rp =	0.400 Wp				
not greater than Fp = 1.6SdslpWp =	0.533 Wp		-	0.400.144	
but not less than Fp = 0.3SdslpWp =	0.100 Wp	use	Fp =	0.400 Wp	

MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS

Seismic Design Category C & Ip=)1.0, therefore not required

Mech or Electrical Component : Wet-side HVAC, boilers, furnaces, atmospheric tanks and bins, chillers, water heaters, etc plus other mechanical components constructed of high-deformability materials. C-atan (Im)

Importance Factor (Ip) : 1.0					
Component Amplification Factor $(a_p) =$	1	h=	48.5 feet		
Comp Response Modification Factor $(\dot{R_p}) =$	2.5	z=	50.0 feet	z/h =	1.00
Over-Strength Factor (Ωo) =	2				
Fp = 0.4a _p SdsIpWp(1+2z/h)/Rp =	0.160 Wp				
not greater than Fp = 1.6SdslpWp =	0.533 Wp				
but not less than Fp = 0.3SdslpWp =	0.100 Wp	use	e Fp =	0.160 Wp	

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder	Golden	Steamboat
(303) 848-	8497 (9	70) 300-3338

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Roof Design Loads

Items	Description Multiple	psf (max)	psf (min)
Roofing	Asphalt Shingles w/roll roofing	3.0	2.0
Decking	5/8" plywood/OSB	2.2	1.8
Framing	Wood Trusses @ 24"	3.0	2.5
Insulation	R-30 Fiberglass insul.	0.9	0.9
Ceiling	5/8" gypsum	2.8	2.5
Mech & Elec	Mech. & Elec.	2.0	0.0
Misc.	Misc.	0.5	0.0
		0.0	0.0
			1
	Actual Dead Load	14.4 O	9.7
	Use this DL instead	16.0 🔘	9.0
	Live Load	20.0	0.0
	Snow Load	80.1	0.0
	Ultimate Wind (zone 2 - 100sf)	-68.3	-59.9
ASD Loading	D + S	96.1	-
	D + 0.75(0.6*W + S)	45.3	-
	0.6*D + 0.6*W	-	-30.5
LRFD Loading	1.2D + 1.6 S + 0.5W	113.2	_
	1.2D + 1.0W + 0.5S	-9.1	-
	0.9D + 1.0W	-	-51.8

Roof Live Load Reduction

Roof angle 3.00 / 12

14.0 deg

0 to 200 sf: 20.0 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12.0 psf

	300 sf	18.0 psf
	400 sf	16.0 psf
	500 sf	14.0 psf
User Input:	450 sf	15.0 psf

Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

ltems	Description	Multiple	psf (max)	psf (min)
Flooring	Hardwood (Nominal 1")		4.0	3.0
	None	x 1.5	0.0	0.0
Decking	3/4" plywood/OSB		2.7	2.3
Framing	TJI @ 24"	x 1.5	3.0	1.5
Insulation	R-11 Fiberglass insul.		0.4	0.4
Ceiling	5/8" gypsum		2.8	2.5
Mech & Elec	Mech. & Elec.		2.0	0.0
	None		0.0	0.0
Misc.	Misc.		0.5	0.0
				ļ
		Actual Dead Load	15.4	9.7
		Use this DL instead	<u>16.0</u>	6 5.0
		Partitions	15.0	0.0
		Live Load	40.0	0.0
		Total Live Load	55.0	0.0
		Total Load	71.0	65.0

IBC alternate procedure

Floor Design Loads

FLOOR LIVE LOAD REDUCTION (not including partitions)

NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages, except may reduce members supporting 2 or more floors & non-assembly 20%.

		Smallest of:	
	L=Lo(0.25+15/√K _{LL} A _T)	R= .08%(SF - 150)	
Unreduced design live load: Lo =	= 40 psf	R= 23.1(1+D/L) =	32.3%
		R= 40% member support	s 1 floor
Floor member & 1 floor cols K_{LL}	= 2	R= 60% member support	s ≥2 floors
Tributary Area A _T	= 300 sf	R =	12.0%
Reduced live load: L =	= 34.5 psf	Reduced live load: L =	35.2 psf
Columns (2 or more floors) K_{LL}	= 4		
Tributary Area A _T	= 500 sf	R =	28.0%
Reduced live load: L =	= 23.4 psf	Reduced live load: L =	28.8 psf

Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Items	Description	Multiple	psf (max)	psf (min)
Sheathing	7/16" plywood/OSB		1.6	1.4
Sheathing	5/8" gypsum		2.8	2.5
Framing	2x6 wood stud @ 16"		2.0	1.1
veneer			0.0	0.0
Wall Covering	1" Wood Paneling	x 0.38	0.9	0.9
Insulation	R-11 Fiberglass insul.		0.4	0.4
Mech & Elec	Mech. & Elec.		1.0	0.0
Misc.	Misc.		0.5	0.0
	Acti	ual Dead Load O	9.2 O	6.2
	Use t	his DL instead 🔘	10.0 🖲	40.0

Wall Design Loads

Wall Design Loads

Items	Description Mu	ultiple	psf (max)	psf (min)
Sheathing	7/16" plywood/OSB		1.6	1.4
Sheathing	5/8" gypsum		2.8	2.5
Framing	6" metal studs @16"		2.5	0.9
veneer	7/8" Stucco		10.0	10.0
	x	0.38	0.0	0.0
Insulation	R-11 Fiberglass insul.		0.4	0.4
Mech & Elec	Mech. & Elec.		1.0	0.0
Misc.	Misc.		0.5	0.0
	Actual Dead	Load O	18.8	O 15.2
Use this DL instead 20.0 40.0				40.0

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338

JOB NO. ______ SHEET NO. _____ CALCULATED BY ______ DATE _____ CHECKED BY ______ DATE _____

www.struware.com

CODE SUMMARY

Code:	International Building Code 2018
Live Loads:	
Roof 0 to 200 sf: 200 to 600 sf: over 600 sf:	24 - 0.02Area, but not less than 12 psf
Typical Floor Partitions Lobbies & first floor corridors Corridors above first floor Balconies (1.5 times live load)	40 psf 15 psf 100 psf 80 psf 60 psf
<u>Dead Loads:</u> Floor Roof	16.0 psf 16.0 psf
Wind Design Data: Ultimate Design Wind Speed Nominal Design Wind Speed Risk Category Mean Roof Ht (h) Exposure Category Enclosure Classif. Internal pressure Coef. Directionality (Kd)	115 mph 89.08 mph II 48.5 ft C Enclosed Building +/-0.18 0.85
Roof Snow Loads: Design Uniform Roof Snow load Flat Roof Snow Load Balanced Snow Load Ground Snow Load Importance Factor Snow Exposure Factor Thermal Factor Sloped-roof Factor Drift Surcharge load Width of Snow Drift	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
<u>Earthquake Design Data:</u> Risk Category Importance Factor Mapped spectral response acceleratio	$ \begin{array}{cccc} = & II \\ I = & 1.00 \\ S S = & 59.70 \\ S 1 = & 10.30 \end{array} $
Site Class Spectral Response Coef.	= C Sds = 0.333 Sd1 = 0.103
Seismic Design Category Basic Structural System Seismic Resisting System Design Base Shear Seismic Response Coef.	= C = Bearing Wall Systems = Light frame (wood) walls with structural wood shear panels V = 0.043W Cs = 0.043
Response Modification Factor Analysis Procedure	R = 6.5 = Equivalent Lateral-Force Analysis

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

Anthem Structural

Boulder | Golden | Steamboat (303) 848-8497 | (970) 300-3338

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

www.struware.com

CODE SUMMARY- continued

Component and cladding ultimate wind pressures

Roof	Surface Pressure (psf)			
Area	10 sf	50 sf	100 sf	500 sf
Negative Zone 1	-58.5	-47.4	-42.6	-31.4
Negative Zone 2	-83.0	-66.9	-59.9	-43.7
Span A Negative Zone 3	-105.2	-98.3	-95.3	-56.0
Span B,C&D Neg. Zone 3	-68.3	-68.3	-68.3	-51.1
Positive Zone 1	21.6	18.6	17.3	16.0
Positive Zone 2	31.4	26.3	24.1	24.1
'Positive Zone 3	24.1	22.4	21.6	21.6

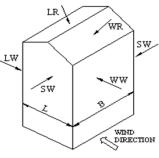
Parapet		Solid Parapet Pressure (psf)						
Area		10 sf	20 sf	50 sf	100 sf	200 sf	500 sf	
CASE A: Z	one 2 :	0.0	0.0	0.0	0.0	0.0	0.0	
Span A Zone 3 :		0.0	0.0	0.0	0.0	0.0	0.0	
Span B,C&D Zone 3 :		0.0	0.0	0.0	0.0	0.0	0.0	
CASE B : Interior	zone :	0.0	0.0	0.0	0.0	0.0	0.0	
Corner	zone :	0.0	0.0	0.0	0.0	0.0	0.0	

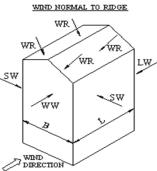
Wall	Surface Pressure (psf)					
Area	10 sf	100 sf	200 sf	500 sf		
Negative Zone 4	-31.4	-27.1	-25.8	-24.1		
Negative Zone 5	-38.8	-30.1	-27.5	-24.1		
Positive Zone 4 & 5	29.0	24.7	23.3	21.6		

JOB TITLE BASECAMP STEAMBOAT TOWNHOMES

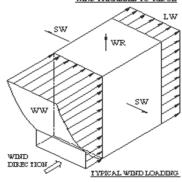
JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE
	CALCULATED BY

Wind Loads - MWFRS all h (Except for Open Buildings)


Kh (case 2) =	1.09	h =	48.5 ft	- GCpi =	+/-0.18
Base pressure (q _h) =	24.6 psf	ridge ht =	48.5 ft	G =	0.85
Roof Angle (θ) =	14.0 deg	L =	40.0 ft	qi = qh	
Roof tributary area - (h/2)*L:	970 sf	B =	120.0 ft		
(h/2)*B:	2910 sf				


Ultimate Wind Surface Pressures (psf)

Wind Normal to Ridge				Wind	nd Parallel to Ridge			
B/L = 3.00		h/L = 0.40			L/B = 0.33		h/L = 1.21	
Ср	$q_h GC_p$	w/+q _i GC _{pi}	w/-q _h GCpi	Dist.*	Ср	$q_h GC_p$	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
0.80	16.7	see tab	e below		0.80	16.7	see tabl	e below
-0.25	-5.2	-9.6	-0.8		-0.50	-10.4	-14.9	-6.0
-0.70	-14.6	-19.0	-10.2		-0.70	-14.6	-19.0	-10.2
-0.49	-10.1	-14.6	-5.7		Ind	cluded in w	indward roof	
-0.66	-13.8	-18.2	-9.4	0 to h/2*	-1.04	-21.7	-26.1	-17.3
-0.12	-2.6	-7.0	1.8	> h/2*	-0.70	-14.6	-19.0	-10.2
				Min press.	-0.18	-3.8	-8.2	0.7
	B/L = Cp 0.80 -0.25 -0.70 -0.49 -0.66	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$B/L = 3.00$ $h/L = 0.40$ $L/B = 0.33$ $h/L =$ Cp q_hGC_p $w/+q_iGC_{pi}$ $w/-q_hGCpi$ Dist.* Cp q_hGC_p $w/+q_iGC_{pi}$ 0.80 16.7 see table below 0.80 16.7 see table -0.25 -5.2 -9.6 -0.8 -0.50 -10.4 -14.9 -0.70 -14.6 -19.0 -10.2 -0.70 -14.6 -19.0 -0.49 -10.1 -14.6 -5.7 Included in windward roof -0.66 -13.8 -18.2 -9.4 0 to $h/2^*$ -1.04 -21.7 -0.12 -2.6 -7.0 1.8 $> h/2^*$ -0.70 -14.6 -19.0


*Horizontal distance from windward edge

	Windward	Combined WW + LW						
_			_	V	Vindward Wa	all	Normal	Parallel
	Z	Kz	Kzt	$q_z GC_p$	w/+q _i GC _{pi}	w/-q _h GC _{pi}	to Ridge	to Ridge
	0 to 15'	0.85	1.00	13.0	8.6	17.5	18.3	23.5
	20.5 ft	0.91	1.00	13.9	9.5	18.4	19.2	24.4
	31.0 ft	0.99	1.00	15.2	10.8	19.6	20.4	25.6
	40.0 ft	1.04	1.00	16.0	11.6	20.5	21.3	26.5
	40.0 ft	1.04	1.00	16.0	11.6	20.5	21.3	26.5
h=	48.5 ft	1.09	1.00	16.7	12.3	21.1	21.9	27.1

WIND PARALLEL TO RIDGE

NOTE: See figure in ASCE7 for the application of full and partial loading

of the above wind pressures. There are 4 different loading cases.

Parapet				
Z	Kz	Kzt	qp (psf)	
0.0 ft	0.85	1.00	0.0	
Windwa	ard parapet:	0.0 psf	(GCpn = ·	
Leewa	ard parapet:	0.0 psf	(GCpn = -	·1.0)

Windward roof overhangs (add to windward roof pressure) : 16.7 psf (upward)

Proudly Serving Rural Routt County * City of Steamboat Springs * Town of Hayden * Town of Oak Creek * Town of Yampa * Routt County School Districts

Policy: 2018 ICC Building Code Adoption Seismic Category C

Date: 02/23/2021

The Routt County Regional Building Department has composed a Seismic Design Category C Policy to provide our Professionals with clear information on the adoption of the 2018 ICC International Residential Building Code and the 2018 ICC International Building Code respectively.

Through our Code Adoption Processes within each Jurisdiction including; Routt County, Town of Hayden, Town of Yampa, Town of Oak Creek, and City of Steamboat Springs it was voted and approved that all of Routt County will be considered a Seismic Design Category C in respect to both the IRC and IBC Design standards. No Jurisdictions in Routt County have Adopted nor Accepted the Seismic Design Category D designation that is showing in the 2018 IRC in Figure R301.2(2), nor have we adopted or accepted ASCE 7-16 Design Code Reference Document that will display properties as Seismic Category D designation in certain areas. Please note, both the IRC Map and ASCE 7-16 will display certain properties as a Seismic Design Category D, the map in the 2018 IRC has a dark circle displaying this Seismic Category D designation that is centered over the City of Steamboat Springs, and extends outward into Rural Routt County approximately 17 mile total radius. When working within ASCE 7-16 using web link <u>https://seismicmaps.org/</u> You will find that properties located in the Town of Oak as an example, would be identified as a Seismic Design Category D designation, this would also be the case for any property you pulled up within the City of Steamboat Springs as well as an example. However, the Routt County Regional Building Department and all Jurisdictions we serve voted this down, and we refused to accept the Seismic Design Category D designation throughout all of Routt County.

Routt County Regional Building Department 2018 IBC Policy Amendment to Section 1613:

2018 IBC Section 1613 Earthquake Loads is hereby amended to read as follows:

1613.1 Scope. Every structure, and portion thereof, including nonstructural components that are permanently attached to structures and their supports and attachments, shall be designed and constructed to resist the effects of earthquake motion and accordance with ASCE 7, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure is permitted to be determined in accordance with Section 1613 or ASCE 7. **Exceptions:**

1. Detached one- and two-family dwellings, assigned to Seismic Design Category A, B or C, or located where the mapped short-period spectral response acceleration, SS, is less than 0.4 g.

2. The seismic force-resisting system of wood-frame buildings that conform to the provisions of Section 2308 are not required to be analyzed as specified in this section.

ROUTT County Regional Building Department

136 6th Street, Ste 201, Steamboat Springs, CO 80487 PH: 970-870-5566 Fax 970-870-5489 Email: Building@co.routt.co.us

3. Agricultural storage structures intended only for incidental human occupancy.

4. Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

Routt County Building Department Local Policy Amendment to Section 1613 Earth quake Loads: All properties within Routt County Incorporated and Unincorporated Jurisdictions have been adopted and approved to be a Seismic Design Category C designation through our Building Code Adoption Approval Processes. Structures shall be designed in accordance with our local amendment policy using a Seismic Design Category C designation as the base level design standard. When approved by the Structural Engineer of Record through review of the Geotechnical Soils Report and Soils Site Class, the Seismic Category may be reduced by the Engineer of Record based on the known Soils Site Class and in accordance with ASCE-7 and Chapter 16 of the IBC.

Structural Engineers Acceptable Design Parameters Local Routt County Building Department Policy: The Routt County Building Department has developed these design parameters to align with our Local Code Adoptions that were approved designating all of Routt County a Seismic Design Category C. This Policy has been created to provide maximum values for SDS and SD1 respectively to be used in the mapped areas throughout Routt County that have been designated Seismic Category D in accordance ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/. The parameters below may be used by Structural Engineers based on the Risk Factor of the Building to perform calculations to determine structural designs. The below parameters may be used with Site Class D- Default (See Section 11.4.3) being set on the ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/. Lower values may be used if justified by soil Site Class and resulting site-specific ground motion parameters set forth in ASCE 7-16 and USGS Seismic Design Data Map and approved by the Code Official.

- Risk Category I, II, and II Building: SDS = 0.333 and SD1 = 0.133
- Risk Category IV Building: SDS = 0.499 and SD1 = 0.199

The intent of setting these parameters and values is to help support Structural Engineers in designing buildings within the spirt of our Locally Approved Code Adoptions designating a standard Seismic Design Category C throughout all of Routt County, to avoid conflicts in what data would otherwise be provided through ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/.

Routt County Regional Building Department 2018 IRC Code Adoption

 Table R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA, is completed as follows:

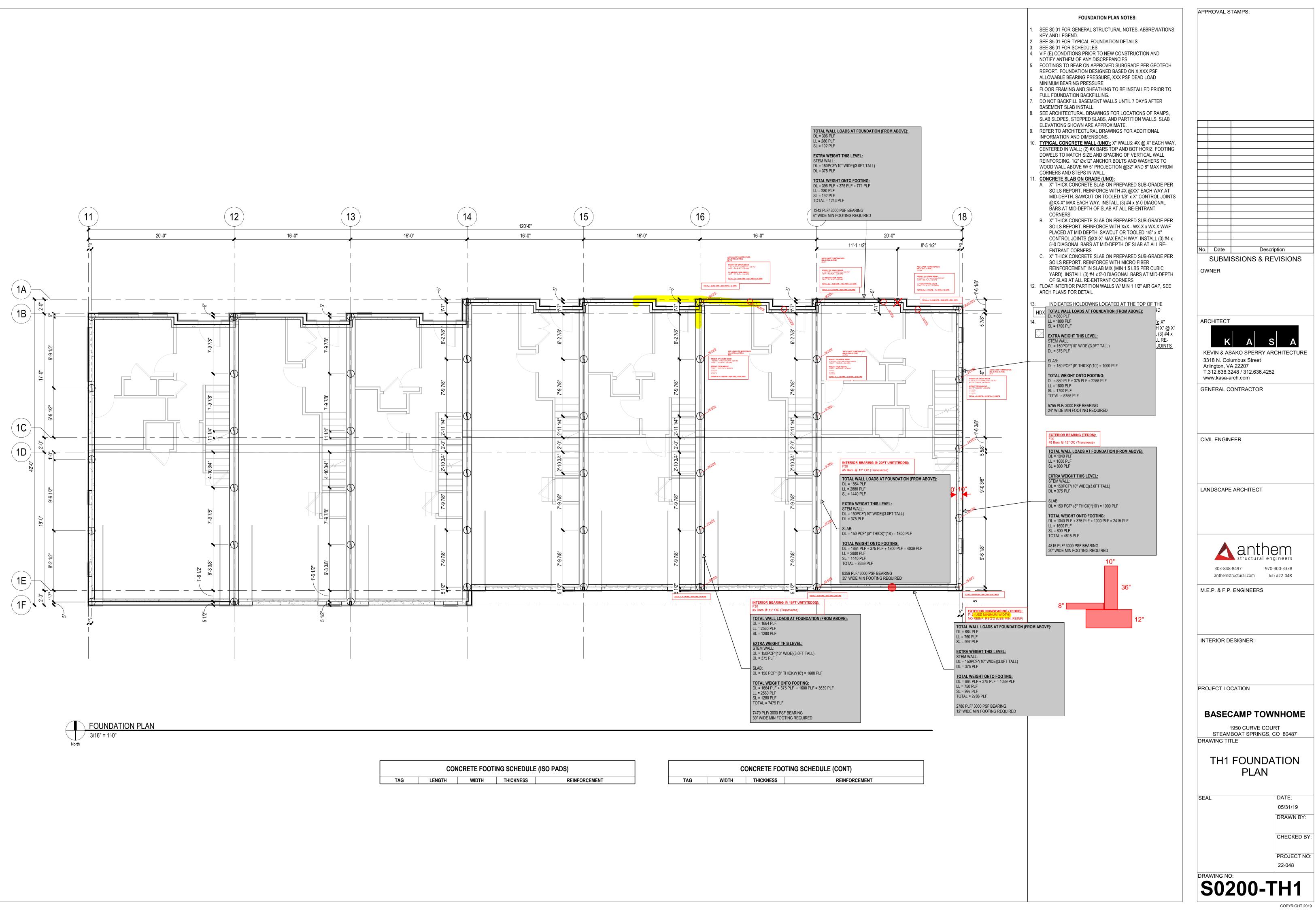
- Ground Snow Load Case Study Area contact the Building Department for Ground Snow Load Valuations per site.
- Climate Zone 7
- Wind Speed 115 MPH (ultimate design wind speed)
- Topographic Effects No
- Seismic Design Category C Note: When approved by the Structural Engineer of Record through review of the Geotechnical Soils Report and Soils Site Class, the Seismic Category may be reduced

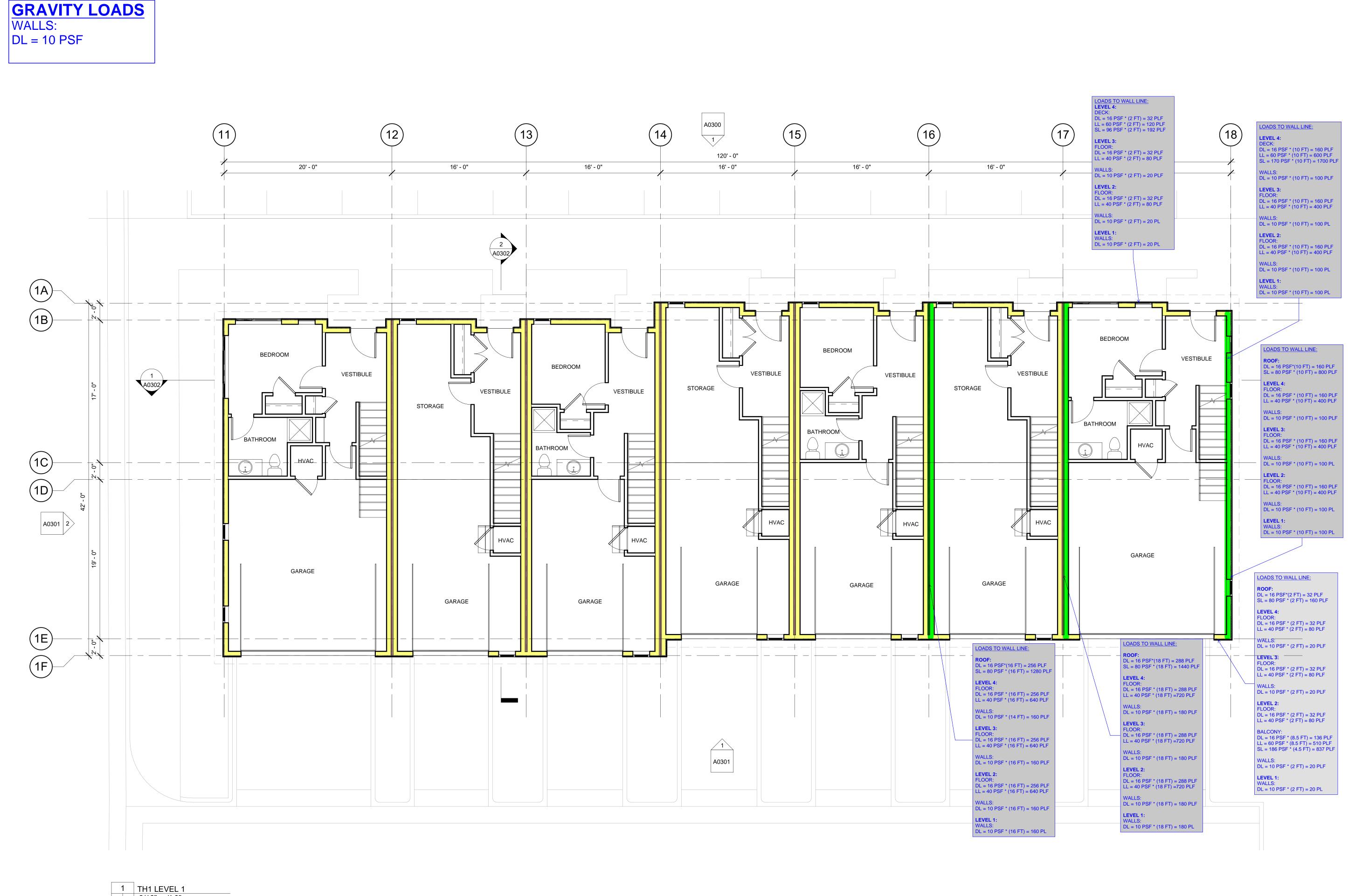
ROUTT County Regional Building Department

136 6th Street, Ste 201, Steamboat Springs, CO 80487 PH: 970-870-5566 Fax 970-870-5489 Email: Building@co.routt.co.us

by the Engineer of Record based on the known Soils Site Class and in accordance with ASCE-7 and Chapter 16 of the IBC.

- Subject to Damage by Weathering Severe
- Subject to Damage by Frost line Depth 48 inches (1220mm)
- Subject to Damage by Termite None to slight
- Subject to Damage by Decay None to slight
- Winter Design:
 - Outdoor Winter Design Dry-Bulb Temperature -15°F (-26°C)
 - o Indoor Winter Design Dry-Bulb Temperature: 70° F (21° C)
 - Coincident Wet Bulb: 56° F (13° C)
 - Heating temperature Difference: 85° F (29° C)
- Summer Design:
 - Outdoor Summer Design Dry-Bulb Temperature: 85° F (29° C)
 - Indoor Summer Design Dry-Bulb Temperature: 75° F (24° C)
 - Design Grains: Varies based on weather data Range: -35 to -55
 - Cooling Temperature Difference: $10^{\circ} \text{ F}(-12^{\circ} \text{ C})$
- Elevation: Varies Elevation by address can be found at: <u>https://elevation.maplogs.com/poi/routt_county_co_usa.12879.html</u>
- Altitude Correction: Varies
 - o 7,000' 0.77
 - o 8,000' 0.75
 - o 9,000' 0.72
 - o 10,000' 0.69
 - o 12,000' 0.63
- Latitude : 40° North
- Ice Shield Underlayment Required Yes
- Flood Hazards FIRM, February 4, 2005
- Air Freezing Index Steamboat 2239
- Mean Annual Temperature 40-45°F (4.5-7.2°C)
- Ground Snow Load Values are Governed by Routt County Regional Building Department based on geographic location. Please visit our home page and click on Ground Snow Load Values for site-specific information.

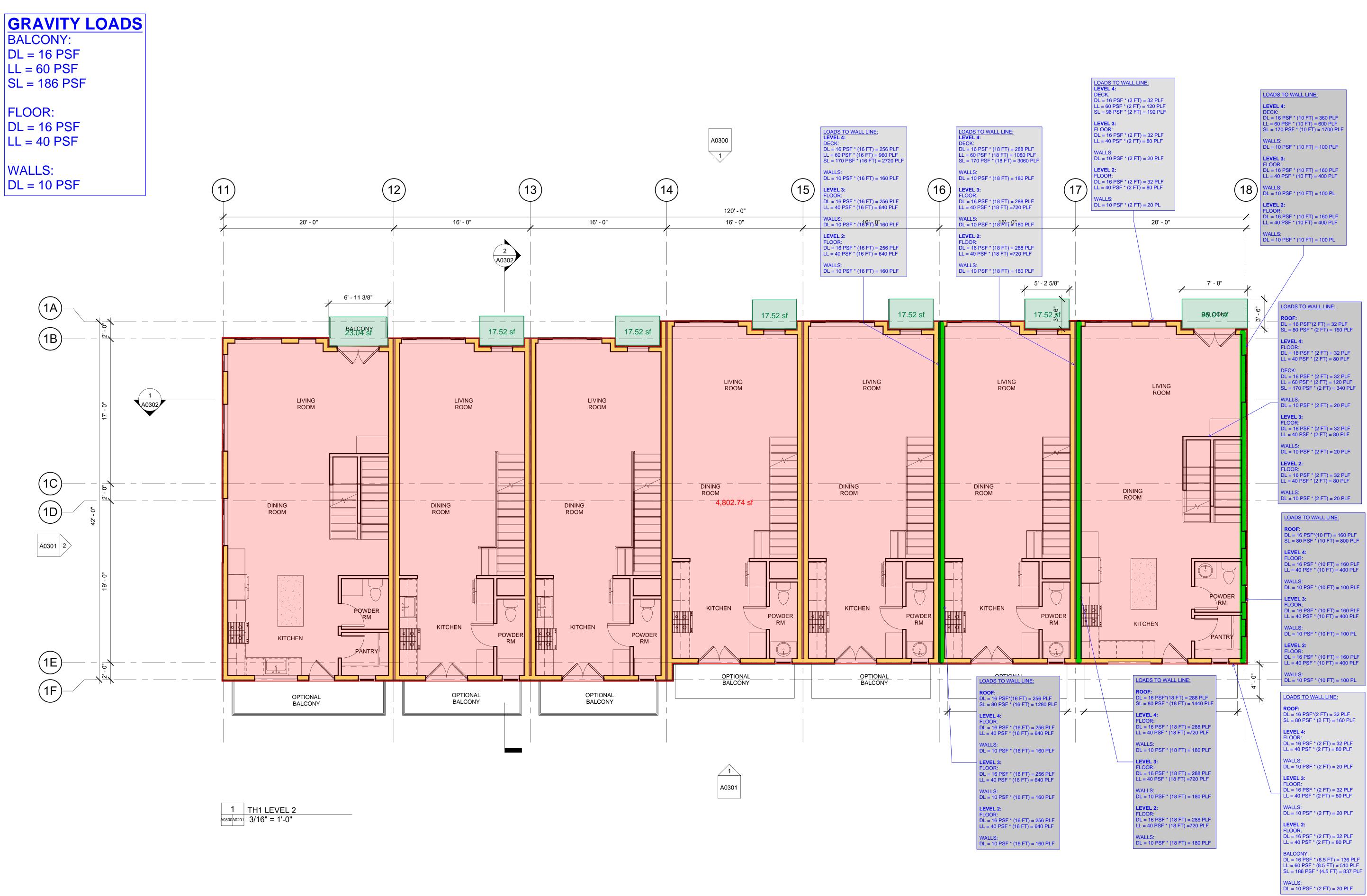

Sincerely,


Tode lan

Todd Carr, Building Official Routt County Building Department

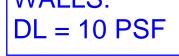
GRAVITY DESIGN

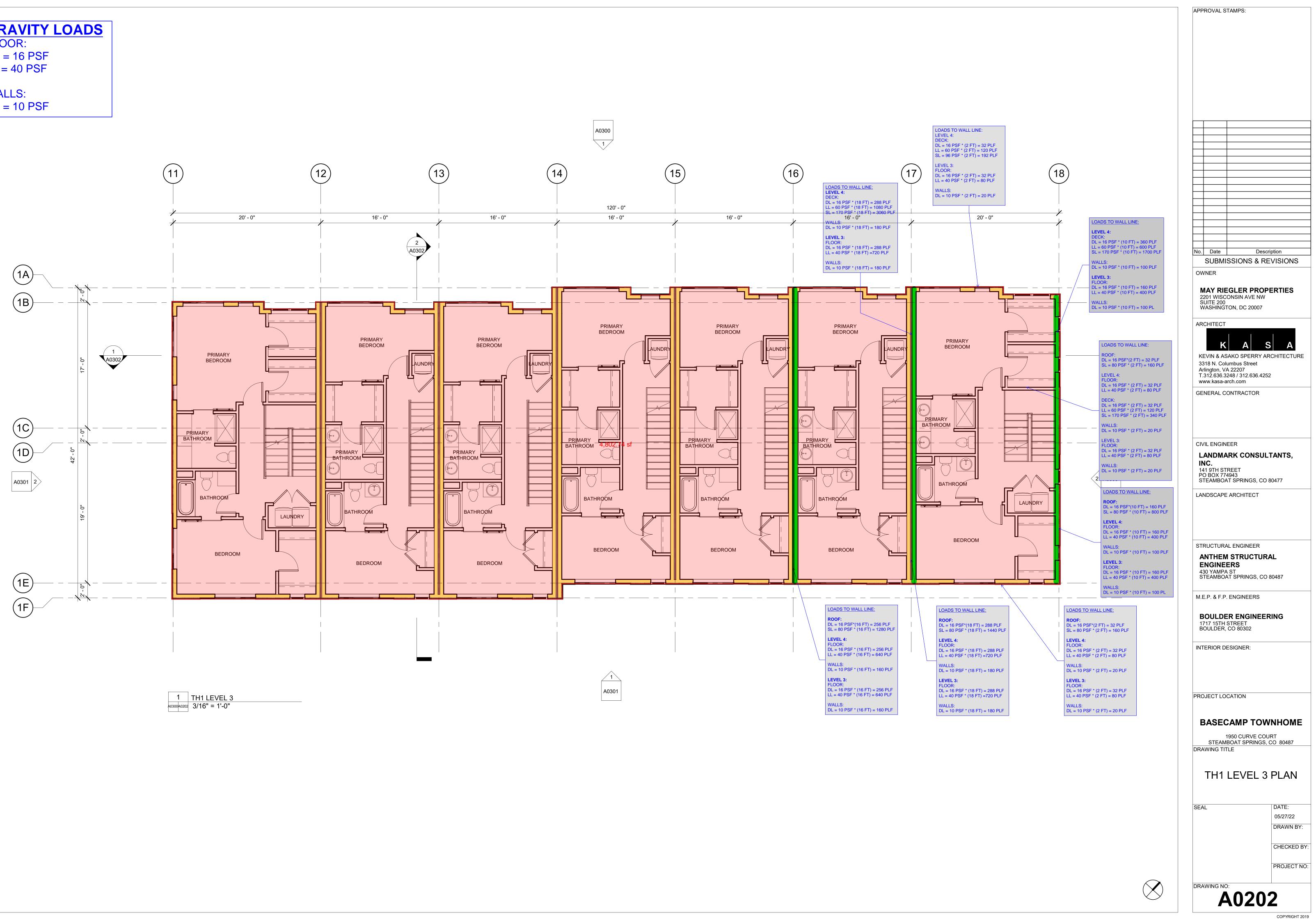
GRAVITY LOAD TRACE

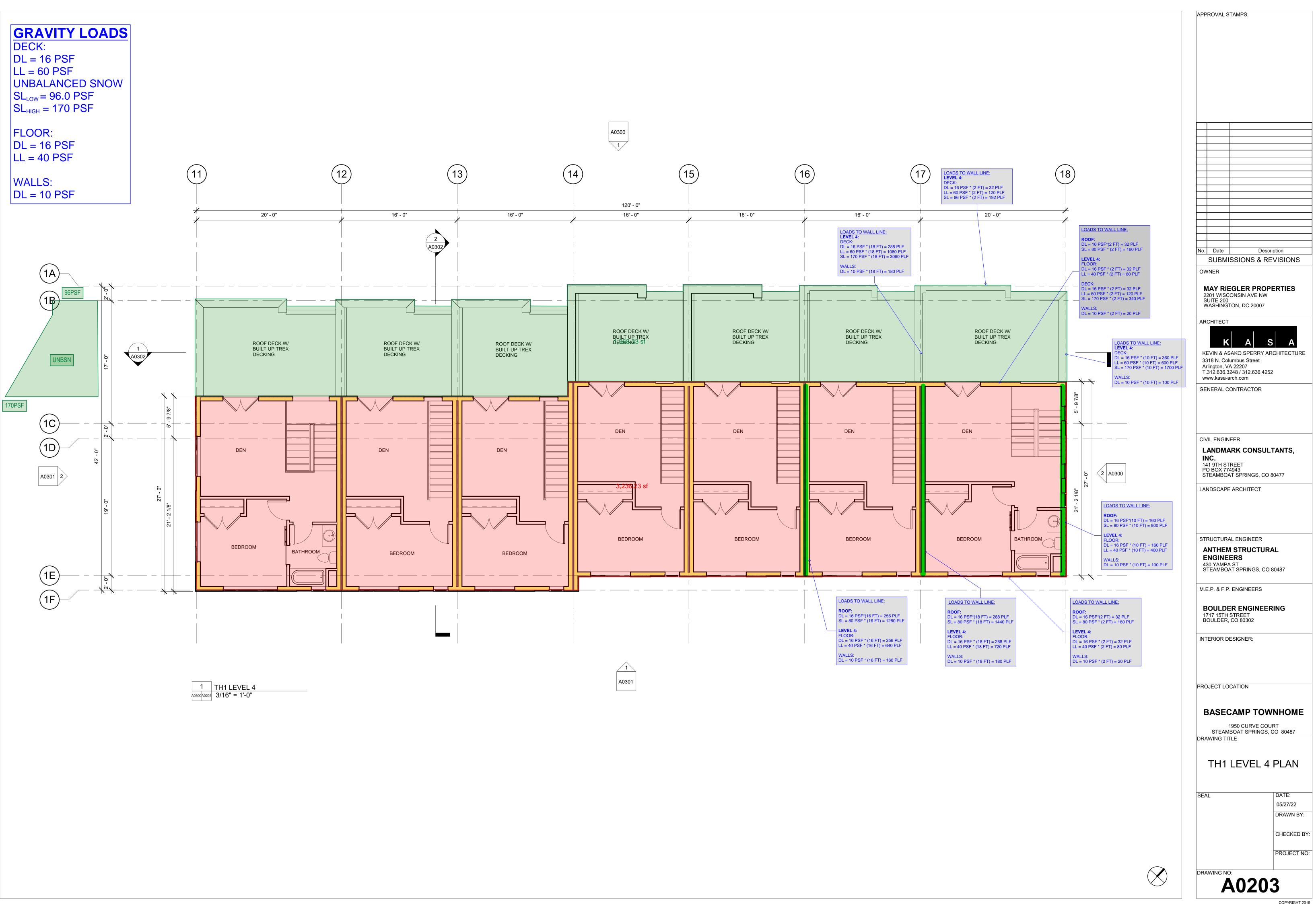


1 TH1 LEVEL 1 10300 10200 3/16" = 1'-0"

COPYRIGHT 2019

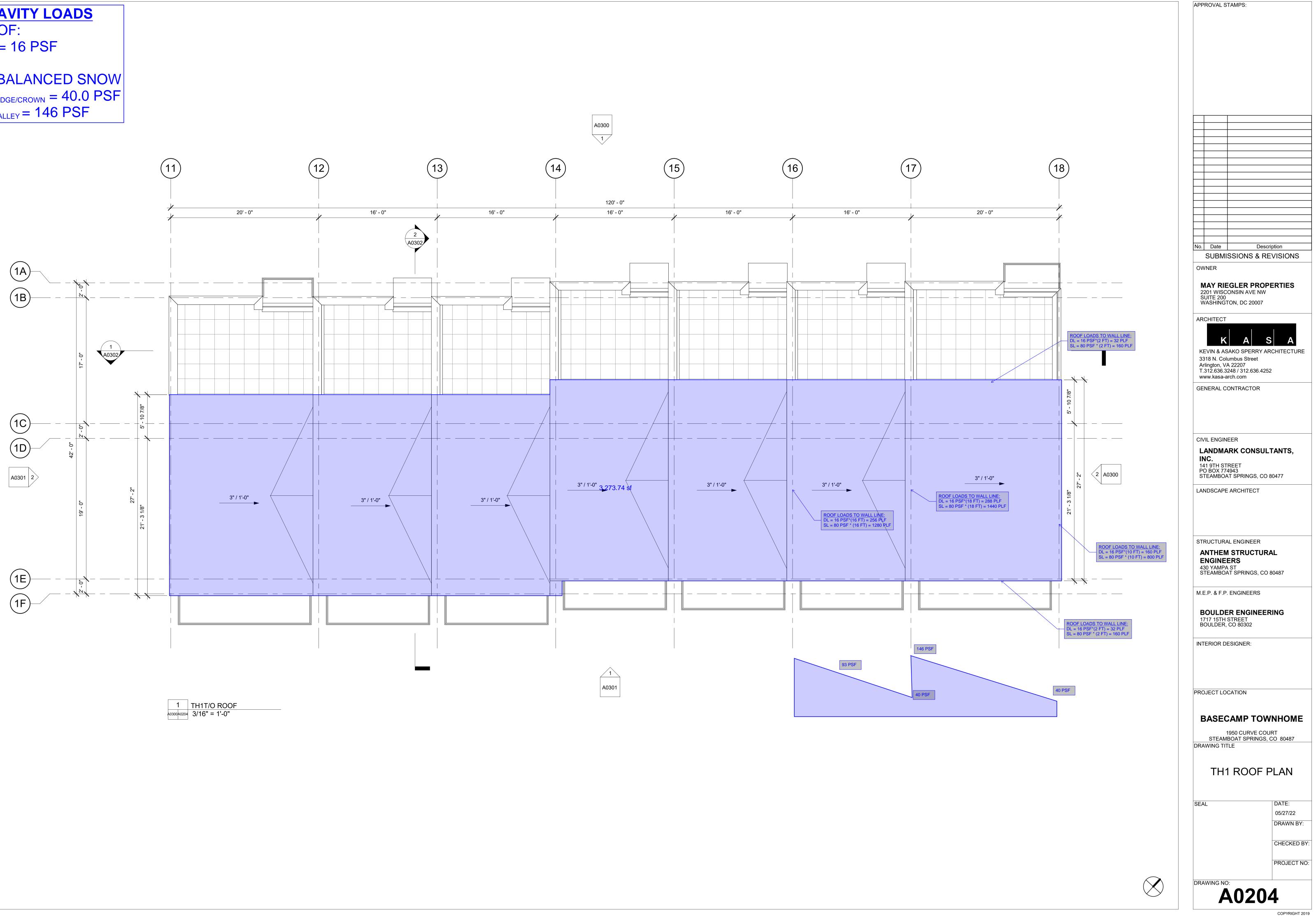

 \bigotimes

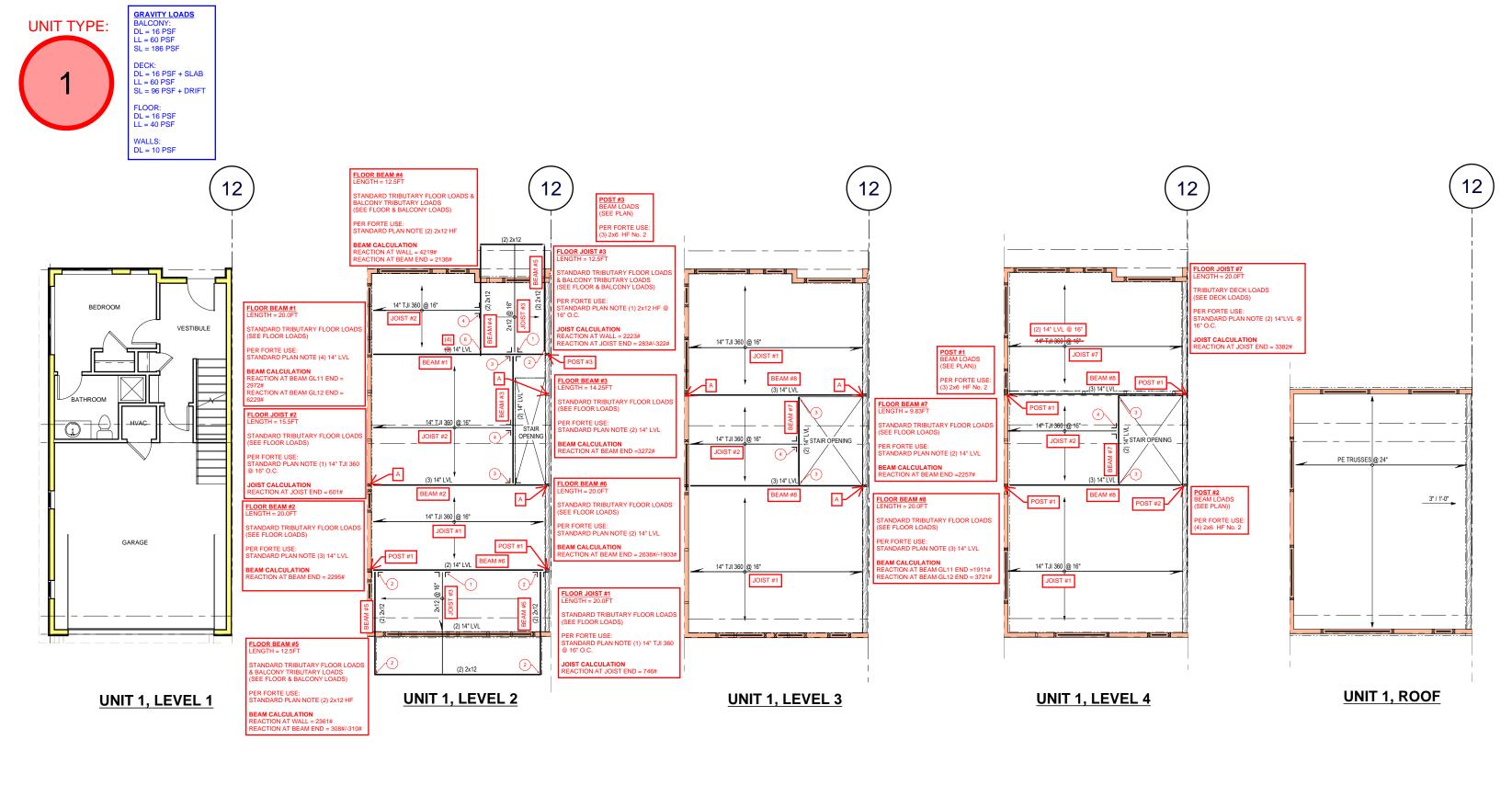


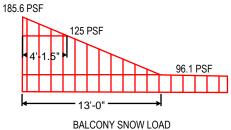

No.	Date	-	escription REVISIONS		
OW	/NER	13310113 &	INE VISIONS		
		-	OPERTIES		
S	UITE 200	CONSIN AVE N) STON, DC 2000			
AR	CHITECT				
	k		SA		
		SAKO SPERR	Y ARCHITECTURE		
Τ.		/A 22207 3248 / 312.636. arch.com	4252		
GE	NERAL (CONTRACTOR	2		
CIVIL ENGINEER LANDMARK CONSULTANTS, INC. 141 9TH STREET PO BOX 774943 STEAMBOAT SPRINGS, CO 80477					
14 P(S ⁻	IC. 11 9TH S D BOX 77 TEAMBO	TREET 74943	CO 80477		
14 P(S ⁻	IC. 11 9TH S D BOX 77 TEAMBO	TREET 74943 AT SPRINGS,	CO 80477		
LAN STI	NC. 19 JTH S D BOX 77 TEAMBO NDSCAP	TREET 74943 AT SPRINGS,	CO 80477		
IN 14 PC S ³ LAN STH A E 43	NC. 11 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI SO YAMP	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS	CO 80477		
IN 14 PC S LAN STI	NC. 11 9TH S 2 BOX 77 1EAMBO NDSCAP NDSCAP RUCTUR NTHEI 30 YAMP TEAMBC	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST A ST AT SPRINGS,	CO 80477		
IN 14 PC S S LAN LAN S TH 43 S S	NC. 19TH S 0 BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI NGINE 30 YAMP TEAMBC E.P. & F.F	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT E ERS A ST AT SPRINGS, P. ENGINEERS	CO 80477 URAL CO 80487		
IN 14 PC ST LAN STI A E 43 S M.E B 17	NC. 11 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI SOULD 717 15TH	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST A ST AT SPRINGS,	CO 80477 URAL CO 80487		
IN 14 PC S ILAN S TI A E 4 3 S M.E B 17 B	NC. H 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI SO YAMP TEAMBC E.P. & F.F SOULD 717 15TH OULDER	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE	CO 80477 URAL CO 80487		
IN 14 PC S ILAN S TI A E 4 3 S M.E B 17 B	NC. H 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI SO YAMP TEAMBC E.P. & F.F SOULD 717 15TH OULDER	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302	CO 80477 URAL CO 80487		
INT	NC. 19TH S DBOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI NGINE 30 YAMP TEAMBC 2.P. & F.F COULD 717 15TH OULDER TERIOR I	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302	CO 80477 URAL CO 80487		
IN 14 PC S I LAN S T A E 4 S M.E B 17 B I NT PRC	NC. H 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI SOULD TEAMBC E.P. & F.F SOULD TEAMBC TEAMBC E.P. & F.F SOULD TEAMBC TEAMBC DJECT LC	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST WAT SPRINGS, P. ENGINEERS ER ENGINE STREET CO 80302 DESIGNER:	CO 80477 URAL CO 80487		
IN 14 PC S LAN S M.E B 17 B M.E B 17 B INT PRC E	NC. H 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI NGINE 30 YAMP TEAMBC 20 JECT LO BASE	AT SPRINGS, E ARCHITECT AL ENGINEER AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET CO 80302 DESIGNER: DCATION CAMP TC 1950 CURVE O	CO 80477 URAL CO 80487 EERING		
IN 14 PC S LAN S M.E B 17 B M.E B 17 B INT PRC E	NC. H 9TH S D BOX 77 TEAMBO NDSCAP NDSCAP RUCTUR NTHEI SOULD TEAMBC E.P. & F.F SOULD TEAMBC E.P. & F.F SOULD TEAMBC E.P. & F.F SOULD TEAMBC E.P. & F.F SOULD TEAMBC E.P. & T.F SOULD TEAMBC STEAM	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302 DESIGNER: DCATION CAMP TC 1950 CURVE (1950 CURVE (1950 CURVE (CO 80477 URAL CO 80487 EERING EERING		
IN 14 PC S LAN S M.E B 17 B M.E B 17 B INT PRC E	NDSCAP	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302 DESIGNER: DCATION CAMP TC 1950 CURVE 0 MBOAT SPRING	CO 80477 URAL CO 80487 EERING DWNHOME COURT SS, CO 80487 2 PLAN		
IN 14 PC S IA E 4 S M.E B 17 B M.E B 17 B INT PRC E DRA	NDSCAP	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302 DESIGNER: DCATION CAMP TC 1950 CURVE 0 MBOAT SPRING	CO 80477 CO 80477 CO 80487 EERING DWNHOME COURT GS, CO 80487		
IN 14 PC S IA E 4 S M.E B 17 B M.E B 17 B INT PRC E DRA	NDSCAP	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302 DESIGNER: DCATION CAMP TC 1950 CURVE 0 MBOAT SPRING	CO 80477 URAL CO 80487 EERING DWNHOME COURT SS, CO 80487 2 PLAN DATE: 05/27/22		
IN 14 PC S IA E 4 S M.E B 17 B M.E B 17 B INT PRC E DRA	NDSCAP	TREET 74943 AT SPRINGS, E ARCHITECT AL ENGINEER M STRUCT ERS A ST AT SPRINGS, P. ENGINEERS ER ENGINE STREET , CO 80302 DESIGNER: DCATION CAMP TC 1950 CURVE 0 MBOAT SPRING	CO 80477 CO 80477 CO 80487 CO 80487 EERING COURT 80487 COURT 80487 COURT 80487 COURT 80487		
IN 14 PC S IA E 43 S M.E B 17 18 17 18 18 17 18 17 18 18 18 18 18 18 18 18 18 18	NDSCAP	AT SPRINGS, E ARCHITECT AL ENGINEERS AST AT SPRINGS, P. ENGINEERS ER ENGINEERS ER ENGINEERS ER ENGINEERS DESIGNER: DCATION CAMP TO 1950 CURVE ON BOAT SPRING TLE	CO 80477 CO 80477 CO 80487 CO 80487 EERING CO 80487 COURT 65, CO 80487 COURT 65, CO 80487 CHECKED BY: CHECKED BY:		

 \bigotimes

GRAVITY LOADS FLOOR: DL = 16 PSF LL = 40 PSFWALLS:

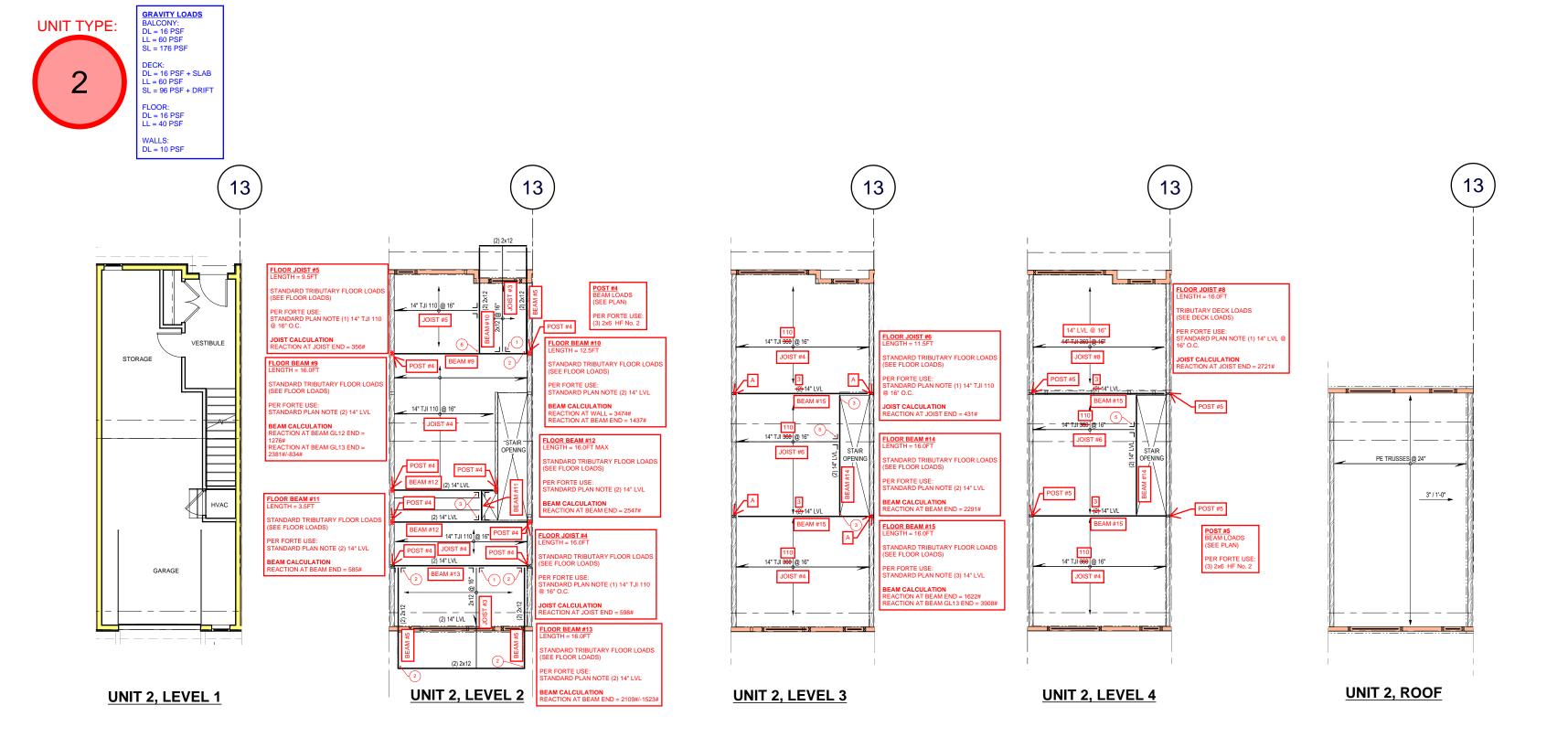




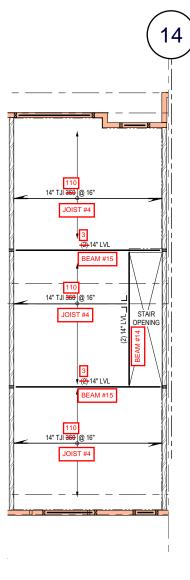


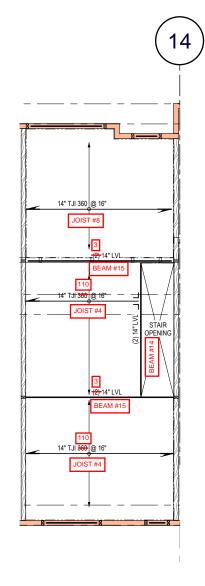
GRAVITY LOADS ROOF: DL = 16 PSF

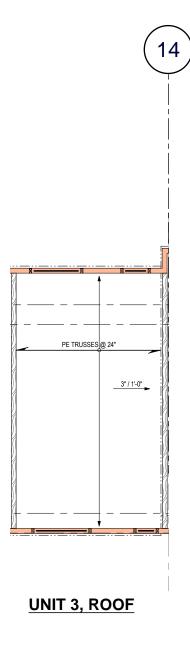
UNBALANCED SNOW $SL_{\text{RIDGE/CROWN}} = 40.0 \text{ PSF}$ $SL_{\text{VALLEY}} = 146 \text{ PSF}$

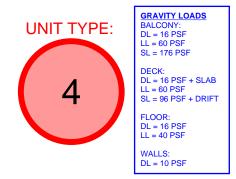


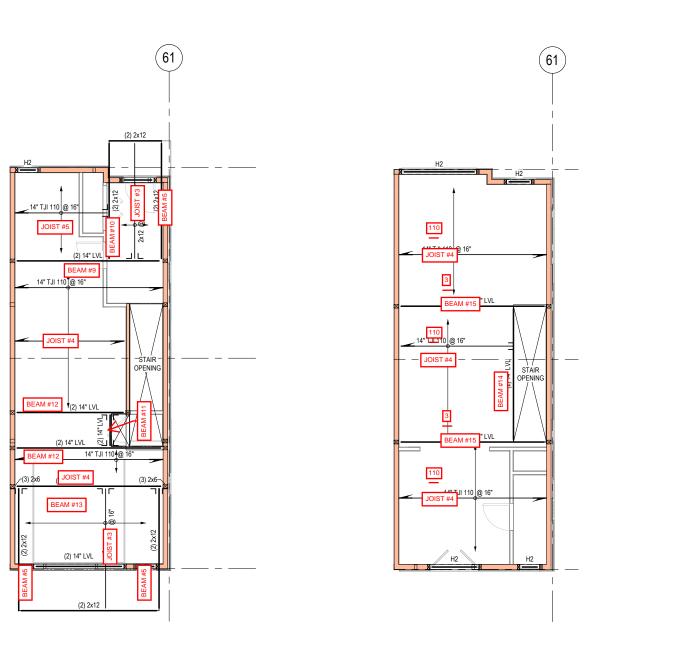
HANGER SCHEDULE 1. ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE FASTENERS SPECIFIED BY MNFR. ANY SUBSTITUTIONS SHALL BE REVIEWED AND APPROVED BY ANTHEM 2. INSTALL HANGERS NOTED OD APPROVED FOUNDALENT.


2. INS	2. INSTALL HANGERS NOTED OR APPROVED EQUIVALENT							
MARK	DESCRIPTION	FACE FASTENERS	JOIST FASTENERS					
1	LUS28	(6) 10d X 3" NAILS	(4) 10d X 1.5" NAILS					
2	LUS28-2	(6) 10d X 3" NAILS	(4) 10d X 3" NAILS					
3	HHUS410	(30) 10d X 3" NAILS	(10) 10d X 3" NAILS					
4	ISU2.37/14	(12) 10d X 3" NAILS	-					
5	IUS1.81/14	(12) 10d X 1.5" NAILS	-					
6	U210-2	(14) 16d X 3.5" NAILS	(6) 10d X 3" Nails					





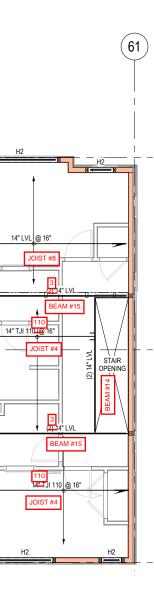


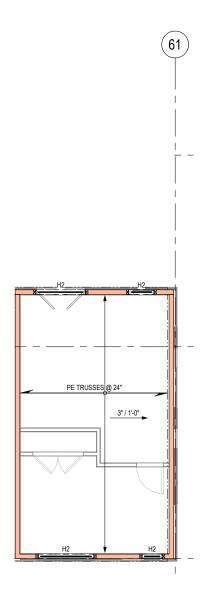

UNIT 3, LEVEL 3

UNIT 3, LEVEL 4

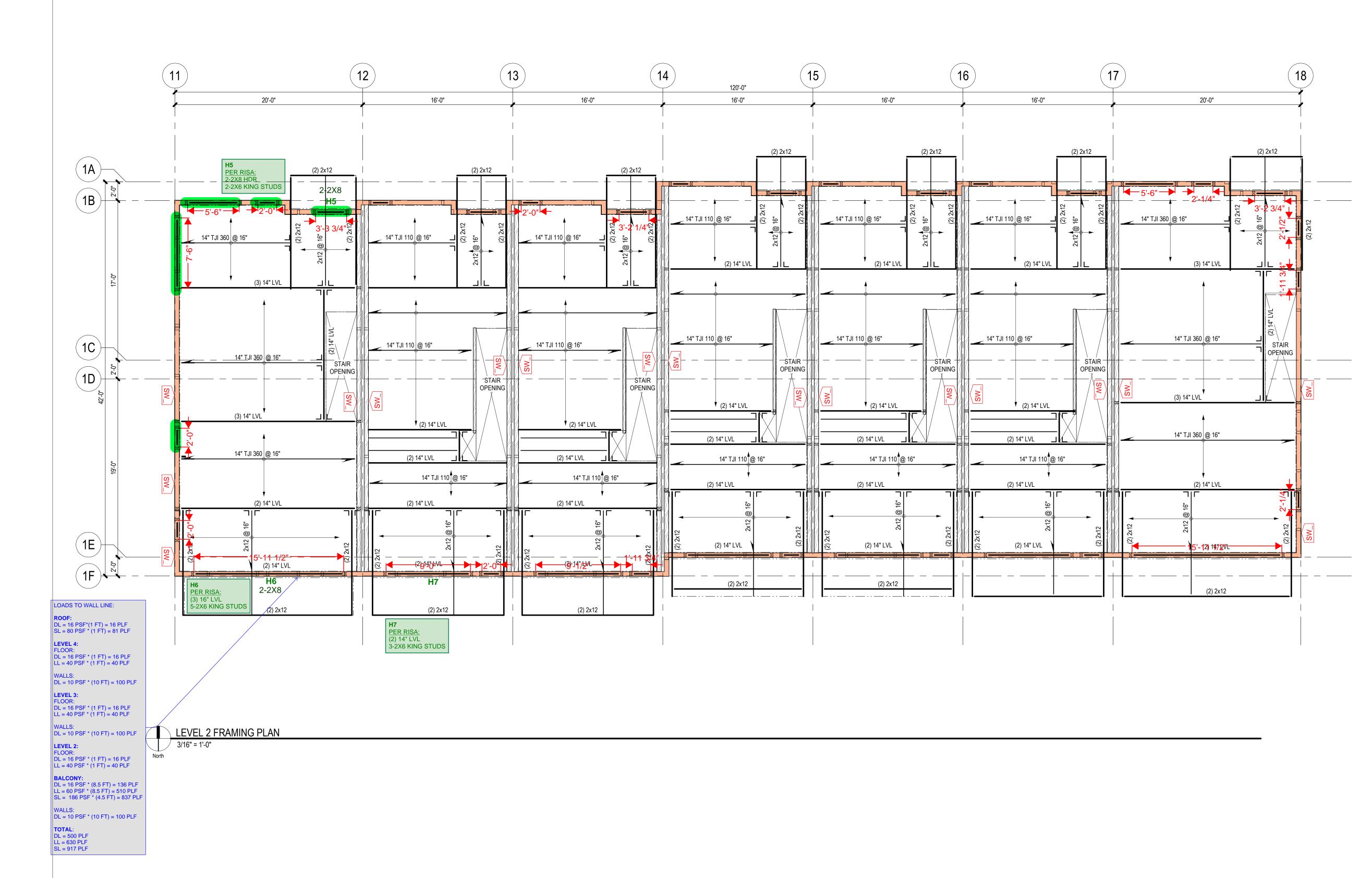
<u>UNIT 4, LEVEL 1</u>

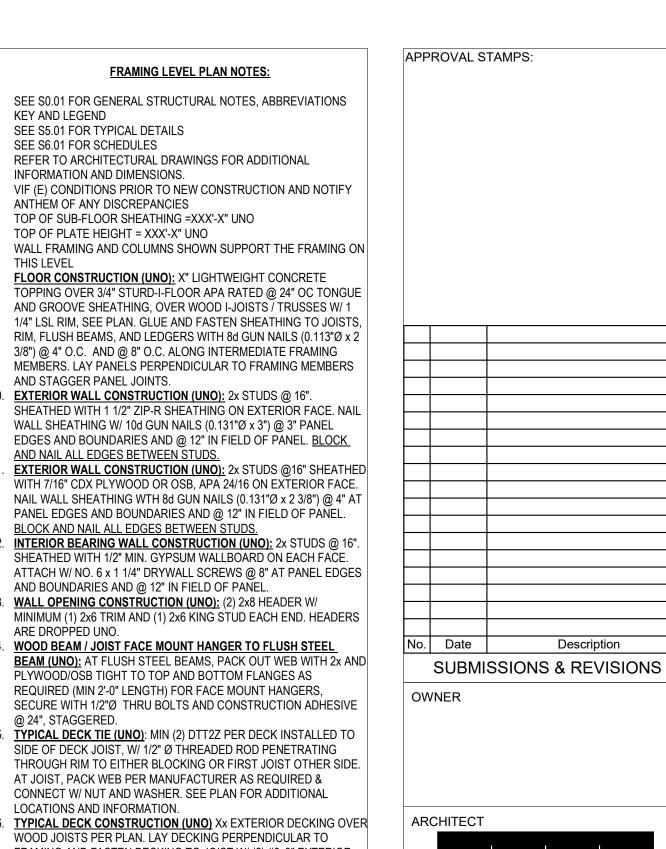
<u>UNIT 4, LEVEL 2</u>


UNIT 4, LEVEL 3


<u>UNIT 4, LEVEL 4</u>

H2


H2


14" LVL @ 16

<u>UNIT 4, ROOF</u>

LOCATIONS AND INFORMATION. WOOD JOISTS PER PLAN. LAY DECKING PERPENDICULAR TO FRAMING AND FASTEN DECKING TO JOIST W/ (2) #8x3" EXTERIOR DECK SCREWS PER BOARD. FLASH TOP OF MULTI-PLY JOISTS /

INDICATES HOLDOWN THROUGH LEVEL SHOWN, SEE SX.XX. CONTRACTOR TO VERIFY LOCATIONS AND LAYOUT WITH

INDICATES SHEAR WALL TO BE SHEATHED ON SIDE INDICATED SWX BY ARROW (UNO) WITH SHEATHING PER SHEAR WALL SCHEDULE. SEE S6.01

LEVEL 2 KEYNOTE SCHEDULE

Description

HANGER SCHEDULE

1. ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE FASTENERS SPECIFIED BY MNFR. ANY SUBSTITUTIONS SHALL BE REVIEWED AND APPROVED BY ANTHEM

2. INSTALL HANGERS NOTED OR APPROVED EQUIVALENT

(X) DESCRIPTION

	LANDSCAPE ARCHITECT		
	structural engineers		

970-300-3338 303-848-8497 anthemstructural.com Job #22-048

Description

KEVIN & ASAKO SPERRY ARCHITECTURE

3318 N. Columbus Street

GENERAL CONTRACTOR

T.312.636.3248 / 312.636.4252

Arlington, VA 22207

www.kasa-arch.com

CIVIL ENGINEER

M.E.P. & F.P. ENGINEERS

INTERIOR DESIGNER:

PROJECT LOCATION

BASECAMP TOWNHOME

1950 CURVE COURT STEAMBOAT SPRINGS, CO 80487 DRAWING TITLE

LEVEL 2 FRAMING PLAN

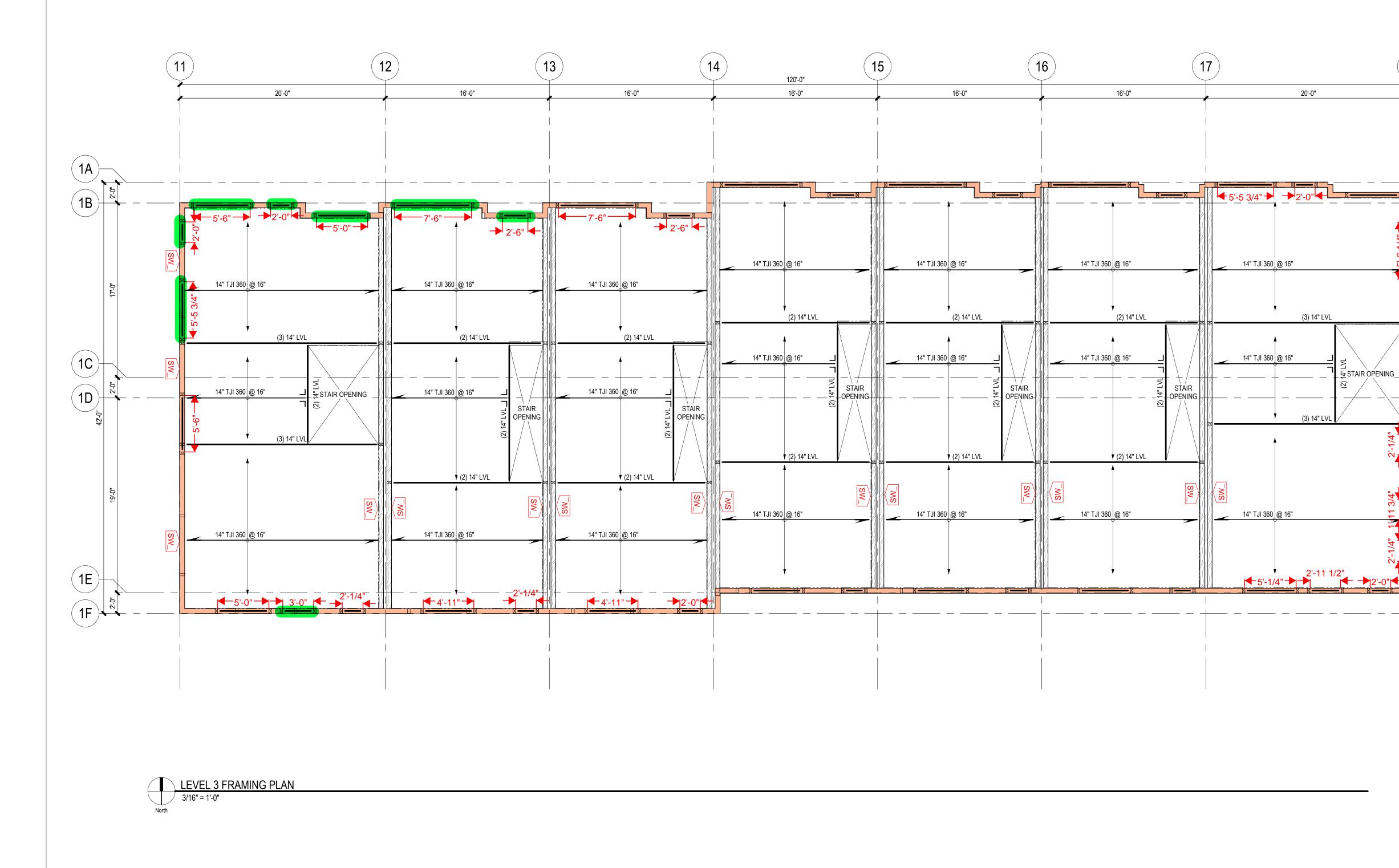
SEAL

DATE: 06/17/22 DRAWN BY:

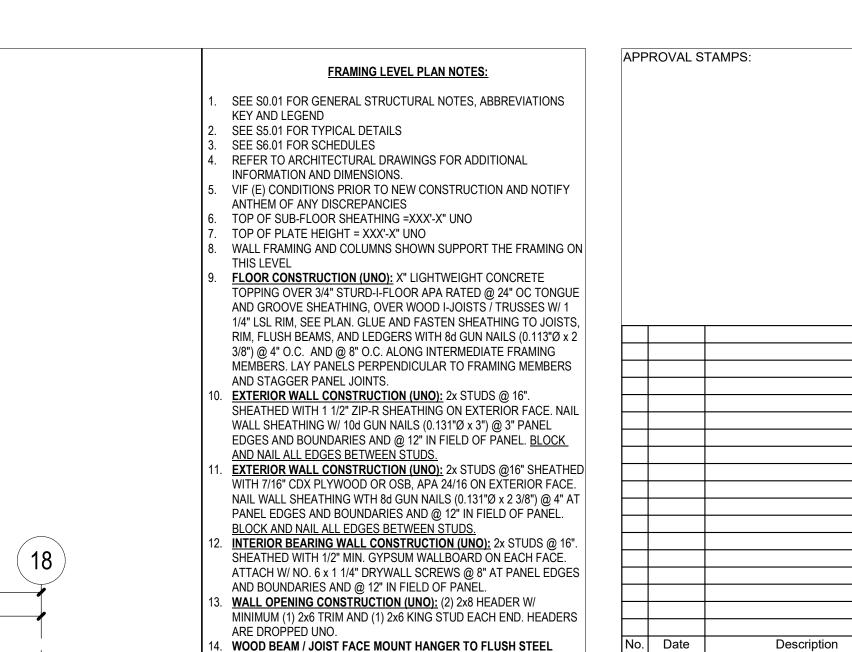
CHECKED BY:

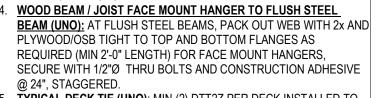
PROJECT NO: 22-048

DRAWING NO: **S1.03**


KEY AND LEGEND

- REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL
- INFORMATION AND DIMENSIONS.


- TOP OF PLATE HEIGHT = XXX'-X" UNO
- WALL FRAMING AND COLUMNS SHOWN SUPPORT THE FRAMING ON
- THIS LEVEL FLOOR CONSTRUCTION (UNO): X" LIGHTWEIGHT CONCRETE TOPPING OVER 3/4" STURD-I-FLOOR APA RATED @ 24" OC TONGUE AND GROOVE SHEATHING, OVER WOOD I-JOISTS / TRUSSES W/ 1 1/4" LSL RIM, SEE PLAN. GLUE AND FASTEN SHEATHING TO JOISTS, RIM, FLUSH BEAMS, AND LEDGERS WITH 8d GUN NAILS (0.113"Ø x 2 3/8") @ 4" O.C. AND @ 8" O.C. ALONG INTERMEDIATE FRAMING MEMBERS. LAY PANELS PERPENDICULAR TO FRAMING MEMBERS
- . EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1 1/2" ZIP-R SHEATHING ON EXTERIOR FACE. NAIL WALL SHEATHING W/ 10d GUN NAILS (0.131"Ø x 3") @ 3" PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. BLOCK AND NAIL ALL EDGES BETWEEN STUDS.
- EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @16" SHEATHED WITH 7/16" CDX PLYWOOD OR OSB, APA 24/16 ON EXTERIOR FACE. NAIL WALL SHEATHING WTH 8d GUN NAILS (0.131"Ø x 2 3/8") @ 4" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. BLOCK AND NAIL ALL EDGES BETWEEN STUDS.
- SHEATHED WITH 1/2" MIN. GYPSUM WALLBOARD ON EACH FACE. ATTACH W/ NO. 6 x 1 1/4" DRYWALL SCREWS @ 8" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL.
- WALL OPENING CONSTRUCTION (UNO): (2) 2x8 HEADER W/ MINIMUM (1) 2x6 TRIM AND (1) 2x6 KING STUD EACH END. HEADERS
- WOOD BEAM / JOIST FACE MOUNT HANGER TO FLUSH STEEL BEAM (UNO): AT FLUSH STEEL BEAMS, PACK OUT WEB WITH 2x AND PLYWOOD/OSB TIGHT TO TOP AND BOTTOM FLANGES AS REQUIRED (MIN 2'-0" LENGTH) FOR FACE MOUNT HANGERS, SECURE WITH 1/2"Ø THRU BOLTS AND CONSTRUCTION ADHESIVE
- TYPICAL DECK TIE (UNO): MIN (2) DTT2Z PER DECK INSTALLED TO SIDE OF DECK JOIST, W/ 1/2" Ø THREADED ROD PENETRATING THROUGH RIM TO EITHER BLOCKING OR FIRST JOIST OTHER SIDE. AT JOIST, PACK WEB PER MANUFACTURER AS REQUIRED & CONNECT W/ NUT AND WASHER. SEE PLAN FOR ADDITIONAL
- TYPICAL DECK CONSTRUCTION (UNO) XX EXTERIOR DECKING OVER BEAMS.


HDX FRAMING ABOVE

 $\langle x \rangle$

23/2022 2:05:29 PN

5. <u>TYPICAL DECK TIE (UNO)</u>: MIN (2) DTT2Z PER DECK INSTALLED TO SIDE OF DECK JOIST, W/ 1/2" Ø THREADED ROD PENETRATING THROUGH RIM TO EITHER BLOCKING OR FIRST JOIST OTHER SIDE. AT JOIST, PACK WEB PER MANUFACTURER AS REQUIRED & CONNECT W/ NUT AND WASHER. SEE PLAN FOR ADDITIONAL LOCATIONS AND INFORMATION.

- _____

16. <u>TYPICAL DECK CONSTRUCTION (UNO)</u> Xx EXTERIOR DECKING OVER WOOD JOISTS PER PLAN. LAY DECKING PERPENDICULAR TO FRAMING AND FASTEN DECKING TO JOIST W/ (2) #8x3" EXTERIOR DECK SCREWS PER BOARD. FLASH TOP OF MULTI-PLY JOISTS / BEAMS.

7. INDICATES HOLDOWN THROUGH LEVEL SHOWN, SEE SX.XX. CONTRACTOR TO VERIFY LOCATIONS AND LAYOUT WITH HDX FRAMING ABOVE

18. INDICATES SHEAR WALL TO BE SHEATHED ON SIDE INDICATED BY ARROW (UNO) WITH SHEATHING PER SHEAR WALL SCHEDULE. SEE S6.01

LEVEL 3 KEYNOTE SCHEDULE

DESCRIPTION

HANGER SCHEDULE

1. ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE FASTENERS SPECIFIED BY MNFR. ANY SUBSTITUTIONS SHALL BE REVIEWED AND APPROVED BY ANTHEM

2. INSTALL HANGERS NOTED OR APPROVED EQUIVALENT

 X
 DESCRIPTION

 $\langle X \rangle$

303-848-8497	970-300-3338
anthemstructural.com	Job #22-048
M.E.P. & F.P. ENGINEER	S
INTERIOR DESIGNER:	
PROJECT LOCATION	
BASECAMP T	OWNHOME
1950 CURVE STEAMBOAT SPRII DRAWING TITLE	
LEVEL 3 F PLA	

A anthem structural engineers

SUBMISSIONS & REVISIONS

KEVIN & ASAKO SPERRY ARCHITECTURE

3318 N. Columbus Street

GENERAL CONTRACTOR

T.312.636.3248 / 312.636.4252

Arlington, VA 22207

www.kasa-arch.com

CIVIL ENGINEER

LANDSCAPE ARCHITECT

OWNER

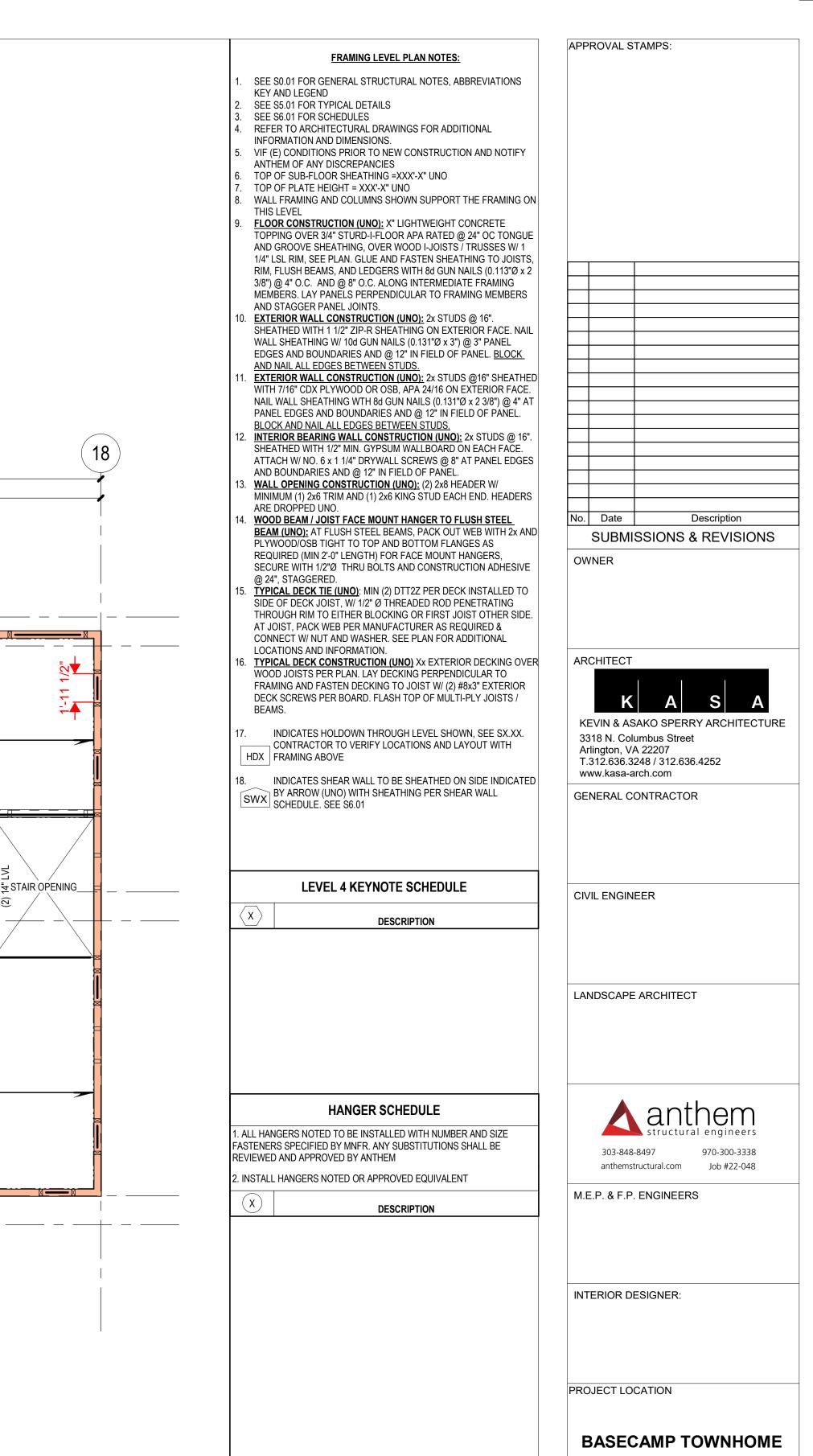
ARCHITECT

SEAL

DATE: 06/17/22 DRAWN BY:

CHECKED BY:

PROJECT NO: 22-048


DRAWING NO: **S1.04**

COPYRIGHT 2019

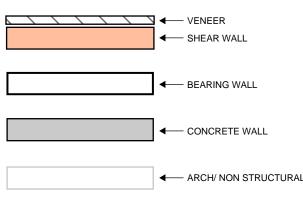
LEVEL 4 FRAMING PLAN 3/16" = 1'-0"

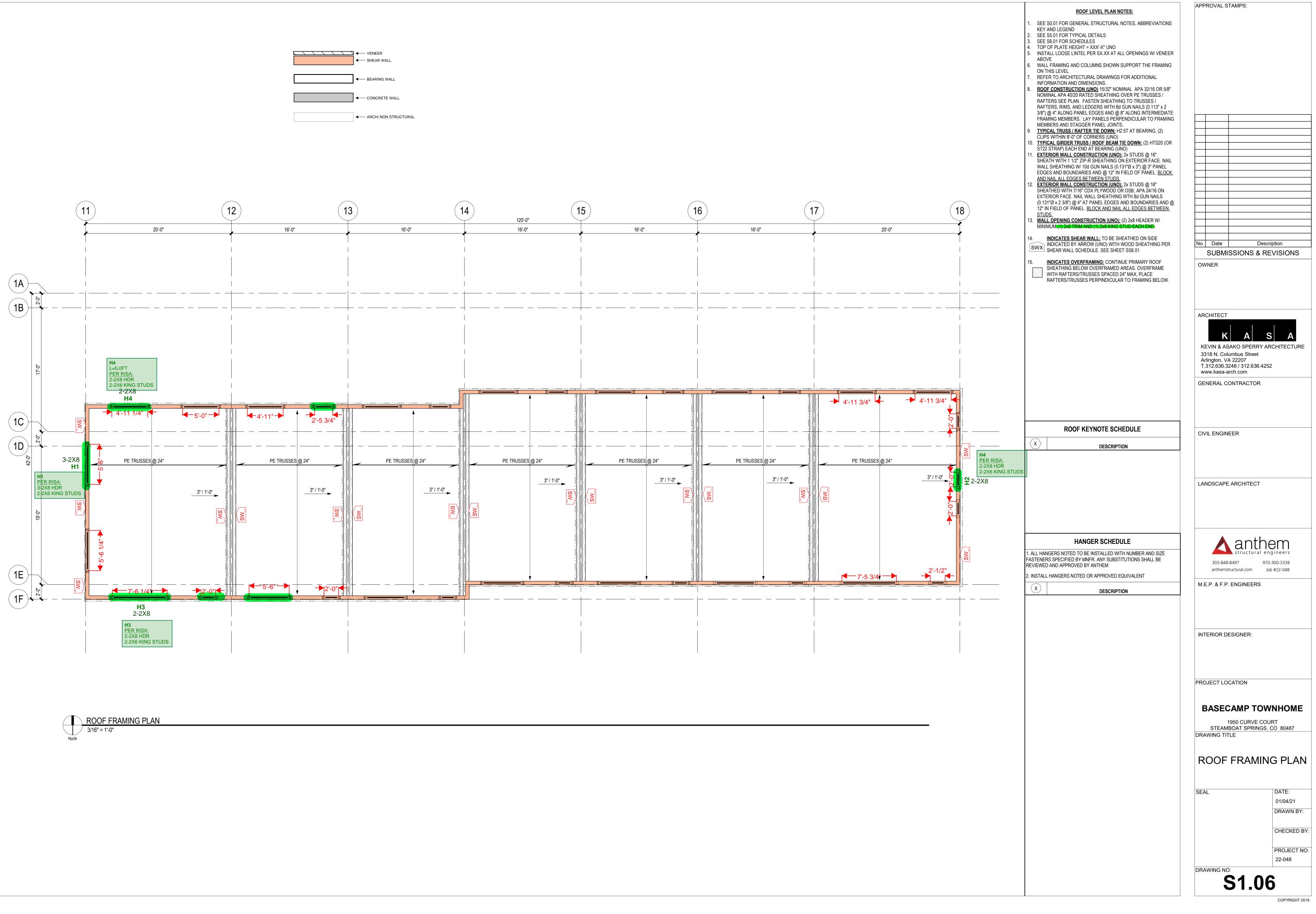
3/2022 2-05-29 P

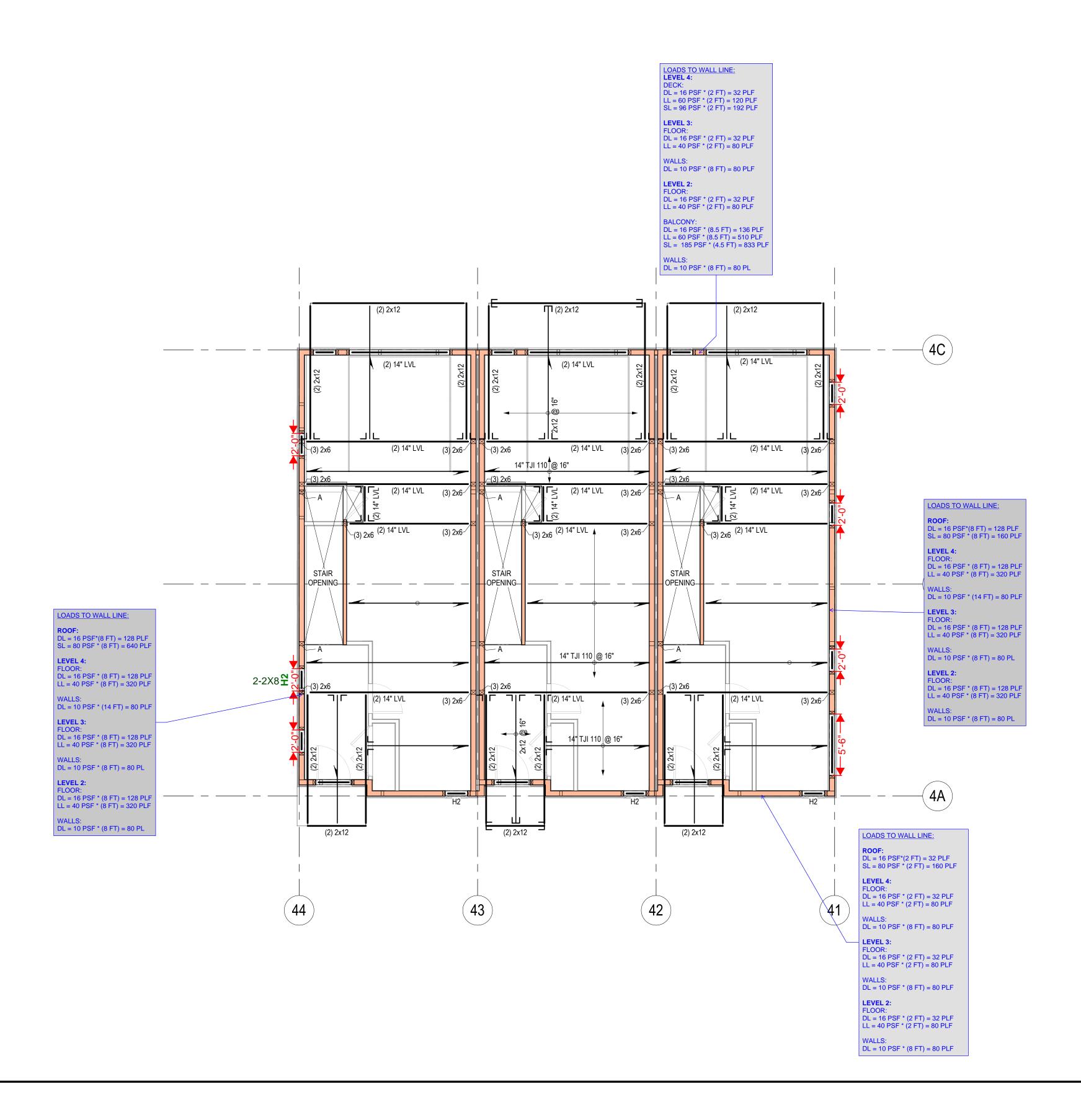
STEAMBOAT SPRINGS, CO 80487
AWING TITLE
LEVEL 4 FRAMING

1950 CURVE COURT

PLAN


SEAL


DATE: 06/17/22 DRAWN BY:


CHECKED BY:

PROJECT NO: 22-048

DRAWING NO: **\$1.05**

FRAMING LEVEL PLAN NOTES:

SEE S0.01 FOR	GENERAL S	TRUCTURAL	NOTES,	ABBREVIATIONS

KEY AND LEGEND

- 2. SEE S5.01 FOR TYPICAL DETAILS 3. SEE S6.01 FOR SCHEDULES
- REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL
- INFORMATION AND DIMENSIONS.
- 5. VIF (E) CONDITIONS PRIOR TO NEW CONSTRUCTION AND NOTIFY ANTHEM OF ANY DISCREPANCIES
- 6. TOP OF SUB-FLOOR SHEATHING =XXX'-X" UNO
- TOP OF PLATE HEIGHT = XXX'-X" UNO
 WALL FRAMING AND COLUMNS SHOWN SUPPORT THE FRAMING ON
- THIS LEVEL
- 9. FLOOR CONSTRUCTION (UNO): X" LIGHTWEIGHT CONCRETE TOPPING OVER 3/4" STURD-I-FLOOR APA RATED @ 24" OC TONGUE AND GROOVE SHEATHING, OVER WOOD I-JOISTS / TRUSSES W/ 1 1/4" LSL RIM, SEE PLAN. GLUE AND FASTEN SHEATHING TO JOISTS, RIM, FLUSH BEAMS, AND LEDGERS WITH 8d GUN NAILS (0.113"Ø x 2 3/8") @ 4" O.C. AND @ 8" O.C. ALONG INTERMEDIATE FRAMING MEMBERS. LAY PANELS PERPENDICULAR TO FRAMING MEMBERS AND STAGGER PANEL JOINTS.
- 10. EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1 1/2" ZIP-R SHEATHING ON EXTERIOR FACE. NAIL WALL SHEATHING W/ 10d GUN NAILS (0.131"Ø x 3") @ 3" PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. <u>BLOCK</u> <u>AND NAIL ALL EDGES BETWEEN STUDS.</u>
- 11. EXTERIOR WALL CONSTRUCTION (UNO): WITH 7/16" CDX PLYWOOD OR OSB, APA 24/16 ON EXTERIOR FACE. NAIL WALL SHEATHING WTH 8d GUN NAILS (0.131"Ø x 2 3/8") @ 4" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. BLOCK AND NAIL ALL EDGES BETWEEN STUDS.
- 12. INTERIOR BEARING WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1/2" MIN. GYPSUM WALLBOARD ON EACH FACE. ATTACH W/ NO. 6 x 1 1/4" DRYWALL SCREWS @ 8" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL.
- 13. <u>WALL OPENING CONSTRUCTION (UNO):</u> (2) 2x8 HEADER W/ MINIMUM (1) 2x6 TRIM AND (1) 2x6 KING STUD EACH END. HEADERS ARE DROPPED UNO.
- 14. WOOD BEAM / JOIST FACE MOUNT HANGER TO FLUSH STEEL BEAM (UNO): AT FLUSH STEEL BEAMS, PACK OUT WEB WITH 2x AND PLYWOOD/OSB TIGHT TO TOP AND BOTTOM FLANGES AS REQUIRED (MIN 2'-0" LENGTH) FOR FACE MOUNT HANGERS, SECURE WITH 1/2"Ø THRU BOLTS AND CONSTRUCTION ADHESIVE @ 24", STAGGERED.
- TYPICAL DECK TIE (UNO): MIN (2) DTT2Z PER DECK INSTALLED TO SIDE OF DECK JOIST, W/ 1/2" Ø THREADED ROD PENETRATING THROUGH RIM TO EITHER BLOCKING OR FIRST JOIST OTHER SIDE. AT JOIST, PACK WEB PER MANUFACTURER AS REQUIRED & CONNECT W/ NUT AND WASHER. SEE PLAN FOR ADDITIONAL LOCATIONS AND INFORMATION.
- 16. <u>TYPICAL DECK CONSTRUCTION (UNO)</u> Xx EXTERIOR DECKING OVER WOOD JOISTS PER PLAN. LAY DECKING PERPENDICULAR TO FRAMING AND FASTEN DECKING TO JOIST W/ (2) #8x3" EXTERIOR DECK SCREWS PER BOARD. FLASH TOP OF MULTI-PLY JOISTS / BEAMS.
- 7. INDICATES HOLDOWN THROUGH LEVEL SHOWN, SEE SX.XX. CONTRACTOR TO VERIFY LOCATIONS AND LAYOUT WITH HDX FRAMING ABOVE

18. INDICATES SHEAR WALL TO BE SHEATHED ON SIDE INDICATED BY ARROW (UNO) WITH SHEATHING PER SHEAR WALL SCHEDULE. SEE S6.01

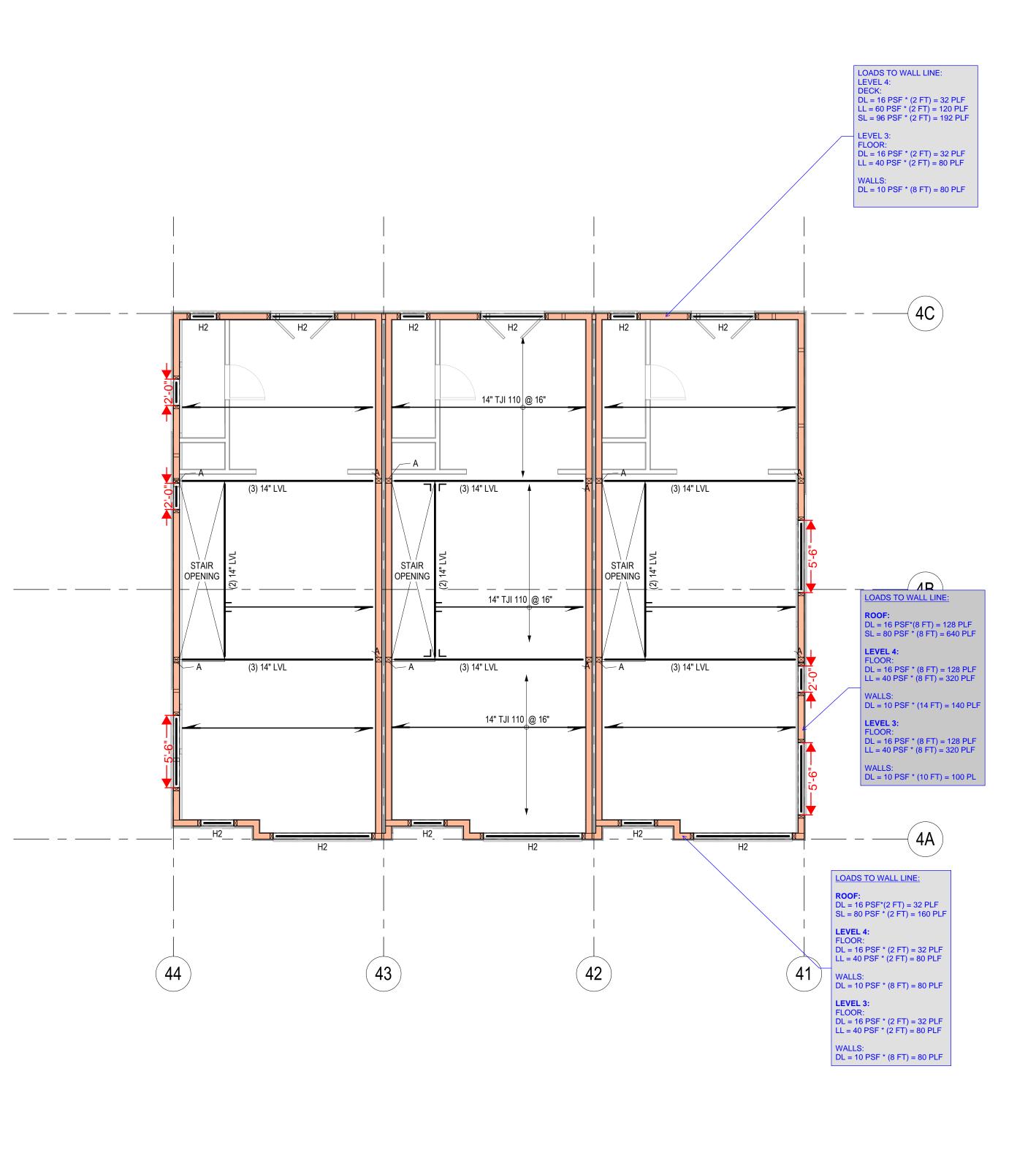
LEVEL 1 KEYNOTE SCHEDULE

DESCRIPTION

HANGER SCHEDULE

1. ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE FASTENERS SPECIFIED BY MNFR. ANY SUBSTITUTIONS SHALL BE REVIEWED AND APPROVED BY ANTHEM

2. INSTALL HANGERS NOTED OR APPROVED EQUIVALENT


	DESCRIPTION	Face Fasteners	Joist Fasteners
1	LUS28	(6) 10d x 3" NAILS	(4) 10d x 3" NAILS
2	LUS28-2	(6) 10d x 3" NAILS	(4) 10d x 3" NAILS
3	HHUS410	(30) 10d x 3" NAILS	(10) 10d x 3" NAILS
4	ISU2.37/14	(12) 10d x 3" NAILS	-
5	IUS1.81/14	(12) 10d x 3" NAILS	-
6	U210-2	(14) 16d x 3 1/2" NAILS	(6) 10d x 3" NAILS
7	HUC212-2	(14) 10d x 3" NAILS	(6) 10d x 3" NAILS
8	LUC210Z	(10) 10d x 3" NAILS	(4) 10d x 3" NAILS

APP	ROVAL S	TAMPS:	
No.	Date SUBMI	SSIONS	Description & REVISIONS
OW	/NER		
AR	CHITECT		
K	K EVIN & AS		S A
Ar	lington, V	umbus Stre A 22207 248 / 312.6	
	ww.kasa-a	arch.com	OR
CIV	IL ENGIN	EER	
		ARCHITE	ст
L/ (i			
		an	them
	303-848	-8497	970-300-3338
M.E		tructural.com	Job #22-048
INT	ERIOR DI	ESIGNER:	
PRC	JECT LO	CATION	
-			
E		1950 CURV	
DRA	STEAM		INGS, CO 80487
			EVEL 2 G PLAN
SEA	L		DATE:
			07/11/22 DRAWN E
			CHECKE
			PROJECT

DRAWING NO:

S1.21

COPYRIGHT 2019

TH4 LEVEL 3 FRAMING PLAN 3/16" = 1'-0"

FRAMING LEVEL PLAN NOTES:

- SEE S0.01 FOR GENERAL STRUCTURAL NOTES, ABBREVIATIONS
- KEY AND LEGEND
- SEE S5.01 FOR TYPICAL DETAILS
 SEE S6.01 FOR SCHEDULES
- . REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL INFORMATION AND DIMENSIONS.
- VIF (E) CONDITIONS PRIOR TO NEW CONSTRUCTION AND NOTIFY
- ANTHEM OF ANY DISCREPANCIES
- 6. TOP OF SUB-FLOOR SHEATHING =XXX'-X" UNO
- TOP OF PLATE HEIGHT = XXX'-X" UNO
 WALL FRAMING AND COLUMNS SHOWN SUPPORT THE FRAMING ON
- WALL FRAMING AND COLOMING STROWN SOFFORT THE FRAMING ON THIS LEVEL
 <u>FLOOR CONSTRUCTION (UNO):</u> X" LIGHTWEIGHT CONCRETE TOPPING OVER 3/4" STURD-I-FLOOR APA RATED @ 24" OC TONGUE AND GROOVE SHEATHING, OVER WOOD I-JOISTS / TRUSSES W/ 1 1/4" LSL RIM, SEE PLAN. GLUE AND FASTEN SHEATHING TO JOISTS, RIM, FLUSH BEAMS, AND LEDGERS WITH 8d GUN NAILS (0.113"Ø x 2 3/8") @ 4" O.C. AND @ 8" O.C. ALONG INTERMEDIATE FRAMING MEMBERS. LAY PANELS PERPENDICULAR TO FRAMING MEMBERS AND STAGGER PANEL JOINTS.
- EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1 1/2" ZIP-R SHEATHING ON EXTERIOR FACE. NAIL WALL SHEATHING W/ 10d GUN NAILS (0.131"Ø x 3") @ 3" PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. <u>BLOCK AND NAIL ALL EDGES BETWEEN STUDS.</u>
 EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @16" SHEATHED
- EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @16" SHEATHED WITH 7/16" CDX PLYWOOD OR OSB, APA 24/16 ON EXTERIOR FACE. NAIL WALL SHEATHING WTH 8d GUN NAILS (0.131"Ø x 2 3/8") @ 4" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. BLOCK AND NAIL ALL EDGES BETWEEN STUDS.
- 12. INTERIOR BEARING WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1/2" MIN. GYPSUM WALLBOARD ON EACH FACE. ATTACH W/ NO. 6 x 1 1/4" DRYWALL SCREWS @ 8" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL.
- 13. WALL OPENING CONSTRUCTION (UNO): (2) 2x8 HEADER W/ MINIMUM (1) 2x6 TRIM AND (1) 2x6 KING STUD EACH END. HEADERS ARE DROPPED UNO.
- 14. WOOD BEAM / JOIST FACE MOUNT HANGER TO FLUSH STEEL BEAM (UNO): AT FLUSH STEEL BEAMS, PACK OUT WEB WITH 2x AND PLYWOOD/OSB TIGHT TO TOP AND BOTTOM FLANGES AS REQUIRED (MIN 2'-0" LENGTH) FOR FACE MOUNT HANGERS, SECURE WITH 1/2"Ø THRU BOLTS AND CONSTRUCTION ADHESIVE @ 24", STAGGERED.
- 15. <u>TYPICAL DECK TIE (UNO)</u>: MIN (2) DTT2Z PER DECK INSTALLED TO SIDE OF DECK JOIST, W/ 1/2" Ø THREADED ROD PENETRATING THROUGH RIM TO EITHER BLOCKING OR FIRST JOIST OTHER SIDE. AT JOIST, PACK WEB PER MANUFACTURER AS REQUIRED & CONNECT W/ NUT AND WASHER. SEE PLAN FOR ADDITIONAL LOCATIONS AND INFORMATION.
- 16. <u>TYPICAL DECK CONSTRUCTION (UNO)</u> Xx EXTERIOR DECKING OVER WOOD JOISTS PER PLAN. LAY DECKING PERPENDICULAR TO FRAMING AND FASTEN DECKING TO JOIST W/ (2) #8x3" EXTERIOR DECK SCREWS PER BOARD. FLASH TOP OF MULTI-PLY JOISTS / BEAMS.
- 7. INDICATES HOLDOWN THROUGH LEVEL SHOWN, SEE SX.XX. CONTRACTOR TO VERIFY LOCATIONS AND LAYOUT WITH FRAMING ABOVE

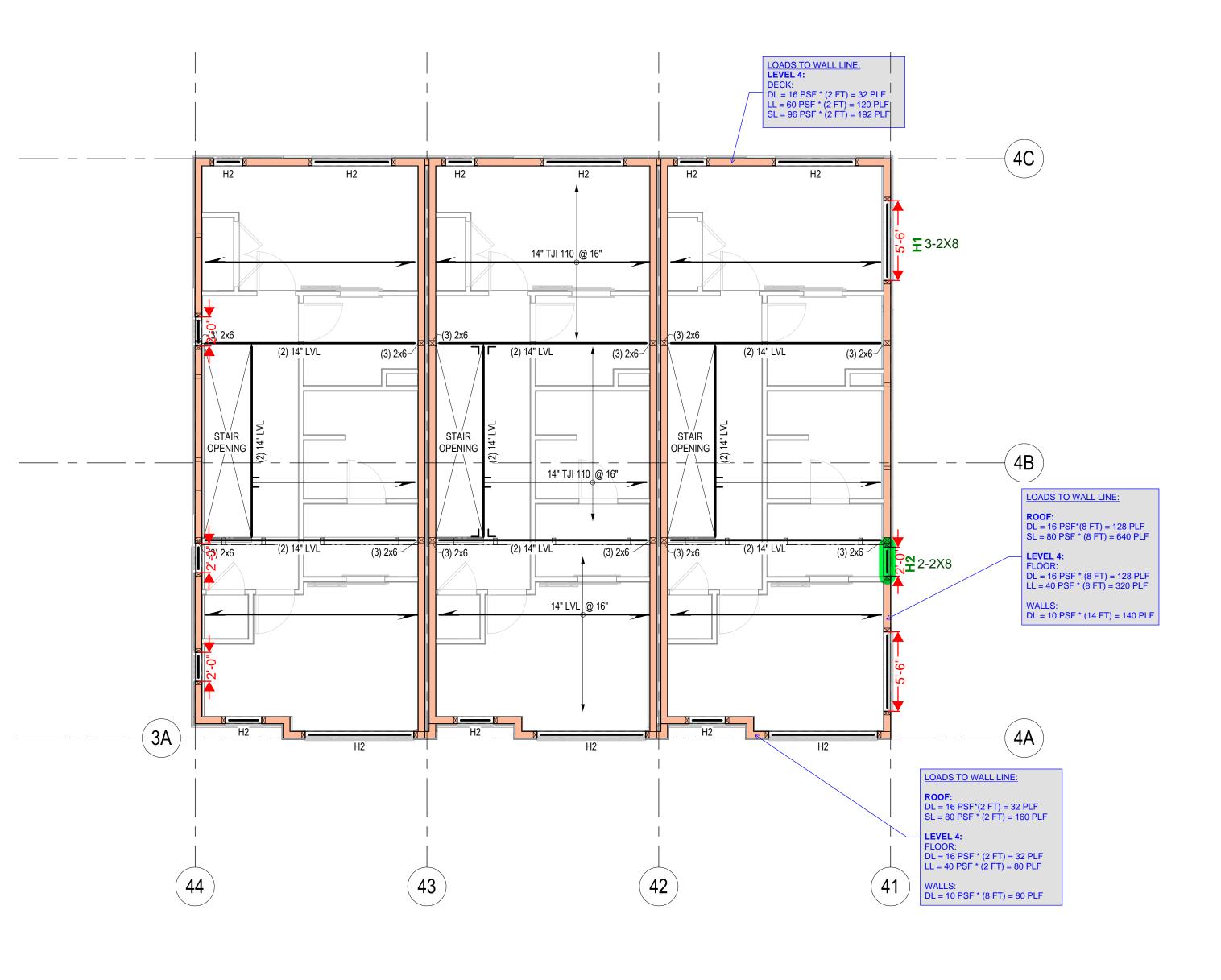
18. INDICATES SHEAR WALL TO BE SHEATHED ON SIDE INDICATED BY ARROW (UNO) WITH SHEATHING PER SHEAR WALL SCHEDULE. SEE S6.01

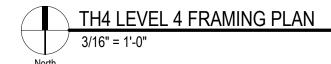
LEVEL 1 KEYNOTE SCHEDULE

DESCRIPTION

HANGER SCHEDULE

1. ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE FASTENERS SPECIFIED BY MNFR. ANY SUBSTITUTIONS SHALL BE REVIEWED AND APPROVED BY ANTHEM


2. INSTALL HANGERS NOTED OR APPROVED EQUIVALENT


	DESCRIPTION	Face Fasteners	Joist Fasteners
1	LUS28	(6) 10d x 3" NAILS	(4) 10d x 3" NAILS
2	LUS28-2	(6) 10d x 3" NAILS	(4) 10d x 3" NAILS
3	HHUS410	(30) 10d x 3" NAILS	(10) 10d x 3" NAILS
4	ISU2.37/14	(12) 10d x 3" NAILS	-
5	IUS1.81/14	(12) 10d x 3" NAILS	-
6	U210-2	(14) 16d x 3 1/2" NAILS	(6) 10d x 3" NAILS
7	HUC212-2	(14) 10d x 3" NAILS	(6) 10d x 3" NAILS
8	LUC210Z	(10) 10d x 3" NAILS	(4) 10d x 3" NAILS

APPROVAL STAMP	S:
No. Date SUBMISSIC	Description ONS & REVISIONS
OWNER	
ARCHITECT	
KEVIN & ASAKO	A S A
3318 N. Columbus Arlington, VA 2220 T.312.636.3248 / 3 www.kasa-arch.co)7 312.636.4252
GENERAL CONTR	
CIVIL ENGINEER	
LANDSCAPE ARCI	HITECT
A a	nthem
303-848-8497	uctural engineers 970-300-3338 al.com Job #22-048
M.E.P. & F.P. ENG	
INTERIOR DESIGN	IER:
PROJECT LOCATIC)N
1950 C	IP TOWNHOME
	SPRINGS, CO 80487
	LEVEL 3 ING PLAN
SEAL	DATE:
	07/11/22 DRAWN BY:
	CHECKED E
	PROJECT N
	22-048

DRAWING NO:

S1.22

FRAMING LEVEL PLAN NOTES:

SEE S0.01 FOR	GENERAL STRU	CTURAL NOTES,	ABBREVIATIONS

KEY AND LEGEND

- SEE S5.01 FOR TYPICAL DETAILS
 SEE S6.01 FOR SCHEDULES
- REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL
- INFORMATION AND DIMENSIONS.
- 5. VIF (E) CONDITIONS PRIOR TO NEW CONSTRUCTION AND NOTIFY ANTHEM OF ANY DISCREPANCIES
- 6. TOP OF SUB-FLOOR SHEATHING =XXX'-X" UNO
- TOP OF PLATE HEIGHT = XXX'-X" UNO
 WALL FRAMING AND COLUMNS SHOWN SUPPORT THE FRAMING ON
- THIS LEVEL
- FLOOR CONSTRUCTION (UNO): X" LIGHTWEIGHT CONCRETE TOPPING OVER 3/4" STURD-I-FLOOR APA RATED @ 24" OC TONGUE AND GROOVE SHEATHING, OVER WOOD I-JOISTS / TRUSSES W/ 1 1/4" LSL RIM, SEE PLAN. GLUE AND FASTEN SHEATHING TO JOISTS, RIM, FLUSH BEAMS, AND LEDGERS WITH 8d GUN NAILS (0.113"Ø x 2 3/8") @ 4" O.C. AND @ 8" O.C. ALONG INTERMEDIATE FRAMING MEMBERS. LAY PANELS PERPENDICULAR TO FRAMING MEMBERS AND STAGGER PANEL JOINTS.
- EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1 1/2" ZIP-R SHEATHING ON EXTERIOR FACE. NAIL WALL SHEATHING W/ 10d GUN NAILS (0.131"Ø x 3") @ 3" PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. <u>BLOCK</u> <u>AND NAIL ALL EDGES BETWEEN STUDS.</u>
 EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @16" SHEATHED
- EXTERIOR WALL CONSTRUCTION (UNO): 2x STUDS @16" SHEATHED WITH 7/16" CDX PLYWOOD OR OSB, APA 24/16 ON EXTERIOR FACE. NAIL WALL SHEATHING WTH 8d GUN NAILS (0.131"Ø x 2 3/8") @ 4" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL. BLOCK AND NAIL ALL EDGES BETWEEN STUDS.
- 12. INTERIOR BEARING WALL CONSTRUCTION (UNO): 2x STUDS @ 16". SHEATHED WITH 1/2" MIN. GYPSUM WALLBOARD ON EACH FACE. ATTACH W/ NO. 6 x 1 1/4" DRYWALL SCREWS @ 8" AT PANEL EDGES AND BOUNDARIES AND @ 12" IN FIELD OF PANEL.
- <u>WALL OPENING CONSTRUCTION (UNO)</u>: (2) 2x8 HEADER W/ MINIMUM (1) 2x6 TRIM AND (1) 2x6 KING STUD EACH END. HEADERS ARE DROPPED UNO.
- 14. WOOD BEAM / JOIST FACE MOUNT HANGER TO FLUSH STEEL BEAM (UNO): AT FLUSH STEEL BEAMS, PACK OUT WEB WITH 2x AND PLYWOOD/OSB TIGHT TO TOP AND BOTTOM FLANGES AS REQUIRED (MIN 2'-0" LENGTH) FOR FACE MOUNT HANGERS, SECURE WITH 1/2"Ø THRU BOLTS AND CONSTRUCTION ADHESIVE @ 24", STAGGERED.
- 15. <u>TYPICAL DECK TIE (UNO)</u>: MIN (2) DTT2Z PER DECK INSTALLED TO SIDE OF DECK JOIST, W/ 1/2" Ø THREADED ROD PENETRATING THROUGH RIM TO EITHER BLOCKING OR FIRST JOIST OTHER SIDE. AT JOIST, PACK WEB PER MANUFACTURER AS REQUIRED & CONNECT W/ NUT AND WASHER. SEE PLAN FOR ADDITIONAL LOCATIONS AND INFORMATION.
- <u>TYPICAL DECK CONSTRUCTION (UNO)</u> Xx EXTERIOR DECKING OVER WOOD JOISTS PER PLAN. LAY DECKING PERPENDICULAR TO FRAMING AND FASTEN DECKING TO JOIST W/ (2) #8x3" EXTERIOR DECK SCREWS PER BOARD. FLASH TOP OF MULTI-PLY JOISTS / BEAMS.
- 7. INDICATES HOLDOWN THROUGH LEVEL SHOWN, SEE SX.XX. CONTRACTOR TO VERIFY LOCATIONS AND LAYOUT WITH HDX FRAMING ABOVE

18. INDICATES SHEAR WALL TO BE SHEATHED ON SIDE INDICATED BY ARROW (UNO) WITH SHEATHING PER SHEAR WALL SCHEDULE. SEE S6.01

LEVEL 1 KEYNOTE SCHEDULE

DESCRIPTION

HANGER SCHEDULE

1. ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE FASTENERS SPECIFIED BY MNFR. ANY SUBSTITUTIONS SHALL BE REVIEWED AND APPROVED BY ANTHEM

2. INSTALL HANGERS NOTED OR APPROVED EQUIVALENT

	DESCRIPTION	Face Fasteners	Joist Fasteners
1	LUS28	(6) 10d x 3" NAILS	(4) 10d x 3" NAILS
2	LUS28-2	(6) 10d x 3" NAILS	(4) 10d x 3" NAILS
3	HHUS410	(30) 10d x 3" NAILS	(10) 10d x 3" NAILS
4	ISU2.37/14	(12) 10d x 3" NAILS	-
5	IUS1.81/14	(12) 10d x 3" NAILS	-
6	U210-2	(14) 16d x 3 1/2" NAILS	(6) 10d x 3" NAILS
7	HUC212-2	(14) 10d x 3" NAILS	(6) 10d x 3" NAILS
8	LUC210Z	(10) 10d x 3" NAILS	(4) 10d x 3" NAILS

AIJI 11 17 11 7 A.	
APPROVAL S	STAMPS:
No. Date	Description
	ISSIONS & REVISIONS
OWNER	
ARCHITECT	1
K	
KEVIN & A	
KEVIN & A	SAKO SPERRY ARCHITECTURE
KEVIN & A 3318 N. Co Arlington, V	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207
KEVIN & A 3318 N. Co Arlington, V	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207 3248 / 312.636.4252
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207 3248 / 312.636.4252
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com
KEVIN & A 3318 N. Cc Arlington, V T.312.636.3 www.kasa- GENERAL C	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Cc Arlington, \ T.312.636. www.kasa-	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Cc Arlington, V T.312.636.3 www.kasa- GENERAL C	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Cc Arlington, V T.312.636.3 www.kasa- GENERAL C	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Cc Arlington, V T.312.636.3 www.kasa- GENERAL C	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Cc Arlington, V T.312.636.3 www.kasa- GENERAL C	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE olumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Cc Arlington, V T.312.636. www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636. www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER
KEVIN & A 3318 N. Co Arlington, V T.312.636. www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER NEER E ARCHITECT Structural engineers 8-8497 970-300-3338 Istructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE blumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER NEER E ARCHITECT Structural engineers 8-8497 970-300-3338 Istructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER NEER E ARCHITECT Structural engineers 8-8497 970-300-3338 Istructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER NEER E ARCHITECT Structural engineers 8-8497 970-300-3338 Istructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER NEER E ARCHITECT Structural engineers 8-8497 970-300-3338 Istructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER E ARCHITECT E ARCHITECT Structural engineers 8-8497 970-300-3338 astructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER E ARCHITECT E ARCHITECT Structural engineers 8-8497 970-300-3338 astructural.com Job #22-048
KEVIN & A 3318 N. Co Arlington, V T.312.636.3 www.kasa- GENERAL O CIVIL ENGIN	SAKO SPERRY ARCHITECTURE Jumbus Street /A 22207 3248 / 312.636.4252 arch.com CONTRACTOR NEER E ARCHITECT E ARCHITECT Structural engineers 8-8497 970-300-3338 astructural.com Job #22-048

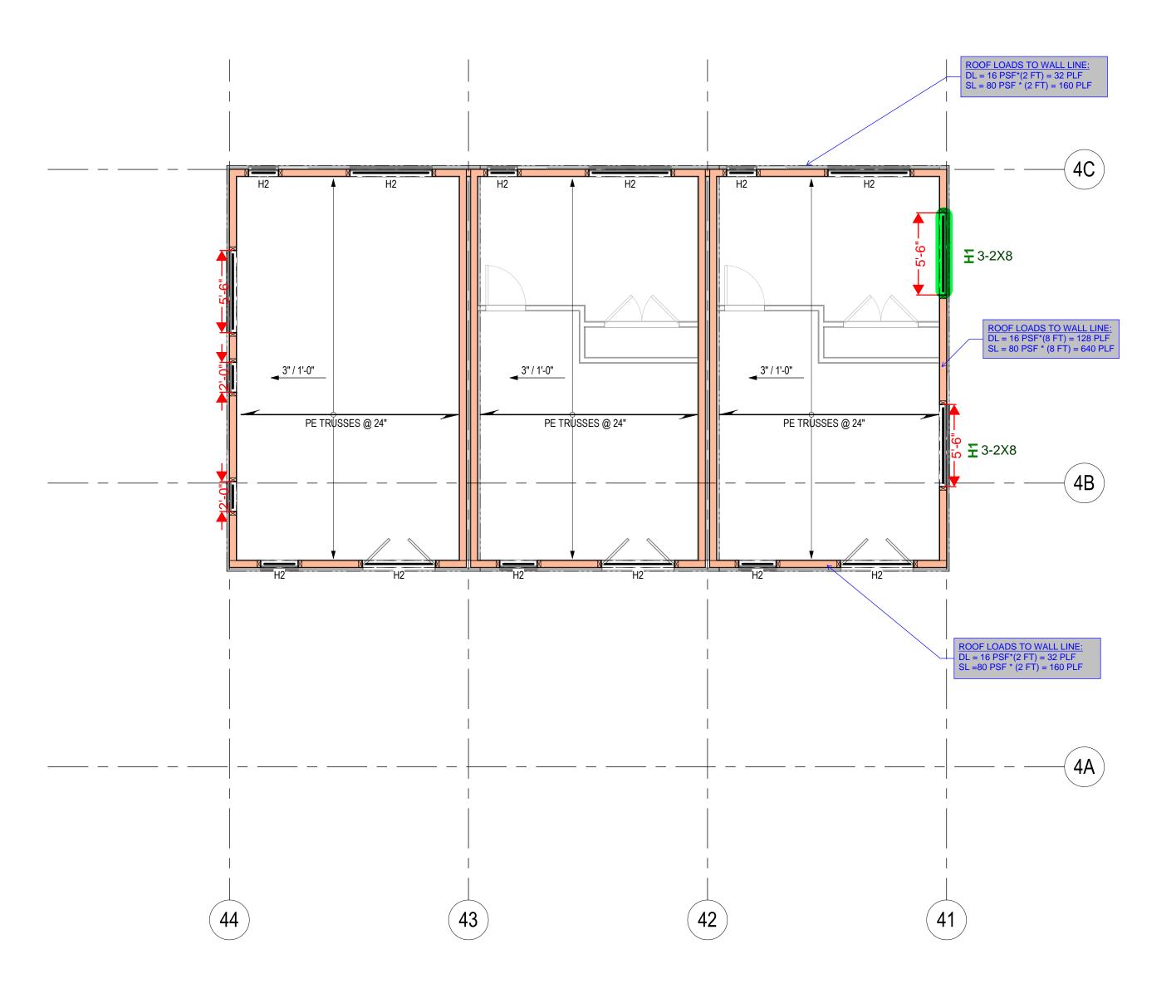
PROJECT LOCATION

BASECAMP TOWNHOME

1950 CURVE COURT STEAMBOAT SPRINGS, CO 80487 DRAWING TITLE

TH4 LEVEL 4 FRAMING PLAN

SEAL

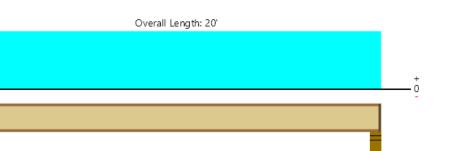

DATE: 07/11/22 DRAWN BY:

CHECKED BY:

PROJECT NO: 22-048

DRAWING NO: **S1.23**

COPYRIGHT 2019


TH4 ROOF FRAMING PLAN 3/16" = 1'-0" North

	ROOF LEVEL PLAN NOTES:	APPROVAL STAMPS:
2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 12 12 12 12	ROOF LEVEL PLAN NOTES: SEE S0.01 FOR GENERAL STRUCTURAL NOTES, ABBREVIATIONS KEY AND LEGEND SEE S0.1 FOR SCHEDULES SEE S0.1 FOR SCHEDULES SEE S0.1 FOR SCHEDULES TOP OF PLATE HEIGHT = XXX:X T ALL OPENINGS W/ VENEER ABOVE WALL FRAMING AND COLUMNS SHOWN SUPPORT THE FRAMING ON THIS LEVEL REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL INFORMATION AND DIMENSIONS. ROOF CONSTRUCTION (UNO) 15/32" NOMINAL APA 32/16 OR 5/8" NOMINAL APA 40/20 RATED SHEATHING OVER PE TRUSSES / RAFTERS, RIMS, AND LEDGERS WITH 8d GUN NALLS (0.113" x 2 39") @ 4" ALONG PANEL DOES AND @ 7LONG INTEMEDIATE FRAMING MEMBERS, LAY PANELS PERFENDICULAR TO FRAMING MEMBERS AND STAGGER PANEL JOINTS. TYPICAL TRUSS / RAFTER TIE DOWN: (2) HTS20 (OR ST22 STRAP) EACH END AT BEARING (UNO): SHEATHING ONE STERIOR FACE: NAIL WALL SHEATHING WI 100 GUN NAILS (0.113" 9x 3") @ 3" PANEL EDEGS AND @ 12" IN FIELD OF PANEL BLOCK AND NAIL ALL EDGES BETWEEN STUDS. EXTERIOR WALL CONSTRUCTION (UNO): 2X STUDS @ 16" SHEATHWITH 11/2" ZIP-R SHEATHING ON CSTERIOR FACE: NAIL WALL SHEATHING WI 100 GUN NAILS (0.131" 9x 3") @ 3" PANEL EDEGS AND BOUNDARIES AND @ 12" IN FIELD OF PANEL BLOCK AND NAIL ALL EDGES BETWEEN STUDS. SHEATHING WILL CONSTRUCTION (UNO): 2X STUDS @ 16" SHEATHWINH 11/2" CDX PLYWOOD OR OS R.APA 24/16 ON EXTERIOR FACE: NAIL WALL SHEATHING WTH B6 GUN NAILS (0.131" 9x 2 3/8") @ 4" AT PANEL EDGES AND B0UNDARIES AND @ 10" INFLOAD FACE NAIL WALL CONSTRUCTION (UNO): 2X STUDS @ 16" SHEATHWE A	APPROVAL STAMPS:
FA RE	HANGER SCHEDULE ALL HANGERS NOTED TO BE INSTALLED WITH NUMBER AND SIZE STEENERS SPECIFIED BY MNIR. ANY SUBSTITUTIONS SHALL BE SUEWED AND APPROVED BY ANTHEM INSTALL HANGERS NOTED OR APPROVED EQUIVALENT DESCRIPTION Tace Fasteners 1 LUS28 (6) 10d x 3" NAILS 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 2 2 2 2 3 1 1 1 2 2 2 141	LANDSCAPE ARCHITECT LANDSCAPE ARCHITECT Image: Construction of the constr

20'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	732 @ 2 1/4"	1141 (2.00")	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	719 @ 3 1/4"	1955	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3526 @ 9' 10 7/8"	7335	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.277 @ 9' 10 7/8"	0.486	Passed (L/843)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.387 @ 9' 10 7/8"	0.972	Passed (L/602)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	46	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.75"	211	528	740	1 1/4" Rim Board
2 - Stud wall - HF	5.50"	4.25"	1.75"	215	538	754	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 6" o/c					
Bottom Edge (Lu)	19' 10" o/c					
TTI jejete are only analyzed using Mavimum Allewable bracing celutions						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 20'	16"	16.0	40.0	Default Load

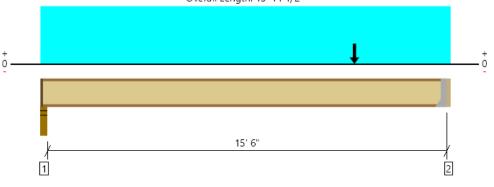
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job No Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

Job Notes


9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 2 / 40

4 bed unit typ joist, Floor Joist #2 - 15'-6" span 1 piece(s) 14" TJI ® 360 @ 16" OC

PASSED

Overall Length: 15' 11 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	726 @ 15' 9 1/2"	1080 (1.75")	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	726 @ 15' 9 1/2"	1955	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2609 @ 8' 6 13/16"	7335	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.139 @ 8' 1 1/4"	0.390	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.200 @ 8' 1 1/2"	0.779	Passed (L/936)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	53	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.75"	189	451	640	1 1/4" Rim Board
2 - Hanger on 14" HF beam	2.00"	Hanger ¹	1.75" / - 2	232	507	738	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
6' 5" o/c	
15' 8" o/c	
	6' 5" o/c

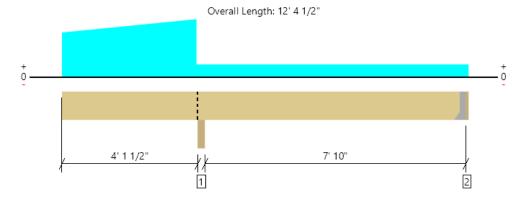
•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	īe					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS2.37/14	2.00"	N/A	12-10dx1.5	2-Strong-Grip	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 15' 11 1/2"	16"	16.0	40.0	Default Load
2 - Point (PLF)	12' 3"	16"	60.0	80.0	HALF WALL ABOVE


ForteWEB Software Operator Job Notes Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

4 bed unit typ joist, Floor Joist #3 - 12'-6" span 1 piece(s) 2 x 12 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1287 @ 4' 3 1/4"	2126 (3.50")	Passed (61%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	614 @ 3' 2 1/4"	1941	Passed (32%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-1738 @ 4' 3 1/4"	2964	Passed (59%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.183 @ 0	0.285	Passed (2L/562)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.191 @ 0	0.427	Passed (2L/536)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (Ibs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Beam - HF	3.50"	3.50"	2.12"	201	642	807	1287	Blocking
2 - Hanger on 11 1/4" HF beam	1.50"	Hanger ¹	1.50"	63	219/-85	-167	283/-125	See note 1
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

• blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being t

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

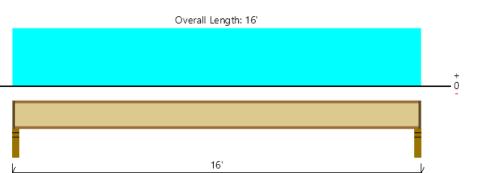
• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	12' 3" o/c					
Bottom Edge (Lu)	6' 6" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger LUS28 1.75" N/A 6-10dx1.5 3-10d

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.


			Dead	Floor Live	Snow	Wind	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	(1.60)	Comments
1 - Uniform (PSF)	0 to 12' 4 1/2"	16"	16.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 4' 1 1/2"	16"	-	20.0	-	21.9	Balcony Load
3 - Uniform (PSF)	0 to 4' 1 1/2"	16"	-	-	-	-21.9	Wind Uplift
4 - Tapered (PLF)	0 to 4' 1 1/2"	N/A	-	-	125.0 to 185.6	-	Balcony Snow Load

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	590 @ 2 1/4"	976 (2.00")	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	577 @ 3 1/4"	1860	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2279 @ 8'	3740	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.171 @ 8'	0.391	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.240 @ 8'	0.781	Passed (L/781)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	51	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.75"	171	427	597	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.75"	171	427	597	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 1" o/c				
Bottom Edge (Lu)	15' 10" o/c				
TTI jaista ava antu anaturad using Mavimum Allaurahla hypeing calutions					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

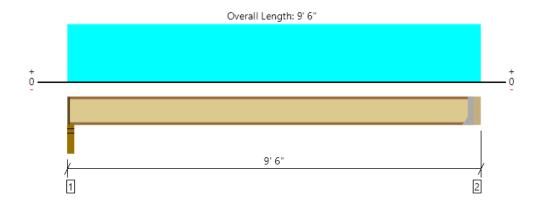
			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16'	16"	16.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job N Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com


Job Notes

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 7 / 40

4 bed unit typ joist, Floor Joist #5 - 9.5' span 1 piece(s) 14" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	337 @ 9' 2 1/2"	910 (1.75")	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	337 @ 9' 2 1/2"	1860	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	760 @ 4' 8 3/8"	3740	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.025 @ 4' 8 3/8"	0.226	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.034 @ 4' 8 3/8"	0.451	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	65	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.75"	100	251	351	1 1/4" Rim Board
2 - Hanger on 14" HF beam	3.50"	Hanger ¹	1.75" / - 2	102	256	359	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
7' 3" o/c	
9' 1" o/c	
	7' 3" o/c

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	īe					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS1.81/14	2.00"	N/A	12-10dx1.5	2-Strong-Grip	

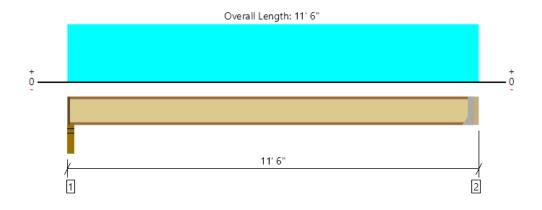
· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 6"	16"	16.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 8 / 40

4 bed unit typ joist, Floor Joist #6 - 11'-6" span 1 piece(s) 14" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	415 @ 11' 3 1/2"	910 (1.75")	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	415 @ 11' 3 1/2"	1860	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1151 @ 5' 8 7/8"	3740	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.050 @ 5' 8 7/8"	0.278	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.070 @ 5' 8 7/8"	0.555	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	61	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.75"	122	306	429	1 1/4" Rim Board
2 - Hanger on 14" HF beam	2.50"	Hanger ¹	1.75" / - 2	123	307	430	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
5' 10" o/c	
11' 2" o/c	
	5' 10" o/c

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	IUS1.81/14	2.00"	N/A	12-10dx1.5	2-Strong-Grip		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 6"	16"	16.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 9 / 40

4 bed unit typ joist, Floor Joist #7 - 20' span 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL @ 16" OC

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2404 @ 19' 9 3/4"	2835 (2.00")	Passed (85%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2047 @ 18' 6 3/4"	10707	Passed (19%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	10764 @ 10' 2 7/8"	29013	Passed (37%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.405 @ 10' 1 1/8"	0.648	Passed (L/576)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.464 @ 10' 1 5/8"	0.972	Passed (L/503)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro™ Rating	60	40	Passed		

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	4.25"	1.58"	247	808	1884	2266	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.70"	446	792	1849	2428	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 1" o/c	
Bottom Edge (Lu)	19' 10" o/c	

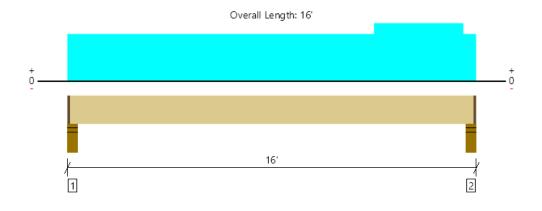
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 20'	16"	16.0	60.0	140.0	Deck Loads
2 - Uniform (PSF)	15' 6" to 19' 6"	16"	50.0	-	-	Housekeeping Slab

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Samantha Taylor	
Anthem Structural Engineers	
(303) 848-8497	
staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 10 / 40

4 bed unit typ joist, Floor Joist #8 - 16' span 1 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL @ 16" OC

tion (Pattern) System : FI Member Ty

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1952 @ 15' 8"	2658 (3.75")	Passed (73%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1552 @ 14' 5"	5353	Passed (29%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	6730 @ 8' 1 9/16"	14506	Passed (46%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.313 @ 8'	0.383	Passed (L/589)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.360 @ 8' 7/16"	0.767	Passed (L/512)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro [™] Rating	61	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.00"	3.75"	2.51"	200	640	1493	1800	1 1/4" Rim Board
2 - Stud wall - HF	5.00"	3.75"	2.75"	375	640	1493	1975	1 1/4" Rim Board

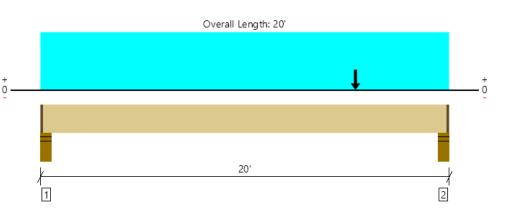
• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 2" o/c	
Bottom Edge (Lu)	15' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 16'	16"	16.0	60.0	140.0	Deck Load
2 - Uniform (PSF)	12' to 15' 6"	16"	50.0	-	-	Housekeeping Slab

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor	
Anthem Structural Engineers	
(303) 848-8497	
staylor@anthemstructural.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					-
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3610 @ 19' 8"	9037 (4.25")	Passed (40%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3464 @ 18' 4 1/2"	13965	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	14380 @ 15' 5"	36387	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.236 @ 10' 9 13/16"	0.483	Passed (L/981)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.376 @ 10' 9 1/4"	0.967	Passed (L/618)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.25"	1.50"	673	1035	1708	1 1/4" Rim Board
2 - Stud wall - HF	5.50"	4.25"	1.70"	1304	2314	3618	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	19' 10" o/c	
Bottom Edge (Lu)	19' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 19' 10 3/4"	N/A	21.5		
1 - Uniform (PSF)	0 to 20' (Top)	1' 4"	16.0	40.0	Floor Load
2 - Point (lb)	15' 5" (Back)	N/A	1126	2282	Linked from: Floor Beam #3, Support 1

Member Notes Stair Framing Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Samantha Taylor
 Anthem Structural Engineers

 (303) 848-8497
 staylor@anthemstructural.com

Weyerhaeuser

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 12 / 40

4 bed unit typ joist, Floor Beam #2 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

Overall Length: 20'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2250 @ 19' 10 1/4"	4253 (2.00")	Passed (53%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1686 @ 18' 6 3/4"	13965	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6411 @ 11' 8 3/8"	36387	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.120 @ 10' 5 3/8"	0.493	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.200 @ 10' 4 1/2"	0.985	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.50"	472	650	1122	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.50"	806	1485	2291	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	19' 10" o/c	
Bottom Edge (Lu)	19' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

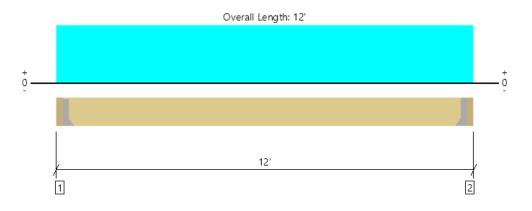
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 19' 10 3/4"	N/A	21.5		
1 - Uniform (PSF)	0 to 20' (Top)	1' 4"	16.0	40.0	Floor Load
2 - Uniform (PLF)	15' 5" to 20' (Front)	N/A	93.3	233.0	Stair Load

Member Notes

Stair Framing Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497	
staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 13 / 40

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3257 @ 3 1/4"	3938 (1.50")	Passed (83%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2594 @ 1' 5 1/4"	9310	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9331 @ 6'	24258	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.107 @ 6'	0.286	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.160 @ 6'	0.573	Passed (L/861)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 14" HF beam	3.25"	Hanger ¹	1.50"	1126	2282	3407	See note 1
2 - Hanger on 14" HF beam	3.25"	Hanger ¹	1.50"	1126	2282	3407	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 6" o/c					
Bottom Edge (Lu)	11' 6" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

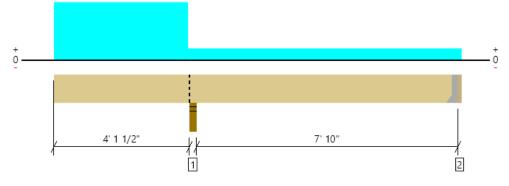
Connector: Simpson Strong-Tie									
Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
HHUS410	3.00"	N/A	30-10d	10-10d					
HHUS410	3.00"	N/A	30-10d	10-10d					
	Model HHUS410 HHUS410	Model Seat Length HHUS410 3.00" HHUS410 3.00"	Model Seat Length Top Fasteners HHUS410 3.00" N/A HHUS410 3.00" N/A	Model Seat Length Top Fasteners Face Fasteners HHUS410 3.00" N/A 30-10d HHUS410 3.00" N/A 30-10d	Model Seat Length Top Fasteners Face Fasteners Member Fasteners HHUS410 3.00" N/A 30-10d 10-10d HHUS410 3.00" N/A 30-10d 10-10d				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/4" to 11' 8 3/4"	N/A	14.3		
1 - Uniform (PLF)	0 to 12' (Front)	N/A	174.0	380.3	Linked from: Floor Joist #2 - 15'-6" span, Support 2

Member Notes

Stair Framing Beam


ForteWEB Software Operator Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com Job Notes

4 bed unit typ joist, Floor Beam #5 2 piece(s) 2 x 12 HF No.2

Overall Length: 12' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1837 @ 4' 3 1/4"	4253 (3.50")	Passed (43%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	963 @ 3' 2 1/4"	3881	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-2752 @ 4' 3 1/4"	5155	Passed (53%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.147 @ 0	0.214	Passed (2L/696)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.154 @ 0	0.427	Passed (2L/668)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

- 222 lbs uplift at support located at 12' 3". Strapping or other restraint may be required.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.51"	281	642	1433	1837	Blocking
2 - Hanger on 11 1/4" HF beam	2.00"	Hanger ¹	1.50"	89	222/-83	-311	310/-222	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 3" o/c	
Bottom Edge (Lu)	12' 3" o/c	
Marrianum allaurable bus size intere		

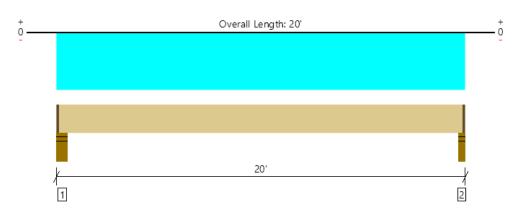
•Maximum allowable bracing intervals based on applied load.

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger LUS28-2 2.00° N/A 6-10dx1.5 3-10d	Connector: Simpson Strong-T	Гie					
2 - Face Mount Hanger LUS28-2 2.00" N/A 6-10dx1.5 3-10d	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
	2 - Face Mount Hanger	LUS28-2	2.00"	N/A	6-10dx1.5	3-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Wind	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	8.6				
1 - Uniform (PSF)	0 to 12' 5" (Top)	1' 4"	16.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 4' 1 1/2" (Top)	1' 4"	-	20.0	204.1	21.9	Balcony Load
3 - Uniform (PSF)	0 to 4' 1 1/2" (Top)	1' 4"	-	-	-	-21.9	Balcony Wind Uplift

Member Notes


Stair Framing Beam

ForteWEB Software Operator Job Notes Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 16 / 40

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	2579 @ 19' 10 1/4"	2835 (2.00")	Passed (91%)		1.0 D + 1.0 L (All Spans) [1]
Shear (lbs)	2228 @ 1' 7 1/2"	9310	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	12533 @ 10' 1 1/8"	24258	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.411 @ 10' 1 1/8"	0.651	Passed (L/570)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.567 @ 10' 1 1/8"	0.976	Passed (L/413)		1.0 D + 1.0 L (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

- 537 lbs uplift at support located at 4". Strapping or other restraint may be required.

• -527 lbs uplift at support located at 19' 10 1/4". Strapping or other restraint may be required.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	4.25"	1.85"	727	1927/-377	-1264	2654/-537	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.82"	714	1891/-370	-1241	2605/-527	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	13' 2" o/c					
Bottom Edge (Lu)	19' 10" o/c					
•Maximum allowable bracing intervals based on applied load.						

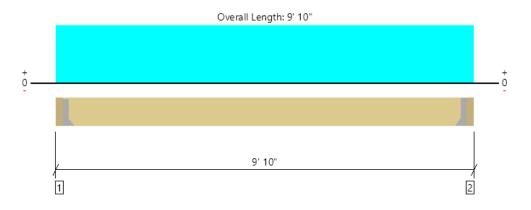
app

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 19' 10 3/4"	N/A	14.3			
1 - Uniform (PSF)	0 to 20' (Top)	8"	16.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 20' (Front)	N/A	47.3	164.3/-63.8	-125.3	Linked from: Floor Joist #3 - 12'-6" span, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

Job Notes

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 18 / 40

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2630 @ 3 1/2"	3938 (1.50")	Passed (67%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1966 @ 1' 5 1/2"	9310	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6081 @ 4' 11"	24258	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.049 @ 4' 11"	0.231	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.073 @ 4' 11"	0.463	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 14" HF beam	3.50"	Hanger ¹	1.50"	922	1870	2791	See note 1
2 - Hanger on 14" HF beam	3.50"	Hanger ¹	1.50"	922	1870	2791	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

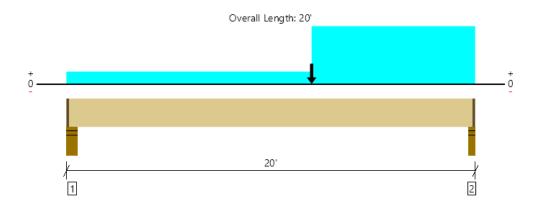
Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	9' 3" o/c						
Bottom Edge (Lu)	9' 3" o/c						
Maximum allowable bracing inten	Maximum allowable bracing integrale based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie											
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories					
1 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d						
2 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d						
	с <u>с нин</u> 1	C 11 1									

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 9' 6 1/2"	N/A	14.3		
1 - Uniform (PLF)	0 to 9' 10" (Front)	N/A	174.0	380.3	Linked from: Floor Joist #2 - 15'-6" span, Support 2


Member Notes

Stair Framing Beam

ForteWEB Software Operator Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4350 @ 19' 10 1/4"	4253 (2.00")	Passed (102%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3855 @ 18' 6 3/4"	13965	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	22586 @ 12'	36387	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.385 @ 10' 7 13/16"	0.488	Passed (L/608)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.590 @ 10' 7 7/16"	0.976	Passed (L/397)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.25"	1.50"	925	1602	2526	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	2.05"	1478	2909	4386	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	14' 1" o/c	
Bottom Edge (Lu)	19' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 19' 10 3/4"	N/A	21.5		
1 - Uniform (PSF)	0 to 20' (Top)	1' 4"	16.0	40.0	Floor Load
2 - Uniform (PLF)	12' to 20' (Front)	N/A	78.7	196.7	Stair Load
3 - Point (lb)	12' (Front)	N/A	922	1870	Linked from: Floor Beam #7, Support 2

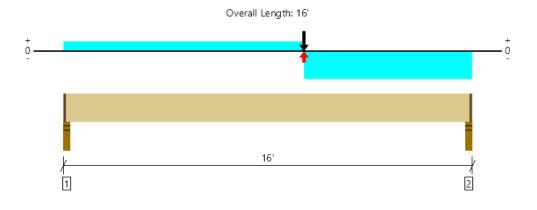
Member Notes

Stair Framing Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes
Samantha Taylor
Anthem Structural Engineers
(303) 848-8497
staylor@anthemstructural.com

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 21 / 40

4 bed unit typ joist, Floor Beam #9 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	2349 @ 15' 10 1/4"	2835 (2.00")	Passed (83%)		1.0 D + 1.0 L (All Spans) [1]
Shear (lbs)	1999 @ 14' 6 3/4"	9310	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	9602 @ 9' 5"	24258	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.174 @ 8' 5 1/2"	0.393	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.250 @ 8' 5 1/8"	0.785	Passed (L/753)		1.0 D + 1.0 L (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.50"	429	852	-293	1281	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.66"	689	1686/-149	-843	2375/-153	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 10" o/c	
Bottom Edge (Lu)	15' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 15' 10 3/4"	N/A	14.3			
1 - Uniform (PSF)	0 to 16' (Top)	8"	16.0	40.0	-	Floor Load
2 - Uniform (PLF)	9' 5" to 16' (Front)	N/A	47.3	164.3/-63.8	-125.3	Linked from: Floor Joist #3 - 12'-6" span, Support 2
3 - Point (lb)	9' 5" (Front)	N/A	411	1030/-41	-311	Linked from: Floor Beam #10, Support 2

Member Notes

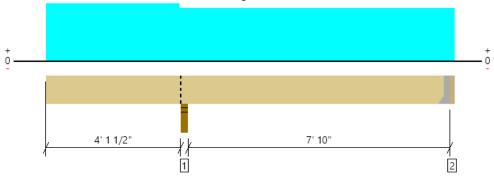
Stair Framing Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Samantha Taylor
Anthem Structural Engineers
(303) 848-8497
staylor@anthemstructural.com



9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 22 / 40

4 bed unit typ joist, Floor Beam #10 2 piece(s) 2 x 12 HF No.2

Overall Length: 12' 5 1/2"

 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

 Design Results
 Actual @ Location
 Allowed
 Result
 LDF
 Load: Combination (Pattern)
 System

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1369 @ 12' 3"	1823 (1.50")	Passed (75%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	1148 @ 5' 4 1/4"	3375	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2664 @ 8' 4 5/16"	4482	Passed (59%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.147 @ 0	0.214	Passed (2L/696)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.128 @ 0	0.427	Passed (2L/802)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.26"	597	1436	1433	2750	Blocking
2 - Hanger on 11 1/4" HF beam	2.50"	Hanger ¹	1.50"	411	1030/-41	-311	1440	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	12' 3" o/c						
Bottom Edge (Lu)	12' 3" o/c						
Maximum ellevenda harafa interneta harafan analiad haraf							

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LUS210-2	2.00"	N/A	8-16d	6-16d	
Refer to manufacturer notes and instructi	ons for proper installation and use	of all connectors				

Refer to manufacturer notes and instructions for proper installation and use of all connectors

			Dead	Floor Live	Snow	Wind	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	8.6				
1 - Uniform (PSF)	0 to 12' 5 1/2" (Top)	1' 4"	16.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 4' 1 1/2" (Top)	1' 4"	-	20.0	204.1	21.9	Balcony Load
3 - Uniform (PSF)	0 to 4' 1 1/2" (Top)	1' 4"	-	-	-	-21.9	Balcony Wind Uplift
4 - Uniform (PLF)	4' 1 1/2" to 12' 5 1/2" (Front)	N/A	76.5	192.0	-	-	Linked from: Floor Joist #5 - 9.5' span, Support 2

Member Notes

Stair Framing Beam

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 23 / 40

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	490 @ 3 1/2"	3938 (1.50")	Passed (12%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	98 @ 1' 5 1/2"	9310	Passed (1%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	358 @ 1' 9"	24258	Passed (1%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.001 @ 1' 9"	0.073	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.001 @ 1' 9"	0.146	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 14" HF beam	3.50"	Hanger ¹	1.50"	182	403	584	See note 1
2 - Hanger on 14" HF beam	3.50"	Hanger ¹	1.50"	182	403	584	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	2' 11" o/c						
Bottom Edge (Lu)	2' 11" o/c						
-Maximum allaurable brasing intervals based on applied load							

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

······································						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

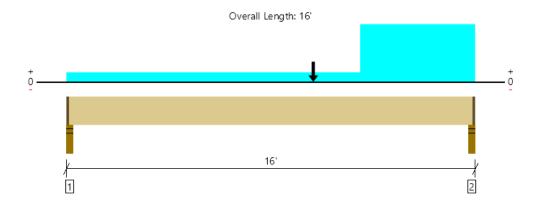
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 3' 2 1/2"	N/A	14.3		
1 - Uniform (PSF)	0 to 3' 6" (Top)	5' 9"	16.0	40.0	Floor and Stair Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes
Samantha Taylor
Anthem Structural Engineers
(303) 848-8497
staylor@anthemstructural.com

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 25 / 40

4 bed unit typ joist, Floor Beam #12 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2494 @ 15' 10 1/4"	2835 (2.00")	Passed (88%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1870 @ 14' 6 3/4"	9310	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6992 @ 9' 8"	24258	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.130 @ 8' 5 9/16"	0.393	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.197 @ 8' 5 3/16"	0.785	Passed (L/958)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.50"	420	749	1169	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.76"	815	1727	2542	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

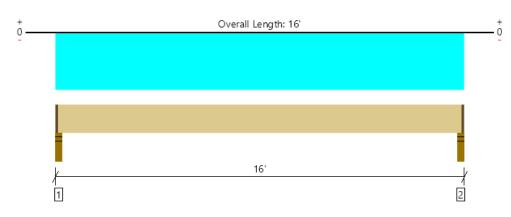
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 10" o/c	
Bottom Edge (Lu)	15' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 15' 10 3/4"	N/A	14.3		
1 - Uniform (PSF)	0 to 16' (Top)	1' 4"	16.0	40.0	Floor Load
2 - Uniform (PLF)	11' 6" to 16' (Back)	N/A	108.0	271.0	Stair Load
3 - Point (lb)	9' 8" (Front)	N/A	182	403	Linked from: Floor Beam #11, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Jo Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	2078 @ 1 3/4"	2835 (2.00")	Passed (73%)		1.0 D + 1.0 L (All Spans) [1]
Shear (lbs)	1727 @ 1' 5 1/4"	9310	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	8116 @ 8'	24258	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.177 @ 8'	0.524	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.244 @ 8'	0.785	Passed (L/772)		1.0 D + 1.0 L (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

- 426 lbs uplift at support located at 1 3/4". Strapping or other restraint may be required.

• -426 lbs uplift at support located at 15' 10 1/4". Strapping or other restraint may be required.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.50"	576	1527/-299	-1002	2104/-426	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.50"	576	1527/-299	-1002	2104/-426	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

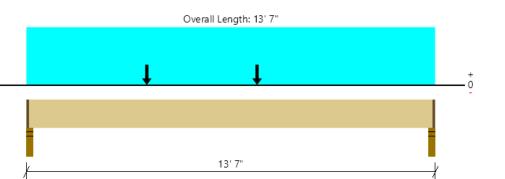
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	15' 10" o/c					
Bottom Edge (Lu)	15' 10" o/c					
•Maximum allowable bracing intervals based on applied load.						

lowable bracing intervals based on applied load

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 15' 10 3/4"	N/A	14.3			
1 - Uniform (PSF)	0 to 16' (Top)	8"	16.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 16' (Front)	N/A	47.3	164.3/-63.8	-125.3	Linked from: Floor Joist #3 - 12'-6" span, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2651 @ 1 3/4"	2835 (2.00")	Passed (94%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2204 @ 1' 5 1/4"	9310	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9126 @ 6' 11 5/16"	24258	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.138 @ 6' 9 3/16"	0.443	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.201 @ 6' 9 3/16"	0.665	Passed (L/792)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.87"	843	1841	2684	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.80"	811	1770	2581	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 5" o/c	
Bottom Edge (Lu)	13' 5" o/c	

Maximum allowable bracing intervals based on applied load.

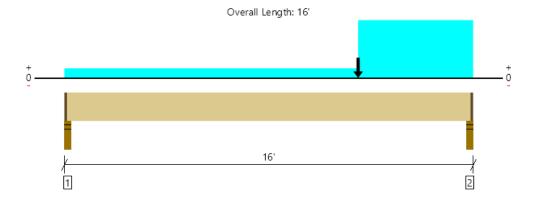
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 13' 5 3/4"	N/A	14.3		
1 - Uniform (PLF)	0 to 13' 7" (Front)	N/A	91.5	229.5	Linked from: Floor Joist #6 - 11'-6" span, Support 1
2 - Point (lb)	4' (Front)	N/A	110	247	Linked from: TRANSFER BM @ STAIR POST, Support 2
3 - Point (lb)	7' 8" (Front)	N/A	110	247	Linked from: TRANSFER BM @ STAIR POST, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes


 Samantha Taylor
 Anthem Structural Engineers

 (303) 848-8497
 staylor@anthemstructural.com

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 28 / 40

4 bed unit typ joist, Floor Beam #15 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4062 @ 15' 10 1/4"	4253 (2.00")	Passed (96%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3428 @ 14' 6 3/4"	13965	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	13095 @ 11' 6"	36387	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.147 @ 8' 8 3/16"	0.393	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.224 @ 8' 7 3/4"	0.785	Passed (L/843)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.25"	2.00"	1.50"	630	1081	1711	1 1/4" Rim Board
2 - Stud wall - HF	3.25"	2.00"	1.91"	1347	2762	4109	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 10" o/c	
Bottom Edge (Lu)	15' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 15' 10 3/4"	N/A	21.5		
1 - Uniform (PSF)	0 to 16' (Top)	1' 4"	16.0	40.0	Floor Load
2 - Uniform (PLF)	11' 6" to 16' (Back)	N/A	108.0	271.0	Stair Load
3 - Point (lb)	11' 6" (Front)	N/A	811	1770	Linked from: Floor Beam #14, Support 2

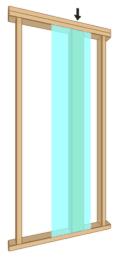
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator -Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

Job Notes


PASSED

4 bed unit typ joist, Post #1 3 piece(s) 2 x 6 HF No.2

Wall Height: 10' 3 7/8"

Member Height: 9' 11 3/8"

Tributary Width: 1' 4"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43%)		
Compression (lbs)	9214	17100	Passed (54%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	9214	10024	Passed (92%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	98			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	89	3960	Passed (2%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	244 @ mid-span	3339	Passed (7%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.12 @ mid-span	0.50	Passed (L/1017)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.97	1	Passed (97%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/240)

· Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column Building Code : IBC 2018 Design Methodology : ASD
Base	2X	Hem Fir	

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Loads	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (lb)	N/A	10	-	-	Wall Dead Load
2 - Point (Ib)	N/A	1478	2909	-	Linked from: Floor Beam #8, Support 2
3 - Point (lb)	N/A	3235	1582	730	Linked from: Copy of Floor Beam #8 - L4 ROOF TRANSFER, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	24.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

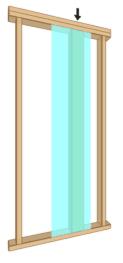
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Opera	tor	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	1	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 30 / 40


PASSED

4 bed unit typ joist, Post #2 4 piece(s) 2 x 6 HF No.2

Wall Height: 10' 3 7/8"

Member Height: 9' 11 3/8"

Tributary Width: 1' 4"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43%)		
Compression (lbs)	11075	22800	Passed (49%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	11075	13365	Passed (83%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	98			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	89	5280	Passed (2%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	244 @ mid-span	4454	Passed (5%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.09 @ mid-span	0.50	Passed (L/1287)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr
Bending/Compression	0.80	1	Passed (80%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/240)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column Building Code : IBC 2018
Base	2X	Hem Fir	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	
Vertical Loads	Tributary Width	(0.90)	(1.00)	Comments
1 - Point (lb)	N/A	10	-	Wall Dead Load
2 - Point (lb)	N/A	806	1485	Linked from: Floor Beam #2, Support 2
3 - Point (Ib)	N/A	1478	2909	Linked from: Floor Beam #8, Support 2
4 - Point (Ib)	N/A	1478	2909	Linked from: Floor Beam #8, Support 2

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	24.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Member Notes

Stud pack at Beam #1

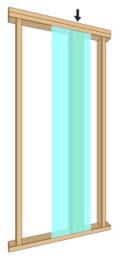
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 31 / 40


PASSED

4 bed unit typ joist, Post #3 3 piece(s) 2 x 6 HF No.2

Wall Height: 10' 3 7/8"

Member Height: 9' 11 3/8"

Tributary Width: 1' 4"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43%)		
Compression (lbs)	3628	17100	Passed (21%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	3628	10024	Passed (36%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	98			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	89	3960	Passed (2%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	244 @ mid-span	3339	Passed (7%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.06 @ mid-span	0.50	Passed (L/2003)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr
Bending/Compression	0.21	1	Passed (21%)	1.00	1.0 D + 1.0 L

• Lateral deflection criteria: Wind (L/240)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

· Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column Building Code : IBC 2018
Base	2X	Hem Fir	Design Methodology : ASD

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	
Vertical Loads	Tributary Width	(0.90)	(1.00)	Comments
1 - Point (lb)	N/A	10	-	Wall Dead Load
2 - Point (lb)	N/A	1304	2314	Linked from: Floor Beam #1, Support 2

Max Unbraced Length

1'

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	24.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Member Notes

Stud pack at Beam #1

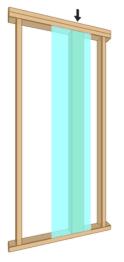
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 32 / 40



4 bed unit typ joist, Post #4 3 piece(s) 2 x 4 HF No.2

Wall Height: 10' 3 7/8"

Member Height: 9' 11 3/8"

Tributary Width: 1' 4"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (68%)		
Compression (lbs)	2552	4965	Passed (51%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	2552	6379	Passed (40%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	98			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	92	2520	Passed (4%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	244 @ mid-span	1561	Passed (16%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	0.50	Passed (L/717)		1.0 D + 0.6 W
Bending/Compression	0.54	1	Passed (54%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/240)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

· Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

Top Dbl 2X H		Member Type : Column
DDIZX	lem Fir	Building Code : IBC 2018
Base 2X H	lem Fir	Design Methodology : ASD

Drawing is Conceptual

Lateral Connections						
Supports	Connector	Type/Model	Quantity	Connector Nailing		
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	
Vertical Loads	Tributary Width	(0.90)	(1.00)	Comments
1 - Point (lb)	N/A	10	-	Wall Dead Load
2 - Point (lb)	N/A	815	1727	Linked from: Floor Beam #12, Support 2

Max Unbraced Length

1'

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	24.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Member Notes

Stud pack at Beam #1

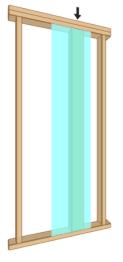
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 33 / 40


4 bed unit typ joist, Post #5 4 piece(s) 2 x 6 HF No.2

Wall Height: 10' 3 7/8"

Member Height: 9' 11 3/8"

Tributary Width: 1' 4"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43%)		
Compression (lbs)	11650	22800	Passed (51%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	11650	13365	Passed (87%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	98			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	89	5280	Passed (2%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	244 @ mid-span	4454	Passed (5%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.10 @ mid-span	0.50	Passed (L/1238)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr
Bending/Compression	0.88	1	Passed (88%)	1.00	1.0 D + 1.0 L

· Lateral deflection criteria: Wind (L/240)

Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column Building Code : IBC 2018
Base	2X	Hem Fir	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length Comments 1'

Lateral Connectio	ns			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	
Vertical Loads	Tributary Width	(0.90)	(1.00)	Comments
1 - Point (lb)	N/A	10	-	Wall Dead Load
2 - Point (lb)	N/A	1347	2762	Linked from: Floor Beam #15, Support 2
3 - Point (lb)	N/A	1347	2762	Linked from: Floor Beam #15, Support 2
4 - Point (lb)	N/A	630	1081	Linked from: Floor Beam #15, Support 1
5 - Point (lb)	N/A	630	1081	Linked from: Floor Beam #15, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	24.6	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area

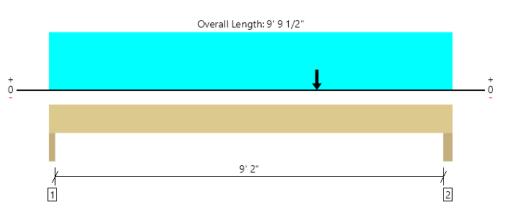
determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Member Notes

Stud pack at Beam #1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weverhaeuser.com/woodproducts/document-library


Weyerhaeuser

ForteWEB Software Operator	Job Notes	
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com		

4 bed unit typ joist, BM @ GARAGE / HOLD DOWN - C 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6830 @ 1 1/2"	7613 (3.00")	Passed (90%)		1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7282 @ 8' 3"	14896	Passed (49%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	21419 @ 6' 6"	38813	Passed (55%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.224 @ 5' 7/16"	0.314	Passed (L/505)	1.0 D + 0.45 W + 0.75 L + 0.75 S (Spans)	
Total Load Defl. (in)	0.249 @ 5' 3/16"	0.471	Passed (L/453)		1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)

ystem : Wall Member Type : Header uilding Use : Residential uilding Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Wind	Factored	Accessories
1 - Trimmer - SPF	3.00"	3.00"	2.69"	906	2617	2925	3926	6830	None
2 - Trimmer - HF	4.50"	4.50"	3.51"	930	2685	3001	8228	8897	None

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	7' o/c						
Bottom Edge (Lu)	9' 10" o/c						
Maximum alloughle brasing intervale based on applied lead							

Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Wind (1.60)	Comments
0 - Self Weight (PLF)	0 to 9' 9 1/2"	N/A	14.3				
1 - Uniform (PSF)	0 to 9' 9 1/2"	1' 6"	15.0	40.0	-	-	Default Load
2 - Point (Ib)	6' 6"	N/A	-	-	-	12154	Holddown
3 - Uniform (PLF)	0 to 9' 9 1/2"	N/A	150.8	481.5	605.3	-	Linked from: Floor Joist #3 - 12'-6" span, Support 1

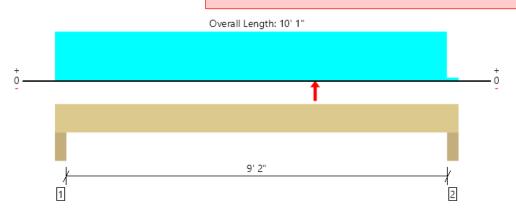
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor	
Anthem Structural Engineers	
(303) 848-8497	
staylor@anthemstructural.com	

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 35 / 40



MEMBER REPORT

4 bed unit typ joist, BM @ GARAGE / HOLD DOWN - T 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

An excessive uplift of -1400 lbs at support located at 4" failed this product. An excessive uplift of -3192 lbs at support located at 9' 9" failed this product.

UPLIFT RESOLVED WITH HOLD DOWNS SEE PLAN LEVEL 1 PLAN

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5282 @ 4"	13956 (5.50")	Passed (38%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3579 @ 1' 7 1/2"	10707	Passed (33%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	11612 @ 5' 1/2"	27897	Passed (42%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.117 @ 5' 1/2"	0.314	Passed (L/962)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.143 @ 5' 1/2"	0.471	Passed (L/790)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Wind	Factored	Accessories
1 - Trimmer - SPF	5.50"	5.50"	2.08"	946	2730	3051	-3279	5282/- 1400	None
2 - Trimmer - HF	5.50"	5.50"	1.97"	902	2590	2875	-6221	5000/- 3192	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 1" o/c	
Bottom Edge (Lu)	10' 1" o/c	

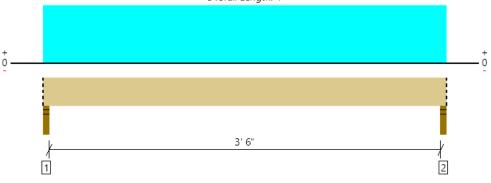
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Wind	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 10' 1"	N/A	14.3				
1 - Uniform (PSF)	0 to 10' 1"	1' 6"	15.0	40.0	-	-	Default Load
2 - Point (lb)	6' 6"	N/A	-	-	-	-9500	Holddown Uplift
3 - Uniform (PLF)	0 to 9' 9 1/2"	N/A	150.8	481.5	605.3	-	Linked from: Floor Joist #3 - 12'-6" span, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

4 bed unit typ joist, STAIR LEDGER 1 piece(s) 2 x 8 HF No.2

Overall Length: 4'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	398 @ 1 1/2"	1823 (3.00")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	228 @ 10 1/4"	1088	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	349 @ 2'	1117	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.010 @ 2'	0.094	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.014 @ 2'	0.188	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.50"	118	280	398	Blocking
2 - Stud wall - HF	3.00"	3.00"	1.50"	118	280	398	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' o/c	
Bottom Edge (Lu)	4' o/c	

•Maximum allowable bracing intervals based on applied load.

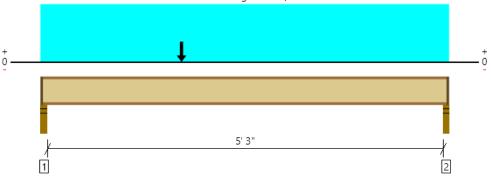
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4'	N/A	2.8		
1 - Uniform (PSF)	0 to 4' (Front)	3' 6"	16.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	


9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 37 / 40

4 bed unit typ joist, TRANSFER BM @ STAIR POST 1 piece(s) 14" TJI ® 360

PASSED

Overall Length: 5' 9 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	485 @ 2"	1202 (2.25")	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	470 @ 3 1/2"	1955	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	748 @ 2'	7335	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.012 @ 2'	0.138	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.017 @ 2'	0.275	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.75"	150	342	492	1 1/4" Rim Board
2 - Stud wall - HF	3.00"	1.75"	1.75"	110	247	356	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

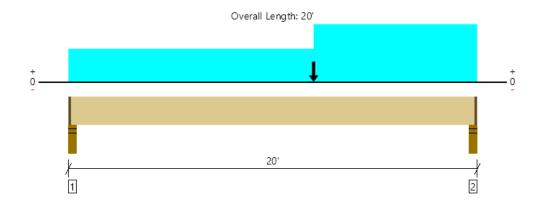
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 7" o/c	
Bottom Edge (Lu)	5' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 5' 8 1/4"	N/A	3.3		
1 - Uniform (PSF)	0 to 5' 9 1/2"	1' 4"	16.0	40.0	Default Load
2 - Point (lb)	2'	N/A	118	280	Linked from: STAIR LEDGER, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

1	ForteWEB Software Operator	Job Notes
1	Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

4 bed unit typ joist, Copy of Floor Beam #8 - L4 ROOF TRANSFER 4 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6677 @ 19' 9 1/2"	7796 (2.75")	Passed (86%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5834 @ 18' 6"	18620	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	33212 @ 12'	48517	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.290 @ 10' 6 7/8"	0.490	Passed (L/810)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.696 @ 10' 4 5/16"	0.979	Passed (L/338)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads to Sup				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	4.00"	2.75"	1.74"	3235	1582	730	4969	1 1/4" Rim Board
2 - Stud wall - HF	4.00"	2.75"	2.36"	3809	2928	730	6737	1 1/4" Rim Board
Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.								

арр it, bypa

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 3" o/c	
Bottom Edge (Lu)	19' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 19' 10 3/4"	N/A	28.6			
1 - Uniform (PSF)	0 to 20' (Top)	1' 4"	16.0	40.0	-	Floor Load
2 - Uniform (PLF)	12' to 20' (Front)	N/A	78.7	196.7	-	Stair Load
3 - Uniform (PLF)	0 to 20' (Top)	N/A	225.0	-	73.0	
4 - Point (lb)	12' (Front)	N/A	922	1870	-	Linked from: Floor Beam #7, Support 1

Member Notes

Stair Framing Beam

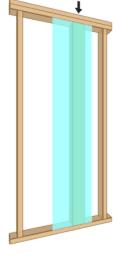
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com

9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 39 / 40


4 bed unit typ joist, Copy of Post #1 - CENTER POST 4 piece(s) 2 x 6 HF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1' 4"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	16558	27916	Passed (59%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	16558	20625	Passed (80%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	87			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	77	5280	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	187 @ mid-span	4454	Passed (4%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.07 @ mid-span	0.43	Passed (L/1542)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.91	1	Passed (91%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/240)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

Max Unbraced Length

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to

Comments

the U.S. Wall Guide for multiple-member connection requirements.

Supports	Туре	Material	System :
Тор	Dbl 2X	Douglas Fir-Larch	Member
Base	2X	Douglas Fir-Larch	Building Design M

ystem : Wall lember Type : Column uilding Code : IBC 2018 lesign Methodology : ASD

Drawing is Conceptual

Latoral Connoc

		1'		
ctio	ns			

Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	N/A	10	-	-	Wall Dead Load
2 - Point (Ib)	N/A	1478	2909	-	Linked from: Floor Beam #8, Support 2
3 - Point (Ib)	N/A	925	1602	-	Linked from: Floor Beam #8, Support 1
4 - Point (lb)	N/A	3235	1582	730	Linked from: Copy of Floor Beam #8 - L4 ROOF TRANSFER, Support 1
5 - Point (lb)	N/A	3235	1582	730	Linked from: Copy of Floor Beam #8 - L4 ROOF TRANSFER, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	25.1	

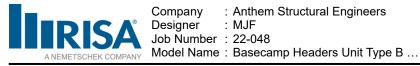
• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

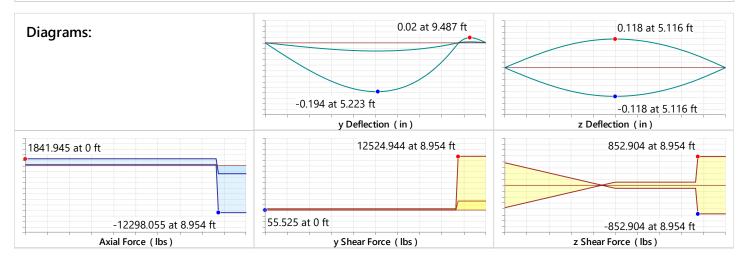
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

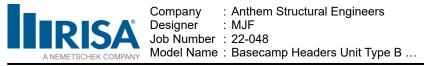
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

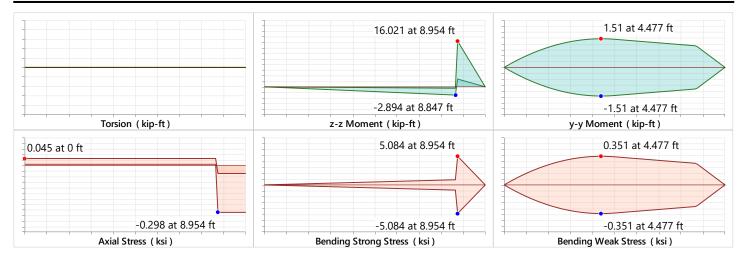

 ForteWEB Software Operator
 Job Notes

 Samantha Taylor
 Anthem Structural Engineers

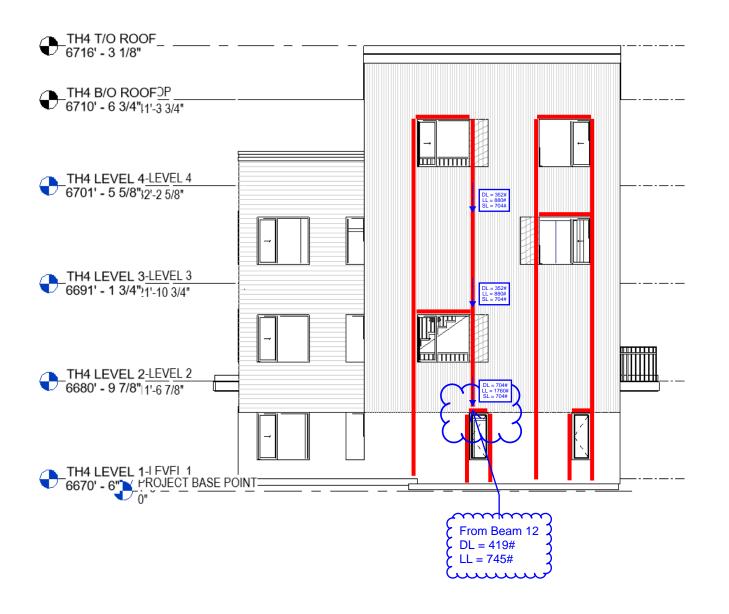
 (303) 848-8497
 staylor@anthemstructural.com




9/6/2022 5:14:34 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Framing Page 40 / 40



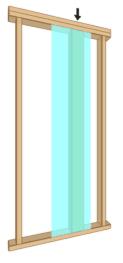
Detail Report: M24		Unity Check: 4.381	(LC 7)	L	oad Combination: Envelop
Ň	№	nput Data:			
	x	Shape:	5-2X6 (nominal)	I Node:	N45
		Member Type:	Column	J Node:	N48
z	z	Length (ft):	10.233	I Release:	Fixed
		Material Type:	Wood	J Release:	Fixed
		Design Rule:	Typical	I Offset (in):	N/A
		Number of Internal Sections:	97	J Offset (in):	N/A
Material Properties:					
Material:	HF	Grade:	No.2	Nu:	0.3
Type:	Solid Sawn	Cm:	No	Therm. Coeff. (1e ⁵ °F ⁻¹)	0.3
Database:	Visually Graded	Ci:	No	Density (k/ft ³):	0.035
Species:	Hem-Fir	Emod:	1	-	
Shape Properties:					
F _b (ksi):	0.85	E (ksi):	1300	b (actual) (in):	7.5
F _t (ksi):	0.525	E mod:	1	d (actual) (in):	5.5
F _v (ksi):	0.15	COV _F (Table F1):	0.25	# of Plies:	5
F _c (ksi):	1.3	E _{min} (ksi):	474.901	К _f :	0.6
Design Properties:					
le2 (ft):	0.5	С _D :	1.15	Max Defl Ratio:	L/0
le1 (ft) :	N/A	R _B :	3.465	Max Defl Location:	0
le-bend top (ft):	Lbyy	C _L :	0.999	Span:	N/A
le-bend bot (ft):	N/A	C _r :	1		
К _{у-у} :	1	C _{fu} :	1		
K _{z-z} :	1	C _P :	0.417		
y sway:	No	-μ. K _f :	0.6		
z sway:	No	- T	0.0		



AWC NDS-18: ASD Code Check

Limit State	Gov. LC	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial	7	-	-	-	-
Applied Loading - Shear + Torsion	7	-	-	-	-
Axial Compression Analysis		0.000 ksi	0.685 ksi	-	-
Axial Tension Analysis		-0.298 ksi	0.785 ksi	-	-
Flexural Analysis, Fb1'		5.084 ksi	1.269 ksi	-	-
Flexural Analysis, Fb2'		0.000 ksi	1.271 ksi	-	-
Bending & Axial Compression Analysis		-	-	4.007	Fail
Bending & Axial Tension Analysis		-	-	4.381	Fail
Shear Analysis		0.455 ksi	0.172 ksi	2.64	Fail

TYPE B-WIDE (FLIP) WEST ELEVATION


PASSED

Level, 16' Garage Header Column 3 piece(s) 2 x 6 HF No.2

Wall Height: 10' 3 7/8"

Member Height: 9' 11 3/8"

Tributary Width: 4' 6"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43%)		
Compression (lbs)	7954	17611	Passed (45%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	7954	10024	Passed (79%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	324			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	294	3960	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	806 @ mid-span	3339	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.18 @ mid-span	0.33	Passed (L/682)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.81	1	Passed (81%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/360)

Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

· Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to requirements.

the U.S. Wall Guide for	r multiple-member	connection I
-------------------------	-------------------	--------------

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column Building Code : IBC 2018
Base	2X	Hem Fir	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	10d (0.128" x 3") (End)	4	N/A			
Base	Nails	10d (0.128" x 3") (End)	4	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Load	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	N/A	2250	2835	4770	Default Load

Lateral Load	Location	Tributary Width	Wind (1.60)	Comments
1 - Uniform (PSF)	Full Length	4' 6"	24.1	

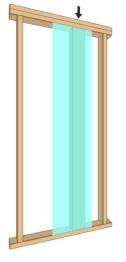
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

Level, 20' Garage Header Column


4 piece(s) 2 x 6 HF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 4' 6"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	14140	29200	Passed (48%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	14140	20625	Passed (69%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	284			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	254	5280	Passed (5%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	612 @ mid-span	4454	Passed (14%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.12 @ mid-span	0.29	Passed (L/847)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.84	1	Passed (84%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/360)

Max Unbraced Length

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Column Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Lateral Connections									
Supports	Connector	Quantity	Connector Nailing						
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	3	N/A					
Base	Nails	8d (0.113" x 2 1/2") (Toe)	3	N/A					

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Load	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	N/A	4000	5040 8480		Default Load

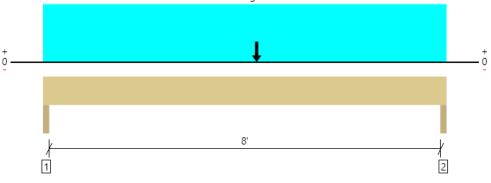
			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4' 6"	24.4	

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

Level, Wall: Header - 8' TRIB (H1 CHECK) 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2743 @ 8' 4 1/2"	7613 (3.00")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2161 @ 7' 5 3/4"	6151	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6076 @ 4' 6"	11204	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.127 @ 4' 3 1/16"	0.275	Passed (L/782)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.176 @ 4' 3 1/16"	0.412	Passed (L/561)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	780	1925	331	2706	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	788	1955	373	2743	None

•Maximum allowable bracing intervals based on applied load.

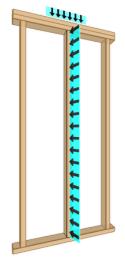
			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	9.4			
1 - Uniform (PSF)	0 to 8' 6"	10'	16.0	40.0	-	Default Load
2 - Point (lb)	4' 6"	N/A	128	480	704	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

STUD WALLS


PASSED

EXTERIOR BEARING WALLS, GRID 11, LEVEL 4 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	1280	6618	Passed (19%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	1280	4177	Passed (31%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.92	Passed (L/829)		1.0 D + 0.6 W
Bending/Compression	0.31	1	Passed (31%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X	(Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Length	1		Comments	

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	800.0	ROOF

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

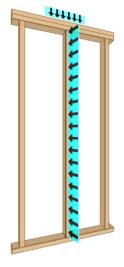
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR BEARING WALLS, GRID 11, LEVEL 3 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	1760	6618	Passed (27%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	1760	4177	Passed (42%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.14 @ mid-span	0.92	Passed (L/775)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.45	1	Passed (45%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Length			Comments	

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	-	800.0	ROOF
2 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 4

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

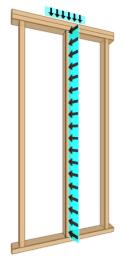
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR BEARING WALLS, GRID 11, LEVEL 2 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	2507	6618	Passed (38%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2507	4177	Passed (60%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.16 @ mid-span	0.92	Passed (L/681)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.65	1	Passed (65%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : AS
Max Unbraced Length			Comments	

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	-	800.0	ROOF
2 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 4
3 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 3

			Wind					
Lateral Load	Location	Spacing	(1.60)	Comments				
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT				
- IBC Table 1604.2 feetnate fr Da	- TPC Table 1604.2 features fu Deflection checks are performed using 40% of this lateral wind lead							

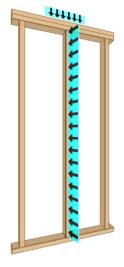
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR BEARING WALLS, GRID 11, LEVEL 1 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	3253	6618	Passed (49%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	3253	6445	Passed (50%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.18 @ mid-span	0.92	Passed (L/606)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.91	1	Passed (91%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wa
Тор	Dbl 2X		Douglas Fir-Larch	Member Typ Building Cod
Base	2X		Douglas Fir-Larch	
Max Unbraced Length	1		Comments	Design Meth

System : Wall Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	-	800.0	ROOF
2 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 4
3 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 3
4 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

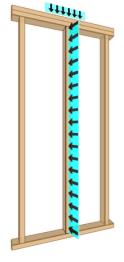
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

EXTERIOR BEARING WALLS, GRID 11, LEVEL 1 (AT UPPER DECK)


2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 10' 3"

Member Height: 9' 10 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43%)		
Compression (lbs)	4140	11881	Passed (35%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	4140	11602	Passed (36%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	150			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	136	2640	Passed (5%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	370 @ mid-span	2555	Passed (14%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.99	Passed (L/938)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.45	1	Passed (45%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Max Unbraced Length

1'

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

· A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

sembly op k

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	-	-	-	ROOF
2 - Point (PLF)	16.00"	260.0	600.0	1700.0	LEVEL 4 (DECK)
3 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 3
4 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 2

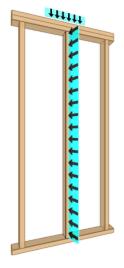
			Wind						
Lateral Load	Location	Spacing	(1.60)	Comments					
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT					
IDC Table 1604.2 feetnate fr De	- IDC Table 1604.2. feetnate fr. Deflection checks are notformed using 420% of this lateral wind lead								

IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1A, LEVEL 3 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	355	6618	Passed (5%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	355	4177	Passed (8%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.92	Passed (L/858)		1.0 D + 0.6 W
Bending/Compression	0.26	1	Passed (26%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
				-
Max Unbraced Length			Comments	

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Load	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	32.0	120.0	192.0	LEVEL 4 (DECK)

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

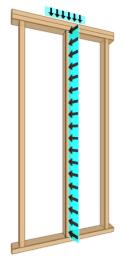
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1A, LEVEL 2 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	504	6618	Passed (8%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	504	4177	Passed (12%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.92	Passed (L/846)		1.0 D + 0.6 W
Bending/Compression	0.27	1	Passed (27%)	1.60	1.0 D + 0.6 W

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material		System : Wall
Тор	Dbl 2X		Hem Fir		Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD
Base	2X		Hem Fir		
			-		
Max Unbraced Length	L	Comments			

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	32.0	120.0	192.0	LEVEL 4
2 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 3

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

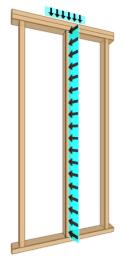
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1A, LEVEL 1 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	653	6618	Passed (10%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	653	4177	Passed (16%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.31	Passed (L/834)		1.0 D + 0.6 W
Bending/Compression	0.27	1	Passed (27%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/360)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Leng	th		Comments	

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	32.0	120.0	192.0	LEVEL 4
2 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 3
3 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 2

			Wind					
Lateral Load	Location	Spacing	(1.60)	Comments				
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT				
• IPC Table 1604.2 feetnate fr De	IBC Table 1604.3 footnote fr. Deflection checks are performed using 42% of this lateral wind load							

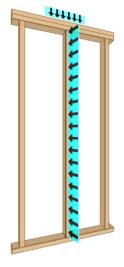
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1E, LEVEL 4 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	256	6618	Passed (4%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	256	4177	Passed (6%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.92	Passed (L/858)		1.0 D + 0.6 W
Bending/Compression	0.26	1	Passed (26%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Length	1		Comments	

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (PLF)	16.00"	32.0	160.0	ROOF

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

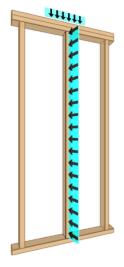
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1E, LEVEL 3 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	352	6618	Passed (5%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	352	4177	Passed (8%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	140			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	323 @ mid-span	1264	Passed (26%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.13 @ mid-span	0.92	Passed (L/846)		1.0 D + 0.6 W
Bending/Compression	0.27	1	Passed (27%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall Member Type : Stud Building Code : IBC 2018
Тор	Dbl 2X		Hem Fir	
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Length		Comments		

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	32.0	-	160.0	ROOF
2 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 4

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	50.6	37.9PSF * 1.33FT

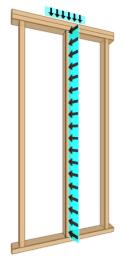
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1E, LEVEL 2 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	501	6618	Passed (8%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	501	4177	Passed (12%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	177			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	159	1320	Passed (12%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	408 @ mid-span	1264	Passed (32%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	0.92	Passed (L/665)		1.0 D + 0.6 W
Bending/Compression	0.34	1	Passed (34%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall Member Type : Stud Building Code : IBC 2018
Тор	Dbl 2X		Hem Fir	
Base	2X		Hem Fir	Design Methodology : ASD
				□
Max Unbraced Leng	ith		Comments	

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	3	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	3	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	32.0	-	160.0	ROOF
2 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 4
3 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 3

			Wind				
Lateral Load	Location	Spacing	(1.60)	Comments			
1 - Uniform (PLF)	Full Length	N/A	64.0	37.9PSF * 1.33FT			
a IPC Table 1604.2 featnate fr. Deflection checks are performed using 420% of this lateral using load							

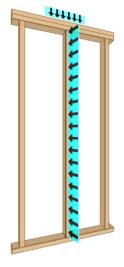
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	



EXTERIOR NON-BEARING, GRID 1E, LEVEL 1 TYP 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	651	6618	Passed (10%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	651	4177	Passed (16%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	177			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	159	1320	Passed (12%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	408 @ mid-span	1264	Passed (32%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	0.31	Passed (L/658)		1.0 D + 0.6 W
Bending/Compression	0.35	1	Passed (35%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/360)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Length			Comments	

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	3	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	3	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	32.0	-	160.0	ROOF
2 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 4
3 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 3
4 - Point (PLF)	16.00"	52.0	80.0	-	LEVEL 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PLF)	Full Length	N/A	64.0	37.9PSF * 1.33FT

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

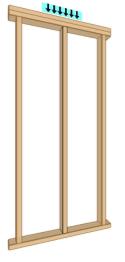
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

9/6/2022 4:52:18 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Stud Walls Page 13 / 35


INTERIOR BEARING STAGGERED 2X4, GRID 12, LEVEL 4 (FOOTING STEP) 1 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	1280	1926	Passed (66%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	1280	4102	Passed (31%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1315)		1.0 D + 1.0 S
Bending/Compression	0.89	1	Passed (89%)	1.15	1.0 D + 1.0 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

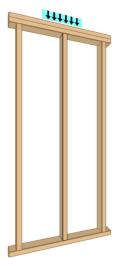
		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	800.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com


INTERIOR BEARING STAGGERED 2X4, GRID 12, LEVEL 3 (FOOTING STEP) 2 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	1760	3852	Passed (46%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	1760	7383	Passed (24%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.06 @ mid-span	0.92	Passed (L/1913)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.40	1	Passed (40%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Max Unbraced Length

1'

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

· A 15% increase in the moment capacity has been added to account for repetitive member usage

Top Dbl 2X Douglas Fir-Larch Building Code : IBC 2 Base 2V Douglas Fir Larch Building Code : IBC 2	Supports	Туре	Material	System : Wall
Paso 2V Douglas Eir Larch	Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud
	Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

			-		
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	-	800.0	ROOF
2 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 4

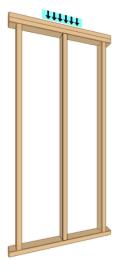
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com Job Notes

9/6/2022 4:52:18 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Stud Walls Page 15 / 35


INTERIOR BEARING STAGGERED 2X4, GRID 12, LEVEL 3 (FOOTING STEP - ROOF DECK) 2 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	2647	3852	Passed (69%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2647	7383	Passed (36%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.09 @ mid-span	0.92	Passed (L/1272)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.97	1	Passed (97%)	1.15	1.0 D + 0.75 L + 0.75 S

• Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

· A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Building Code :
Base	2X	Douglas Fir-Larch	Design Methodo

Drawing	IS	Concept	tual	

Vortical

	1				
		-			
		Dead	Floor Live	Snow	
Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments

ember Type : Stud wilding Code : IBC 2018 esign Methodology : ASD

Vertical Loads					
1 - Point (PLF)	16.00"	-	-	-	ROOF
2 - Point (PLF)	16.00"	260.0	600.0	1700.0	LEVEL 4 (DECK)

Max Unbraced Length

Weyerhaeuser Notes

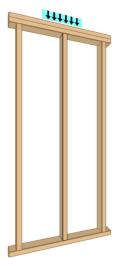
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor
Anthem Structural Engineers
(303) 848-8497
staylor@anthemstructural.com

Job Notes

9/6/2022 4:52:18 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Stud Walls Page 16 / 35


INTERIOR BEARING STAGGERED 2X4, GRID 12, LEVEL 2 (FOOTING STEP) 2 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	2507	3852	Passed (65%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2507	7383	Passed (34%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1343)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.85	1	Passed (85%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Max Linhang and Longeth

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall Member Type : Stud Building Code : IBC 2018
Тор	Dbl 2X	Douglas Fir-Larch	
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments	
1'		

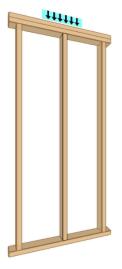
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	-	800.0	ROOF
2 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 4
3 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 3

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

orteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers	
303) 848-8497	
taylor@anthemstructural.com	


INTERIOR BEARING STAGGERED 2X4, GRID 12, LEVEL 1 (FOOTING STEP) 3 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	3253	5777	Passed (56%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	3253	10664	Passed (31%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.07 @ mid-span	0.92	Passed (L/1552)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.61	1	Passed (61%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.083333 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall Member Type : Stud Building Code : IBC 2018
Тор	Dbl 2X	Douglas Fir-Larch	
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

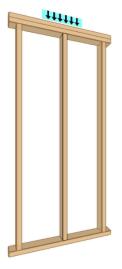
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	160.0	-	800.0	ROOF
2 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 4
3 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 3
4 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com


INTERIOR BEARING STAGGERED 2X4, GRID 12, LEVEL 1 (FOOTING STEP - ROOF DECK) 3 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

FAILED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	4140	5777	Passed (72%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	4140	10664	Passed (39%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.09 @ mid-span	0.92	Passed (L/1220)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	1.08	1	Failed (108%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.083333 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

-			
Тор	Dbl 2X		Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

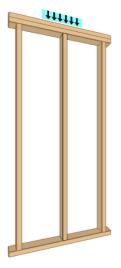
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	-	-	-	ROOF
2 - Point (PLF)	16.00"	260.0	600.0	1700.0	LEVEL 4 (DECK)
3 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 3
4 - Point (PLF)	16.00"	260.0	400.0	-	LEVEL 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	


INTERIOR BEARING STAGGERED 2X4, GRID 17, LEVEL 4

1 piece(s) 2 x 4 HF No.2 @ 8" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 8.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	1152	1926	Passed (60%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	1152	4102	Passed (28%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1461)		1.0 D + 1.0 S
Bending/Compression	0.70	1	Passed (70%)	1.15	1.0 D + 1.0 S

Comments

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : Wall	
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018	
Base	2X	Douglas Fir-Larch	Design Methodology : ASD	

Drawing is Conceptual

		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (PLF)	8.00"	288.0	1440.0	ROOF

Max Unbraced Length

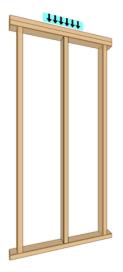
1'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com



INTERIOR BEARING STAGGERED 2X4, GRID 17, LEVEL 3 2 piece(s) 2 x 4 HF No.2 @ 12" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 12.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	2376	3852	Passed (62%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2376	7383	Passed (32%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1417)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.75	1	Passed (75%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Top Dbl 2X Douglas Fir-Larch Building Code : IBC 2 Base 2V Douglas Fir Larch Building Code : IBC 2	Supports	Туре	Material	System : Wall
Paso 2V Douglas Eir Larch	Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud
	Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (PLF)	12.00"	288.0	-	1440.0	ROOF
2 - Point (PLF)	12.00"	468.0	720.0	-	LEVEL 4

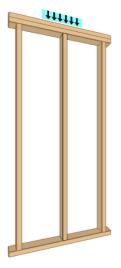
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497	
staylor@anthemstructural.com	

INTERIOR BEARING STAGGERED 2X4, GRID 17, LEVEL 2


2 piece(s) 2 x 4 HF No.2 @ 8" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 8.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	2256	3852	Passed (59%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2256	7383	Passed (31%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.07 @ mid-span	0.92	Passed (L/1492)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.67	1	Passed (67%)	1.15	1.0 D + 0.75 L + 0.75 S

• Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD
			= 5

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	8.00"	288.0	-	1440.0	ROOF
2 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 4
3 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 3

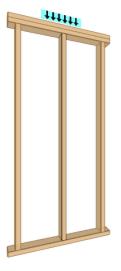
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers (303) 848-8497
staylor@anthemstructural.com

INTERIOR BEARING STAGGERED 2X4, GRID 17, LEVEL 1


3 piece(s) 2 x 4 HF No.2 @ 8" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 8.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	2928	5777	Passed (51%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2928	10664	Passed (27%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.06 @ mid-span	0.92	Passed (L/1724)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.49	1	Passed (49%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.083333 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

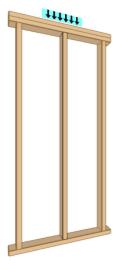
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	8.00"	288.0	-	1440.0	ROOF
2 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 4
3 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 3
4 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	


INTERIOR BEARING STAGGERED 2X4, GRID 17, LEVEL 1 (ROOF DECK) 3 piece(s) 2 x 4 HF No.2 @ 8" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 8.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (63%)		
Compression (lbs)	3726	5777	Passed (64%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	3726	10664	Passed (35%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1355)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.83	1	Passed (83%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.083333 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments		
1'			

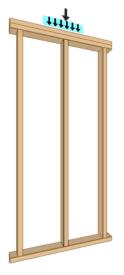
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	8.00"	-	-	-	ROOF
2 - Point (PLF)	8.00"	468.0	1080.0	3060.0	LEVEL 4 (DECK)
3 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 3
4 - Point (PLF)	8.00"	468.0	720.0	-	LEVEL 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	


PASSED

INTERIOR BEARING STAGGERED 2X4, STAIR WALL, LEVEL 1 1 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 10' 3"

Member Height: 9' 10 1/2"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (68%)		
Compression (lbs)	1050	1678	Passed (63%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	1050	2658	Passed (40%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.99	Passed (L/1496)		1.0 D + 1.0 L
Bending/Compression	0.78	1	Passed (78%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD
Base	2X	Hem Fir	

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

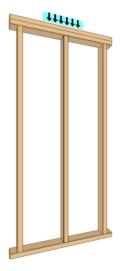
		Dead	Floor Live	
Vertical Loads	Spacing	(0.90)	(1.00)	Comments
1 - Point (PLF)	16.00"	130.0	320.0	LEVEL 2
2 - Point (lb)	N/A	130	320	LEVEL 3

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor	
Anthem Structural Engineers	
(303) 848-8497	
staylor@anthemstructural.com	



INTERIOR BEARING 2X6, GRID 17, LEVEL 4 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	2304	6618	Passed (35%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	2304	6445	Passed (36%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.06 @ mid-span	0.92	Passed (L/1804)		1.0 D + 1.0 S
Bending/Compression	0.41	1	Passed (41%)	1.15	1.0 D + 1.0 S

Comments

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD
			9, 9,

Drawing is Conceptual

		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (PLF)	16.00"	288.0	1440.0	ROOF

Max Unbraced Length

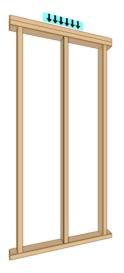
1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	-



INTERIOR BEARING 2X6, GRID 17, LEVEL 3 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	3168	6618	Passed (48%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	3168	6445	Passed (49%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1312)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.71	1	Passed (71%)	1.15	1.0 D + 0.75 L + 0.75 S

Comments

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Max Unbraced Length

1'

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : W
Тор	Dbl 2X	Douglas Fir-Larch	Member Ty Building Co
Base	2X	Douglas Fir-Larch	Design Met

System : Wall Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	1440.0	ROOF
2 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 4

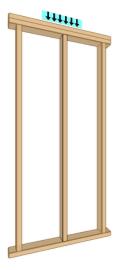
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers
(303) 848-8497
staylor@anthemstructural.com

INTERIOR BEARING 2X6, GRID 17, LEVEL 3 (ROOF DECK)


2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	4764	13236	Passed (36%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	4764	11602	Passed (41%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.06 @ mid-span	0.92	Passed (L/1745)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.43	1	Passed (43%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Max Unbraced Length

1'

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

· A 15% increase in the moment capacity has been added to account for repetitive member usage

Top Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base 2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	-	-	-	ROOF
2 - Point (PLF)	16.00"	468.0	1080.0	3060.0	LEVEL 4 (DECK)

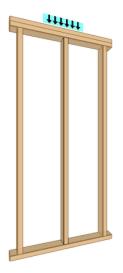
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com Job Notes

9/6/2022 4:52:18 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Stud Walls Page 28 / 35


PASSED

INTERIOR BEARING 2X6, GRID 17, LEVEL 2 2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	4512	13236	Passed (34%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	4512	11602	Passed (39%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.06 @ mid-span	0.92	Passed (L/1842)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.40	1	Passed (40%)	1.15	1.0 D + 0.75 L + 0.75 S

• Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	1440.0	ROOF
2 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 4
3 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 3

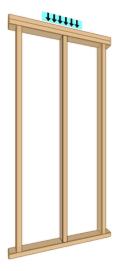
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497	
staylor@anthemstructural.com	

INTERIOR BEARING 2X6, GRID 17, LEVEL 2 (ROOF DECK)


2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Actual	Allowed	Result	LDF	Load: Combination
20	50	Passed (40%)		
7548	13236	Passed (57%)	1.15	1.0 D + 0.75 L + 0.75 S
7548	11602	Passed (65%)		1.0 D + 0.75 L + 0.75 S
0				N/A
0	N/A	Passed (N/A)		N/A
0 @ mid-span	N/A	Passed (N/A)		N/A
0.10 @ mid-span	0.92	Passed (L/1101)		1.0 D + 0.75 L + 0.75 S
0.99	1	Passed (99%)	1.15	1.0 D + 0.75 L + 0.75 S
	20 7548 7548 0 0 0 @ mid-span 0.10 @ mid-span	20 50 7548 13236 7548 11602 0 0 N/A 0@mid-span N/A 0.10@mid-span 0.92	20 50 Passed (40%) 7548 13236 Passed (57%) 7548 11602 Passed (65%) 0 0 N/A Passed (N/A) 0@mid-span N/A Passed (N/A) 0.10@mid-span 0.92 Passed (L/1101)	20 50 Passed (40%) 7548 13236 Passed (57%) 1.15 7548 11602 Passed (65%) 0 0 N/A Passed (N/A) 0@mid-span N/A Passed (N/A) 0.10@mid-span 0.92 Passed (L/1101)

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max	Unbraced Lei	ngth		Comments			
1'							
		F1 11	0				

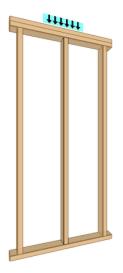
		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	-	-	1440.0	ROOF
2 - Point (PLF)	16.00"	468.0	1080.0	3060.0	LEVEL 4 (ROOF DECK)
3 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 3

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

orteWEB Software Operator
Samantha Taylor Inthem Structural Engineers 303) 848-8497
taylor@anthemstructural.com


PASSED

INTERIOR BEARING 2X6, GRID 17, LEVEL 1 2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	5856	13236	Passed (44%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	5856	11602	Passed (50%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.08 @ mid-span	0.92	Passed (L/1419)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.62	1	Passed (62%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD
Base	2X	Douglas Fir-Larch	

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	1440.0	ROOF
2 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 4
3 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 3
4 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 2

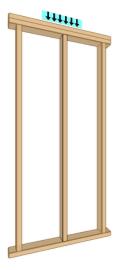
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	1
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com	

INTERIOR BEARING 2X6, GRID 17, LEVEL 1 (ROOF DECK)


2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	7452	13236	Passed (56%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	7452	11602	Passed (64%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.10 @ mid-span	0.92	Passed (L/1115)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.97	1	Passed (97%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Stud Building Code : IBC 2018
Base	2X	Douglas Fir-Larch	Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	-	-	-	ROOF
2 - Point (PLF)	16.00"	468.0	1080.0	3060.0	LEVEL 4 (DECK)
3 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 3
4 - Point (PLF)	16.00"	468.0	720.0	-	LEVEL 2

Weyerhaeuser Notes

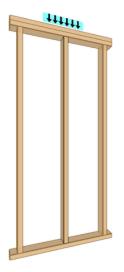
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497	
staylor@anthemstructural.com	

Job Notes

9/6/2022 4:52:18 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Stud Walls Page 32 / 35



INTERIOR BEARING 2X6, STAIR WALL, LEVEL 1 1 piece(s) 2 x 4 HF No.2 @ 16" OC

Wall Height: 10' 3"

Member Height: 9' 10 1/2"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (68%)		
Compression (lbs)	600	1678	Passed (36%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	600	2658	Passed (23%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.05 @ mid-span	0.99	Passed (L/2619)		1.0 D + 1.0 L
Bending/Compression	0.26	1	Passed (26%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X	Hem Fir	Design Methodology : ASD
			5

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

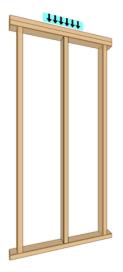
			Floor Live	
Vertical Load	Spacing	(0.90)	(1.00)	Comments
1 - Point (PLF)	16.00"	130.0	320.0	LEVEL 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers (303) 848-8497 staylor@anthemstructural.com


PASSED

INTERIOR BEARING 2X6, GRID 16, LEVEL 3 (ROOF DECK) 2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Actual	Allowed	Result	LDF	Load: Combination
20	50	Passed (40%)		
4235	13236	Passed (32%)	1.15	1.0 D + 0.75 L + 0.75 S
4235	11602	Passed (37%)		1.0 D + 0.75 L + 0.75 S
0				N/A
0	N/A	Passed (N/A)		N/A
0 @ mid-span	N/A	Passed (N/A)		N/A
0.06 @ mid-span	0.92	Passed (L/1963)		1.0 D + 0.75 L + 0.75 S
0.36	1	Passed (36%)	1.15	1.0 D + 0.75 L + 0.75 S
	20 4235 4235 0 0 0 @ mid-span 0.06 @ mid-span	20 50 4235 13236 4235 11602 0 0 N/A 0@mid-span N/A 0.06 @mid-span 0.92	20 50 Passed (40%) 4235 13236 Passed (32%) 4235 11602 Passed (37%) 0 0 N/A Passed (N/A) 0@mid-span N/A Passed (N/A) 0.06 @mid-span 0.92 Passed (L/1963)	20 50 Passed (40%) 4235 13236 Passed (32%) 1.15 4235 11602 Passed (37%) 0 0 Passed (N/A) 0 N/A Passed (N/A) 0@mid-span N/A Passed (N/A) 0.06@mid-span 0.92 Passed (L/1963)

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material System : Wall			
Тор	Dbl 2X	Douglas Fir-Larch Member Type : Stud Building Code : IBC 2			
Base	2X	Douglas Fir-Larch	Design Methodology : AS		

Drawing is Conceptual

1'	

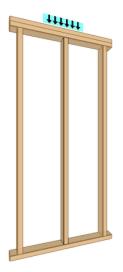
Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	-	-	-	ROOF
2 - Point (PLF)	16.00"	416.0	960.0	2720.0	LEVEL 4 (DECK)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Samantha Taylor Anthem Structural Engineers (303) 848-8497	
staylor@anthemstructural.com	


PASSED

INTERIOR BEARING 2X6, GRID 16, LEVEL 2 2 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 9' 7 1/8"

Member Height: 9' 2 5/8"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (40%)		
Compression (lbs)	4011	13236	Passed (30%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	4011	11602	Passed (35%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.05 @ mid-span	0.92	Passed (L/2072)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.33	1	Passed (33%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

• A bearing area factor of 1.125 has been applied to base plate bearing capacity.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

• A 15% increase in the moment capacity has been added to account for repetitive member usage

Supports	Туре	Material System : Wall Douglas Fir-Larch Building Code : IRC	
Тор	Dbl 2X		
Base	2X	Douglas Fir-Larch	Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

		Dead	Floor Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Point (PLF)	16.00"	256.0	-	1280.0	ROOF
2 - Point (PLF)	16.00"	416.0	640.0	-	LEVEL 4
3 - Point (PLF)	16.00"	416.0	640.0	-	LEVEL 3

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Samantha Taylor Anthem Structural Engineers (303) 848-8497
staylor@anthemstructural.com

HANGERS

HS Hanger Selector

3D Model

Input

Settings

Country	Connection Type
USA	Joist (Flush Top)

Job Settings

Hanger Type	Fastener Type	Download Duration	Uplift Duration	
All Types	All Types	Snow (115)	Quake/Wind (160)	

Header

	Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish
La	amimated Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	2	Beam#6, #13	No

Joist

Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish	Download (ASD)	Uplift (ASD)
Solid Sawn	HF (Hem Fir)	2x (1 1/2")	12 (11 1/4")	1	Joist #3	No	282	333

Hanger Options

SI	skew Type	Skew (Degrees)	Slope Type	Slope (Degrees)	Open Closed Type	Top Flange Bend (Degrees)	Sloped Down Type	Top Flange Slope (Degrees)	Offset Direction	High, Low, Center Flush
Ν	No Skew	0	No Sloped	0	Normal	0	No Sloped	0	Centered (No Offset)	Center

Output

Results

Show Optimized Models: Yes

Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
LUS28	Lowest	1.563	6.625	1.75	-	-	6-10d	3-10d	1160	870
LUS28	+2.00%	1.563	6.625	1.75	-	-	6-10d	4-10d	1275	1105
LUS28	+3.00%	1.563	6.625	1.75	-	-	6-10dx1.5	3-10d	1000	870
LUS28	+5.00%	1.563	6.625	1.75	-	-	6-10dx1.5	4-10d	1130	1105
LU210	+9.00%	1.563	7.813	1.5	-	-	10-10d	6-10dx1.5	1325	850
LU210	+13.00%	1.563	7.813	1.5	-	-	10-16d	6-10dx1.5	1475	850
LU210	+14.00%	1.563	7.813	1.5	-	-	10-10dx1.5	6-10dx1.5	1095	850
LUS210	+17.00%	1.563	7.813	1.75	-	-	8-10d	4-10d	1545	1105
LUS210	+21.00%	1.563	7.813	1.75	-	-	8-10dx1.5	4-10d	1355	1105
LUC210Z	+71.00%	1.563	7.75	1.75	-	-	10-10d	6-10dx1.5	1345	945

Table Notes

1. All loads are displayed in units of pounds and based on Allowable Stress Design

2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

HS Hanger Selector

3D Model

Input

Settings

Country	Connection Type
USA	Joist (Flush Top)

Job Settings

Hanger Type	Fastener Type	Download Duration	Uplift Duration	
All Types	All Types	Snow (115)	Quake/Wind (160)	

Header

N	Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish
Lamima	ated Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	2	Beam #6, Beam #13	No

Joist

Me	lember Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish	Download (ASD)	Uplift (ASD)
S	Solid Sawn	HF (Hem Fir)	2x (1 1/2")	12 (11 1/4")	2	Beam #5	No	282	333

Hanger Options

SI	skew Type	Skew (Degrees)	Slope Type	Slope (Degrees)	Open Closed Type	Top Flange Bend (Degrees)	Sloped Down Type	Top Flange Slope (Degrees)	Offset Direction	High, Low, Center Flush
Ν	No Skew	0	No Sloped	0	Normal	0	No Sloped	0	Centered (No Offset)	Center

Output

Results

Show Optimized Models: Yes

Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
LUS28-2	Lowest	3.125	7	2	-	-	6-10d	3-10d	1120	745
LUS28-2	+2.00%	3.125	7	2	-	-	6-10d	4-10d	1225	890
LUS28-2	+2.00%	3.125	7	2	-	-	6-10dx1.5	3-10d	975	745
LUS28-2	+2.00%	3.125	7	2	-	-	6-16d	3-16d	1385	875
LUS28-2	+4.00%	3.125	7	2	-	-	6-10dx1.5	4-10d	1080	890
LUS28-2	+4.00%	3.125	7	2	-	-	6-16d	4-16d	1525	1045
LUS210-2	+12.00%	3.125	8.938	2	-	-	8-10d	6-10d	1705	1230
LUS210-2	+14.00%	3.125	8.938	2	-	-	8-10dx1.5	6-10d	1515	1230
LUS210-2	+15.00%	3.125	8.938	2	-	-	8-16d	6-16d	2130	1445
LUS28-2	+86.00%	3.125	7	2	-	-	6-SD9112	4-SD9212	1570	1100

Table Notes

1. All loads are displayed in units of pounds and based on Allowable Stress Design

2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

HS Hanger Selector

3D Model

Input

Settings

Country	Connection Type
USA	Joist (Flush Top)

Job Settings

Hanger Type	Fastener Type	Download Duration	Uplift Duration
All Types	All Types	Snow (115)	Quake/Wind (160)

Header

Me	ember Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish
Lamimate	ed Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	3	Beam #6, Beam #13	No

Joist

Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish	Download (ASD)	Uplift (ASD)
Lamimated Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	2	Beam #3, Beam #14	No	3320	0

Hanger Options

Skew Type	Skew (Degrees)	Slope Type	Slope (Degrees)	Open Closed Type	Top Flange Bend (Degrees)	Sloped Down Type	Top Flange Slope (Degrees)	Offset Direction	High, Low, Center Flush
No Skew	0	No Sloped	0	Normal	0	No Sloped	0	Centered (No Offset)	Center

Output

Results

Show Optimized Models: Yes

	Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
	<u>HHUS410</u>	Lowest	3.625	9	3	-	-	30-10d	10-10d	5330	2425
	<u>HHUS410</u>	+2.00%	3.625	9	3	-	-	30-16d	10-16d	6440	3550
	<u>HU412</u>	+51.00%	3.563	10.344	2.5	-	-	22-16d	10-10d	3695	1780
A second second	<u>HUC412</u>	+51.00%	3.563	10.344	2.5	-	-	22-16d	10-10d	3695	1780
	BA3.56/14	+57.00%	3.563	13.969	3	2.5	-	10-16d	2-10dx1.5	4015	255
	BA3.56/14	+59.00%	3.563	13.969	3	2.5	-	10-10d	8-10dx1.5	3555	1275
	BA3.56/14	+60.00%	3.563	13.969	3	2.5	-	10-16d	8-10dx1.5	4720	1275
Second B.	<u>HUS412</u>	+63.00%	3.563	10.563	2	-	-	10-SD10212	10-SD10212	3820	2830
	<u>HU414</u>	+80.00%	3.563	11.906	2.5	-	-	24-10d	12-10d	3420	1780
	<u>HUC414</u>	+80.00%	3.563	11.906	2.5	-	-	24-10d	12-10d	3420	1780

Table Notes

1. All loads are displayed in units of pounds and based on Allowable Stress Design

2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

HS Hanger Selector

3D Model

Input

Settings

Country	Connection Type
USA	Joist (Flush Top)

Job Settings

Hanger Type	Fastener Type	Download Duration	Uplift Duration
All Types	All Types	Snow (115)	Quake/Wind (160)

Header

Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish
Lamimated Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	2	Beam #3, Beam #7	No

Joist

Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish	Download (ASD)	Uplift (ASD)
I-Joist	DF (Douglas Fir)	2 5/16"	14"	1	Joist #2	No	603	0

Hanger Options

Skew Type	Skew (Degrees)	Slope Type	Slope (Degrees)	Open Closed Type	Top Flange Bend (Degrees)	Sloped Down Type	Top Flange Slope (Degrees)	Offset Direction	High, Low, Center Flush
No Skew	0	No Sloped	0	Normal	0	No Sloped	0	Centered (No Offset)	Center

Output

Results

Show Optimized Models: Yes

Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
<u>IUS2.37/14*</u>	Lowest	2.438	13.969	2	-	-	12-10d	2-Strong-Grip	1615	70
<u>IUS2.37/14*</u>	+2.00%	2.438	13.969	2	-	-	14-10d	2-Strong-Grip	1805	70
<u>IUS2.37/14*</u>	+2.00%	2.438	13.969	2	-	-	12-10dx1.5	2-Strong-Grip	1325	70
<u>IUS2.37/14*</u>	+4.00%	2.438	13.969	2	-	-	14-10dx1.5	2-Strong-Grip	1450	70
<u>ITS2.37/14</u>	+8.00%	2.438	13.938	2	1.438	-	2-10d	2-Strong-Grip	1550	120
<u>ITS2.37/14</u>	+8.00%	2.438	13.938	2	1.438	-	2-16d	2-Strong-Grip	1785	120
<u>ITS2.37/14</u>	+9.00%	2.438	13.938	2	1.438	-	2-10dx1.5	2-Strong-Grip	1395	120
<u>IUS2.37/9.5*</u>	+9.00%	2.438	9.469	2	-	-	8-10d	2-10dx1.5	1075	345
<u>IUS2.37/9.5*</u>	+10.00%	2.438	9.469	2	-	-	8-10dx1.5	2-10dx1.5	885	345
<u>IUS2.37/11.88*</u>	+20.00%	2.438	11.844	2	-	-	10-10d	2-10dx1.5	1345	345

Table Notes

- * Web Stiffener Required. Refer to current Wood Construction Connectors catalog for General Notes & Installation Instructions.
 - 1. All loads are displayed in units of pounds and based on Allowable Stress Design
 - 2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

HS Hanger Selector

3D Model

Input

Settings

Country	Connection Type
USA	Joist (Flush Top)

Job Settings

Hanger Type	Fastener Type	Download Duration	Uplift Duration
All Types	All Types	Snow (115)	Quake/Wind (160)

Header

N	Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish
Lamima	ated Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	2	Beam #12	No

Joist

Member T	pe Lumb	ber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish	Download (ASD)	Uplift (ASD)
I-Joist	DF (D	Douglas Fir)	1 3/4"	14"	1	Joist #6	No	433	0

Hanger Options

Skew Type	Skew (Degrees)	Slope Type	Slope (Degrees)	Open Closed Type	Top Flange Bend (Degrees)	Sloped Down Type	Top Flange Slope (Degrees)	Offset Direction	High, Low, Center Flush
No Skew	0	No Sloped	0	Normal	0	No Sloped	0	Centered (No Offset)	Center

Output

Results

Show Optimized Models: Yes

Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
<u>IUS1.81/14*</u>	Lowest	1.875	13.969	2	-	-	12-10d	2-Strong-Grip	1615	70
<u>ITS1.81/14</u>	+2.00%	1.875	13.938	2	1.375	-	2-10d	2-Strong-Grip	1550	120
<u>IUS1.81/14*</u>	+2.00%	1.875	13.969	2	-	-	12-10dx1.5	2-Strong-Grip	1325	70
<u>IUS1.81/14*</u>	+2.00%	1.875	13.969	2	-	-	14-10d	2-Strong-Grip	1805	70
<u>IUS1.81/9.5*</u>	+2.00%	1.875	9.469	2	-	-	8-10d	2-10dx1.5	1075	345
<u>ITS1.81/14</u>	+3.00%	1.875	13.938	2	1.375	-	2-16d	2-Strong-Grip	1785	120
<u>ITS1.81/14</u>	+3.00%	1.875	13.938	2	1.375	-	2-10dx1.5	2-Strong-Grip	1395	120
<u>IUS1.81/9.5*</u>	+3.00%	1.875	9.469	2	-	-	8-10dx1.5	2-10dx1.5	885	345
<u>IUS1.81/14*</u>	+4.00%	1.875	13.969	2	-	-	14-10dx1.5	2-Strong-Grip	1450	70
<u>IUS1.81/11.88*</u>	+14.00%	1.875	11.844	2	-	-	10-10d	2-10dx1.5	1345	345

Table Notes

- * Web Stiffener Required. Refer to current Wood Construction Connectors catalog for General Notes & Installation Instructions.
 - 1. All loads are displayed in units of pounds and based on Allowable Stress Design
 - 2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

HS Hanger Selector

3D Model

Input

Settings

Country	Connection Type
USA	Joist (Flush Top)

Job Settings

Hanger Type	Fastener Type	Download Duration	Uplift Duration
All Types	All Types	Snow (115)	Quake/Wind (160)

Header

Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish
Lamimated Veneer Lumber	DF/SP (Douglas fir or Southern Pine)	1 3/4" x	14"	4	Beam #1, Beam #9	No

Joist

Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Lumber Finish	Download (ASD)	Uplift (ASD)
Solid Sawn	HF (Hem Fir)	2x (1 1/2")	12 (11 1/4")	2	Beam #4, Beam #10	No	2138	0

Hanger Options

SI	skew Type	Skew (Degrees)	Slope Type	Slope (Degrees)	Open Closed Type	Top Flange Bend (Degrees)	Sloped Down Type	Top Flange Slope (Degrees)	Offset Direction	High, Low, Center Flush
Ν	No Skew	0	No Sloped	0	Normal	0	No Sloped	0	Centered (No Offset)	Center

Output

Results

Show Optimized Models: Yes

Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
LUS210-2	Lowest	3.125	8.938	2	-	-	8-SD9112	6-SD9212	2235	1240
<u>U210-2</u>	+1.00%	3.125	8.5	2	-	-	14-16d	6-10d	2285	960
HUS210-2	+50.00%	3.125	9.188	2	-	-	8-16d	8-16d	2465	2820
LUS214-2	+50.00%	3.125	10.938	2	-	-	10-16d	6-16d	2450	1445
LUS214-2	+106.00%	3.125	10.938	2	-	-	10-SD9112	6-SD9212	2630	1650
<u>HUS28-2</u>	+108.00%	3.125	7.188	2	-	-	6-SD10212	6-SD10212	2290	1950
HUS212-2	+115.00%	3.125	11	2	-	-	10-10d	10-10d	2525	2880
HUS212-2	+117.00%	3.125	11	2	-	-	10-16d	10-16d	3080	3435
<u>HUS212-2</u>	+117.00%	3.125	11	2	-	-	10-10dx1.5	10-10d	2250	2880
HUS210-2	+152.00%	3.125	9.188	2	-	-	8-SD10212	8-SD10212	3055	2440

Table Notes

1. All loads are displayed in units of pounds and based on Allowable Stress Design

2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

L/LS/GA

Reinforcing and Skewable Angles

L - Staggered nail pattern reduces the possibility for splitting.

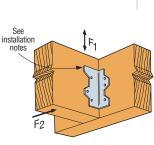
```
LS - Field-adjustable 0° to 135° angles.
```

GA - Gusset angles' embossed bend section provides added strength.

Material: L - 16 gauge; GA and LS - 18 gauge

Finish: Galvanized. Some products available in stainless steel or ZMAX® coating. See Corrosion Information, pp. 12-15.

Installation:


- Use all specified fasteners; see General Notes
- LS Field skewable; bend one time only
- Joist must be constrained against rotation (for example, with solid blocking) when using a single LS per connection
- Nail the L angle's wider leg into the joist to ensure table loads and allow correct nailing

These products are available with additional corrosion

protection. For more information, see p. 14.

Codes: See p. 11 for Code Reference Key Chart

Typical L50 Installation

SS For stainless-steel fasteners, see p.21.

L90

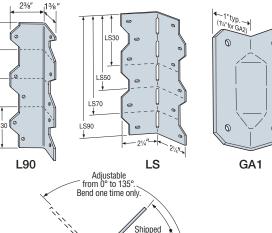
L70

. L50

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348-352 for more information.

Model No.	Fasteners (in.)	L (in.)	Load Direction	DF/SP Allowable Loads				SPF/HF Allowable Loads				
				Floor (100)	Snow (115)	Roof (125)	Wind/ Seismic (160)	Floor (100)	Snow (115)	Roof (125)	Wind/ Seismic (160)	Code Ref.
GA1	(4) 0.148 x 11/2	2¾	F ₁ , F ₂	235	270	290	350	200	230	250	300	IBC, FL, LA
	(4) #9 x 1 1⁄2" SD		F1	340	375	375	375	225	260	280	325	IBC, LA
	(4) #9 x 1 1⁄2" SD		F ₂	340	395	430	435	225	260	280	360	
	(6) 0.148 x 1 1/2	31⁄4	F1, F2	355	405	435	550	305	350	375	475	IBC, FL, LA
GA2	(6) #9 x 1 1/2" SD		F1	515	590	640	695	335	385	420	540	IBC, LA
	(6) #9 x 11/2" SD		F ₂	515	590	640	820	335	385	420	540	
1.00	(4) 0.148 x 1 ½	3	F1	245	250	250	250	210	215	215	215	
L30			F ₂	245	275	295	370	210	235	255	320	
150	(6) 0.148 x 1½	5	F1	365	415	445	525	315	355	385	450	
L50			F ₂	365	415	445	555	315	355	385	475	
L70	(8) 0.148 x 1 1/2	7	F ₁ , F ₂	485	550	595	740	415	475	510	635	
L90	(10) 0.148 x 11/2	9	F ₁ , F ₂	610	690	740	925	525	595	635	795	1
1000	(6) 0.148 x 1 1/2	3%	F1	320	320	320	320	275	275	275	275	IBC,
LS30	(6) 0.148 x 3		F1	355	395	395	395	305	340	340	340	FL, LA
LS50	(8) 0.148 x 1 1/2	41⁄8	F ₁	475	540	560	560	410	465	480	480]
L300	(8) 0.148 x 3		F1	475	540	580	730	410	465	500	630	
LS70	(10) 0.148 x 11⁄2	6¾	F1	590	645	645	645	510	555	555	555	
L3/0	(10) 0.148 x 3		F1	590	675	725	915	510	580	625	785	
LS90	(12) 0.148 x 11/2	71⁄8	F ₁	710	805	870	890	610	690	750	765]
L290	(12) 0.148 x 3		F1	710	805	870	1,040	610	690	750	895]

1. GA angles may be installed with 0.148" x 3" nails.

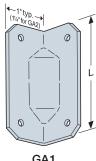

2. GA1 uplift is 425 lb. for DF and 300 lb. for SPF when installed with Strong-Tie® SD Connector screws.

3. GA2 uplift is 370 lb. for DF and 260 lb. for SPF when installed with Strong-Tie® SD Connector screws.

4. Connectors are required on both sides to achieve F2 loads in both directions.

5. Fasteners: Nail dimensions are listed diameter by length. SD screws are Simpson Strong-Tie® Strong-Drive SD Connector screws. See pp. 21-22 for fastener information.

UPDATED 07/01/22


at 45°

LS Top View

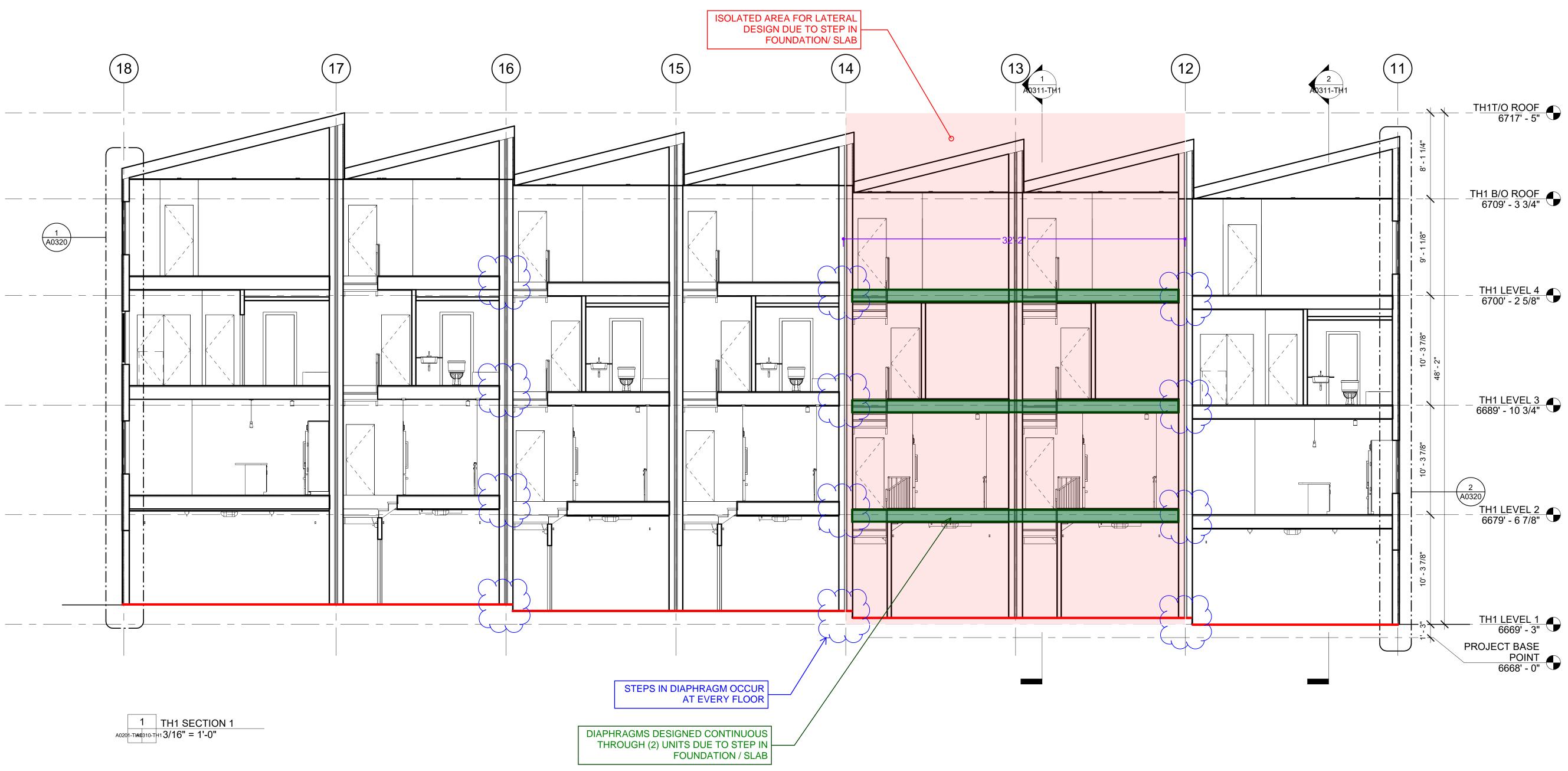
Uplift

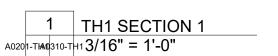
Typical GA Installation

SD

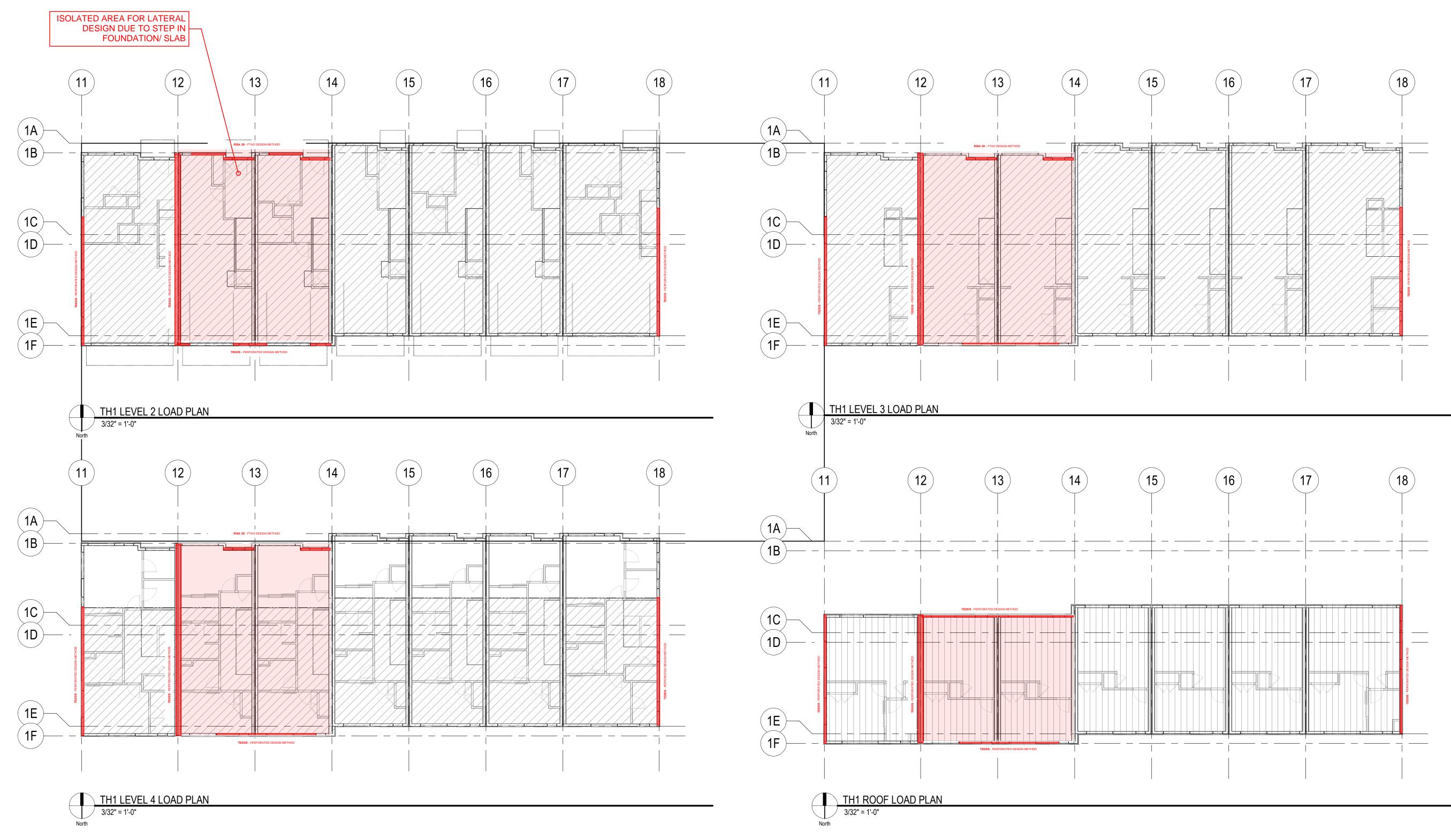
Typical LS70 Installation

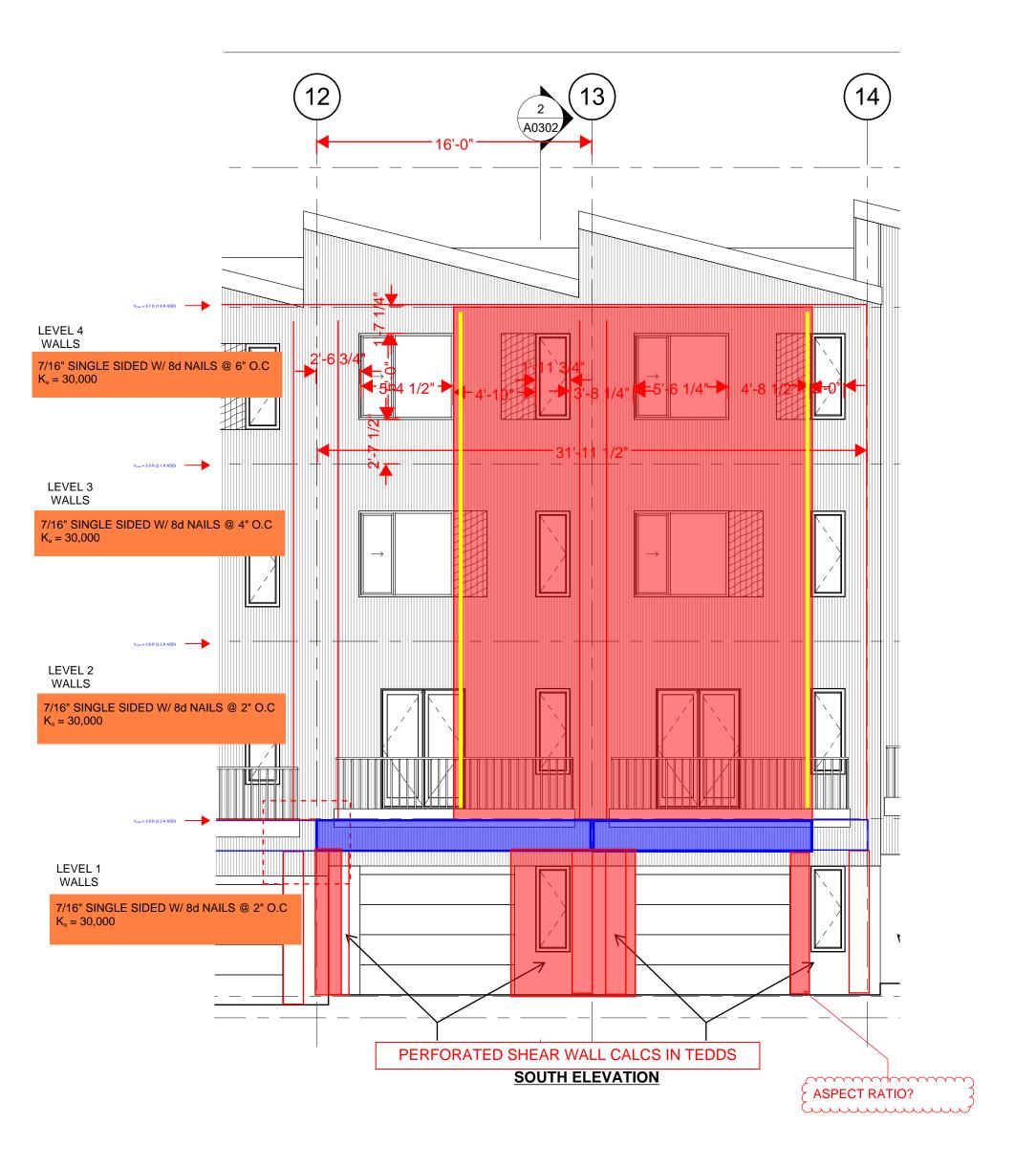
Straps and Ties


LATERAL DESIGN


ASD LOAD SUMMARY:

SEISMIC: V = 18.6 K $V_{ISOLATED UNIT} = 4.5 K$


WIND: $V_{N-S} = 61.0 \text{ K}$ wind governs N-S direction $V_{E-W} = 17.3 \text{ K}$ Visolated group = 17.3 K wind governs E-W direction


STEPS IN DIAPHRAGM/ FOUNDATION: TH1

SHEAR WALL KEY PLAN: TH1

WIND LOADS

WIND LOADING FROM CODE SEARCH:

Wind Pressure Coefficients

	CASE A			CASE B				
		8 = 14 deg						
Surface	GCpf	wł-GCpi	wł+GCpi		GCpf	wł-GCpi	wł+GCpi	
1	0.48	0.66	0.30		-0.45	-0.27	-0.63	
2	-0.69	-0.51	-0.87		-0.69	-0.51	-0.87	
3	-0.44	-0.26	-0.62		-0.37	-0.19	-0.55	
4	-0.37	-0.19	-0.55		-0.45	-0.27	-0.63	
5					0.40	0.58	0.22	
6					-0.29	-0.11	-0.47	
1E	0.72	0.90	0.54		-0.48	-0.30	-0.66	
2E	-1.07	-0.89	-1.25		-1.07	-0.89	-1.25	
3E	-0.63	-0.45	-0.81		-0.53	-0.35	-0.71	
4E	-0.56	-0.38	-0.74		-0.48	-0.30	-0.66	
5E					0.61	0.79	0.43	
6E					-0.43	-0.25	-0.61	

Ultimate Wind Surface Pressures (psf)

1	16.2 7.3	-6.6	-15.5
2	-12.5 -21.4	-12.5	-21.4
3	-6.3 -15.1	-4.7	-13.5
4	-4.8 -13.6	-6.6	-15.5
5		14.2	5.4
6		-2.7	-11.5
1E	22.2 13.4	-7.4	-16.2
2E	-21.9 -30.7	-21.9	-30.7
3E	-11.0 -19.8	-8.6	-17.4
4E	-9.2 -18.1	-7.4	-16.2
5E		19.4	10.6
6E		-6.1	-15.0

Parapet

Windward parapet = Leeward parapet =

34.4 psf (GCpn = +1.5) -22.9 psf (GCpn = -1.0)

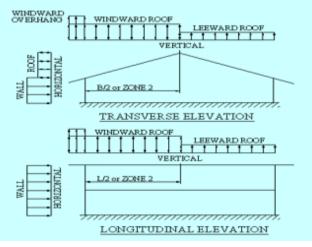
Horizontal MWFRS Simple Diaphragm Pressures (psf)

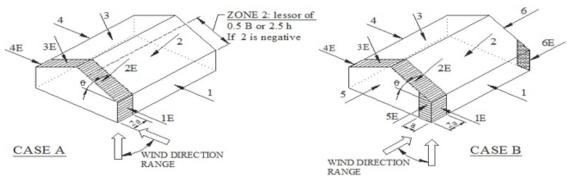
ransverse direction (normal to L)									
Interior Zone:	Wall	20.9	psf						
	Roof	-6.2	psf	**					
End Zone:	Wall	31.5	psf						
	Roof	-10.9	psf	**					

Longitudinal direction (parallel to L) Interior Zone: Wall 17.0 psf

End Zone: Wall 25.6 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

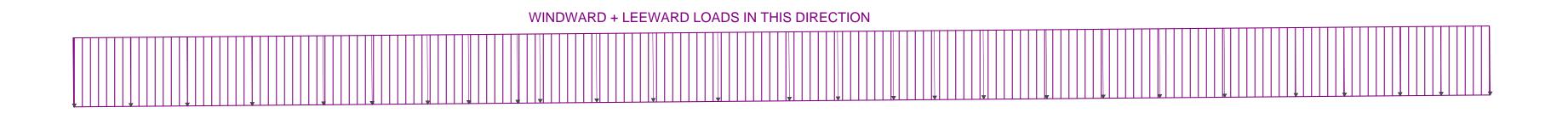

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. Windward roof overhangs =

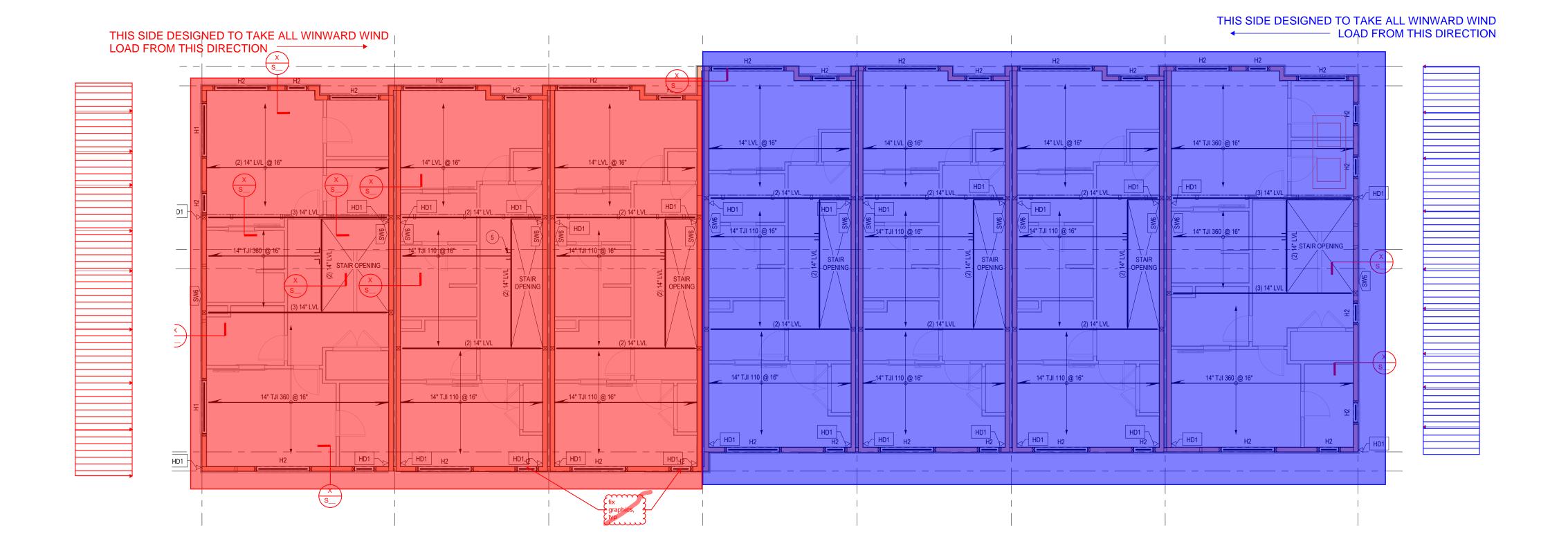

overnangs =

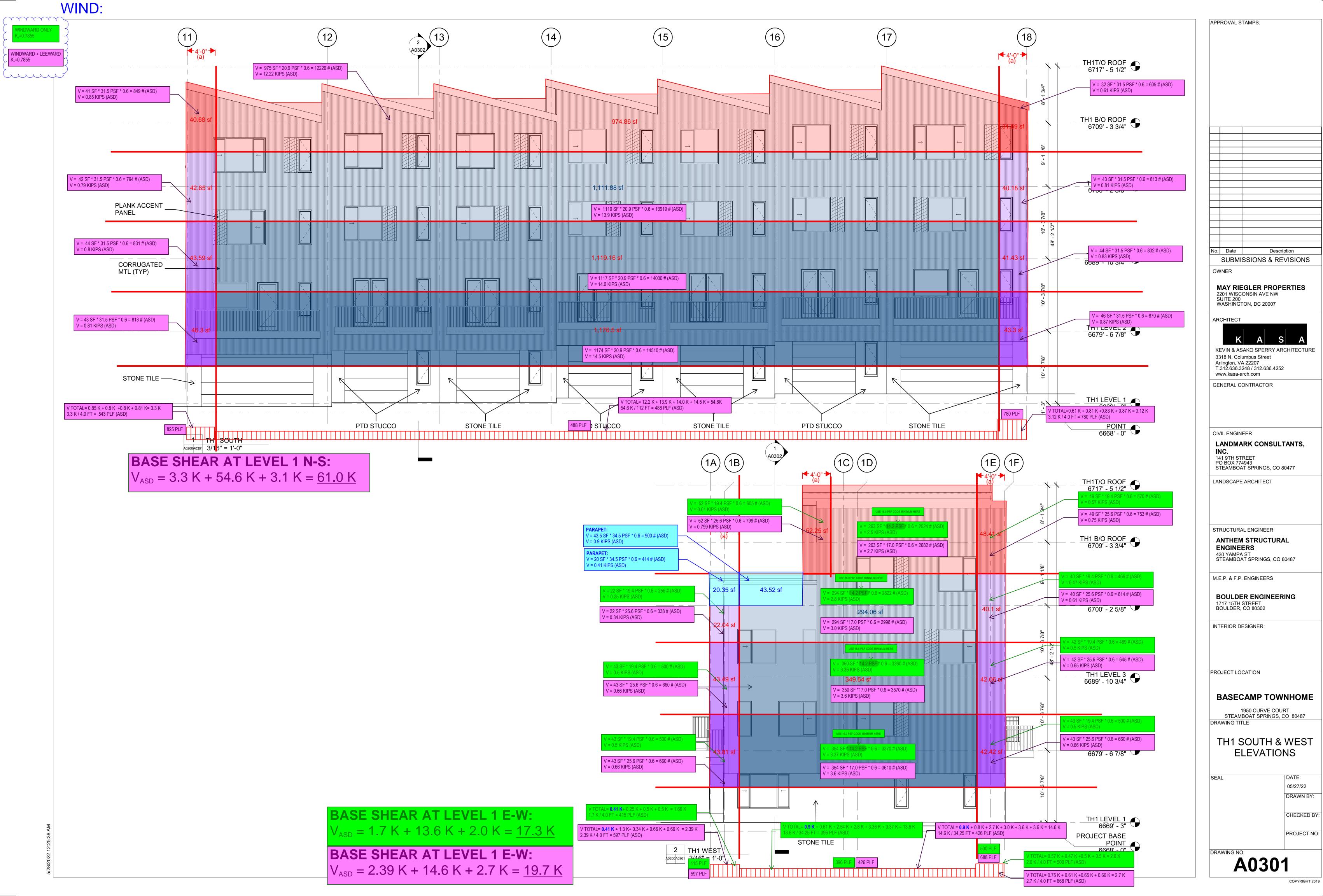
Zone Zhengin -

17.2 psf (upward) add to windward roof pressure

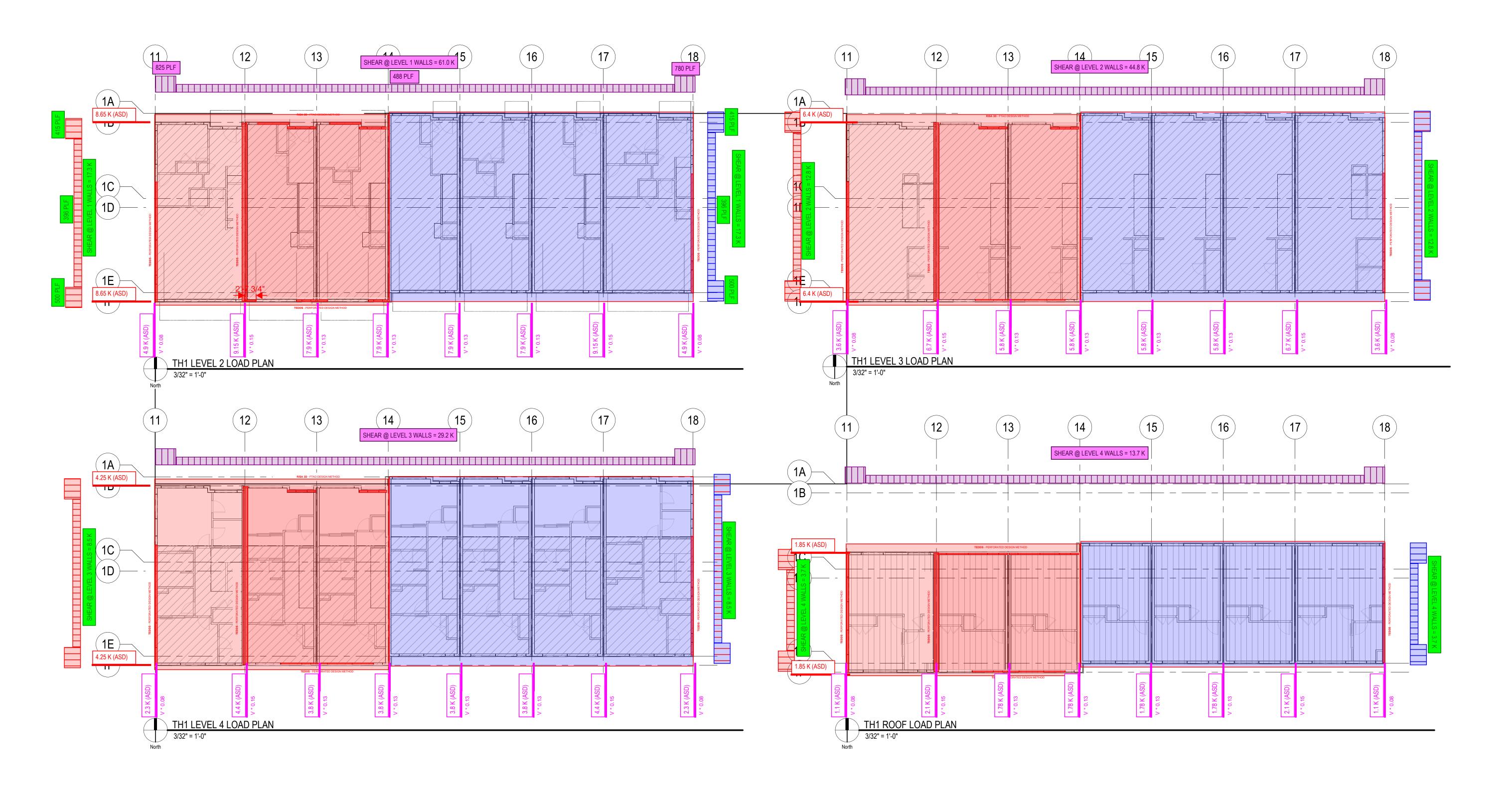
20.0 10






NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones


WIND LOAD JUSTIFICATION:

WIND LOAD DISTRIBUTION TH1

SEISMIC LOADS

Seismic	
	0.597
Ss	
S ₁	0.103
Fa	1.261
Fv	1.5
S _{MS}	0.753
S _{M1}	0.155
S _{DS}	0.502
S _{D1}	0.103
TL	4
PGA	0.419
PGA _M	0.502
F _{PGA}	1.2
le	1
Cv	0.998

 $\begin{array}{l} \label{eq:period} \text{PER ROUTT COUNTY POLICY: (see next page)} \\ S_{\text{DS MAX}} = 0.333 \text{ (need to update F, in code search)} \\ S_{\text{D1 MAX}} = 0.133 \text{ (see nk)} \end{array}$

3. Agricultural storage structures intended only for incidental human occupancy.

4. Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

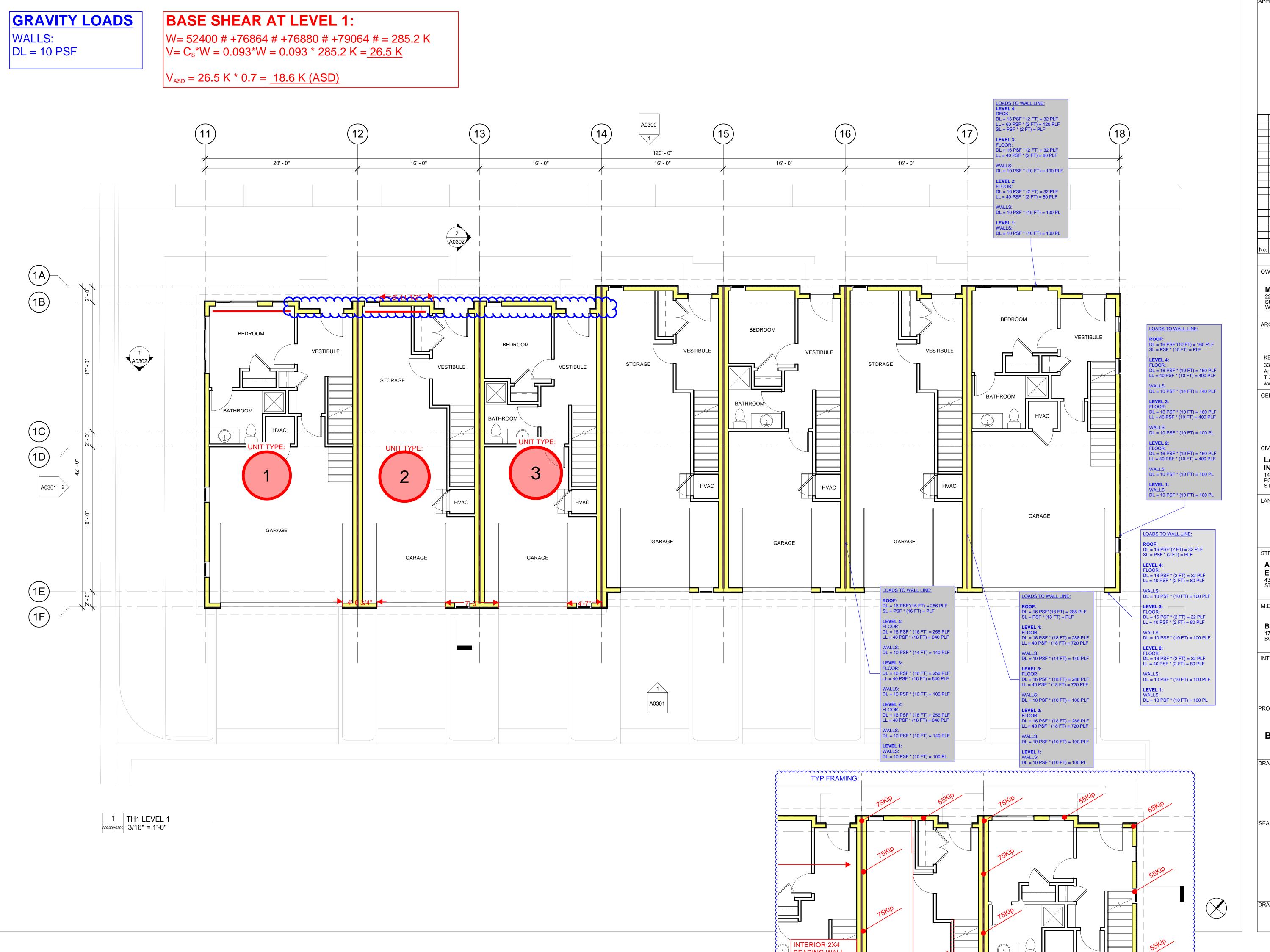
Routt County Building Department Local Policy Amendment to Section 1613 Earth quake Loads: All properties within Routt County Incorporated and Unincorporated Jurisdictions have been adopted and approved to be a Seismic Design Category C designation through our Building Code Adoption Approval Processes. Structures shall be designed in accordance with our local amendment policy using a Seismic Design Category C designation as the base level design standard. When approved by the Structural Engineer of Record through review of the Geotechnical Soils Report and Soils Site Class, the Seismic Category may be reduced by the Engineer of Record based on the known Soils Site Class and in accordance with ASCE-7 and Chapter 16 of the IBC.

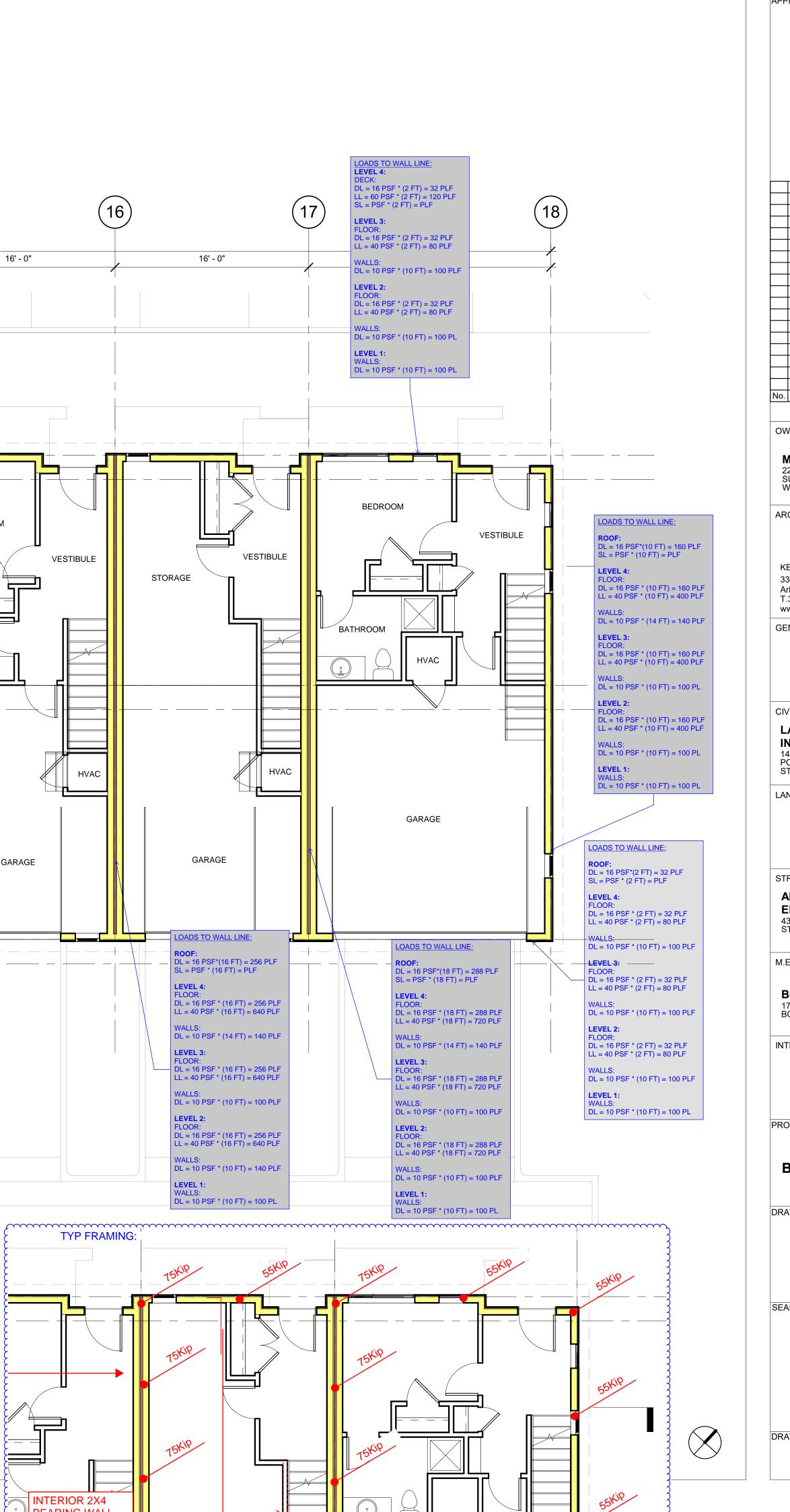
Structural Engineers Acceptable Design Parameters Local Routt County Building Department Policy: The Routt County Building Department has developed these design parameters to align with our Local Code Adoptions that were approved designating all of Routt County a Seismic Design Category C. This Policy has been created to provide maximum values for SDS and SD1 respectively to be used in the mapped areas throughout Routt County that have been designated Seismic Category D in accordance ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/. The parameters below may be used by Structural Engineers based on the Risk Factor of the Building to perform calculations to determine structural designs. The below parameters may be used with Site Class D- Default (See Section 11.4.3) being set on the ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/. Lower values may be used if justified by soil Site Class and resulting site-specific ground motion parameters set forth in ASCE 7-16 and USGS Seismic Design Data Map and approved by the Code Official.

- Risk Category I, II, and II Building: SDS = 0.333 and SD1 = 0.133
- Risk Category IV Building: SDS = 0.499 and SD1 = 0.199

The intent of setting these parameters and values is to help support Structural Engineers in designing buildings within the spirt of our Locally Approved Code Adoptions designating a standard Seismic Design Category C throughout all of Routt County, to avoid conflicts in what data would otherwise be provided through ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/.

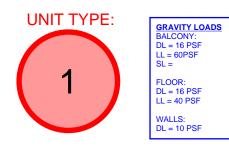
Routt County Regional Building Department 2018 IRC Code Adoption

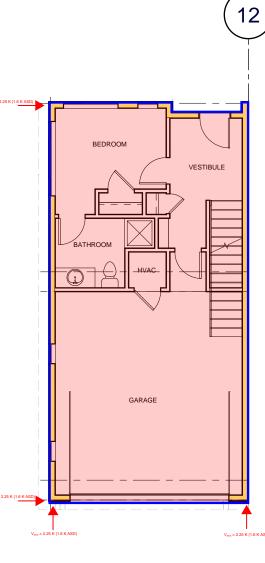

 Table R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA, is completed as follows:


- Ground Snow Load Case Study Area contact the Building Department for Ground Snow Load Valuations per site.
- Climate Zone 7
- Wind Speed 115 MPH (ultimate design wind speed)
- Topographic Effects No
- Seismic Design Category C Note: When approved by the Structural Engineer of Record through review of the Geotechnical Soils Report and Soils Site Class, the Seismic Category may be reduced

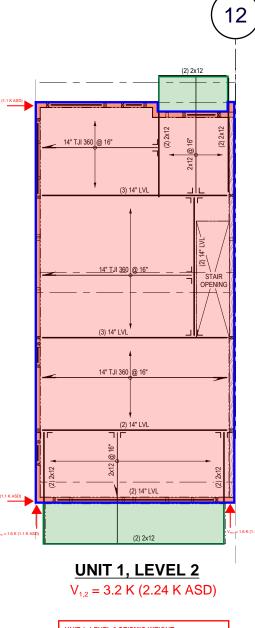
ROUTT County Regional Building Department

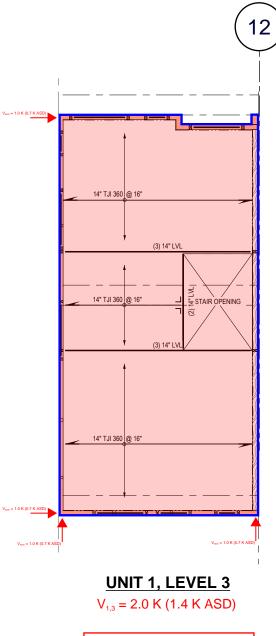
136 6th Street, Ste 201, Steamboat Springs, CO 80487 PH: 970-870-5566 Fax 970-870-5489 Email: Building@co.routt.co.us

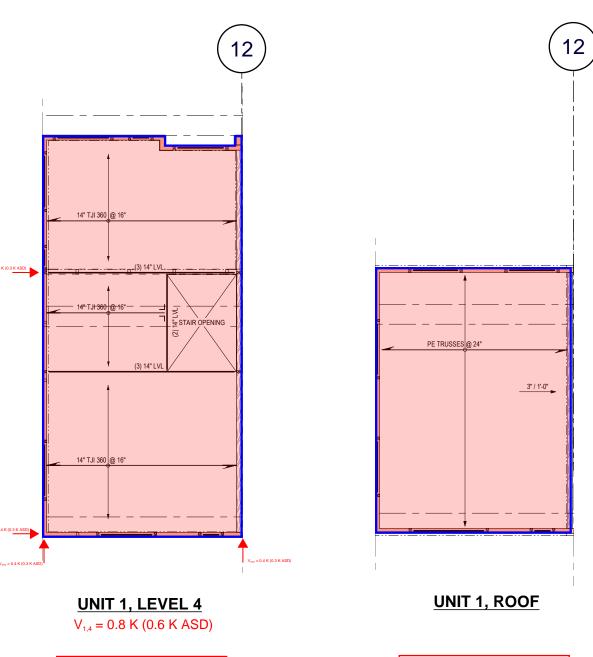

SEISMIC:

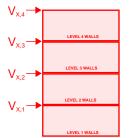


No. Date Des SUBMISSIONS & R	cription EVISIONS
OWNER	
MAY RIEGLER PRO	PERTIES
2201 WISCONSIN AVE NW SUITE 200 WASHINGTON, DC 20007	
ARCHITECT	
KEVIN & ASAKO SPERRY A	
3318 N. Columbus Street Arlington, VA 22207 T.312.636.3248 / 312.636.42	52
GENERAL CONTRACTOR	
JENERAL CONTRACTOR	
141 9TH STREET PO BOX 774943 STEAMBOAT SPRINGS, CO LANDSCAPE ARCHITECT	0 80477
STRUCTURAL ENGINEER ANTHEM STRUCTUR ENGINEERS 430 YAMPA ST	
STEAMBOAT SPRINGS, CO	
STEAMBOAT SPRINGS, CO M.E.P. & F.P. ENGINEERS	
M.E.P. & F.P. ENGINEERS	RING
	RING
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET	RING
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302	RING
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302	RING
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER:	RING
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER:	RING
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER:	
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION	VNHOME URT
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION BASECAMP TOV 1950 CURVE CO STEAMBOAT SPRINGS	VNHOME URT , CO 80487
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION BASECAMP TOV 1950 CURVE CO STEAMBOAT SPRINGS DRAWING TITLE	VNHOME URT , CO 80487
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION BASECAMP TOV 1950 CURVE CO STEAMBOAT SPRINGS DRAWING TITLE TH1 LEVEL 1	VNHOME URT , CO 80487 PLAN DATE: 05/27/22
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION BASECAMP TOV 1950 CURVE CO STEAMBOAT SPRINGS DRAWING TITLE TH1 LEVEL 1	VNHOME URT CO 80487 PLAN DATE: 05/27/22 DRAWN BY:
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION BASECAMP TOV 1950 CURVE CO STEAMBOAT SPRINGS DRAWING TITLE TH1 LEVEL 1	VNHOME URT , CO 80487 PLAN DATE: 05/27/22
M.E.P. & F.P. ENGINEERS BOULDER ENGINEE 1717 15TH STREET BOULDER, CO 80302 INTERIOR DESIGNER: PROJECT LOCATION BASECAMP TOV 1950 CURVE CO STEAMBOAT SPRINGS DRAWING TITLE TH1 LEVEL 1	VNHOME URT CO 80487 PLAN DATE: 05/27/22 DRAWN BY:

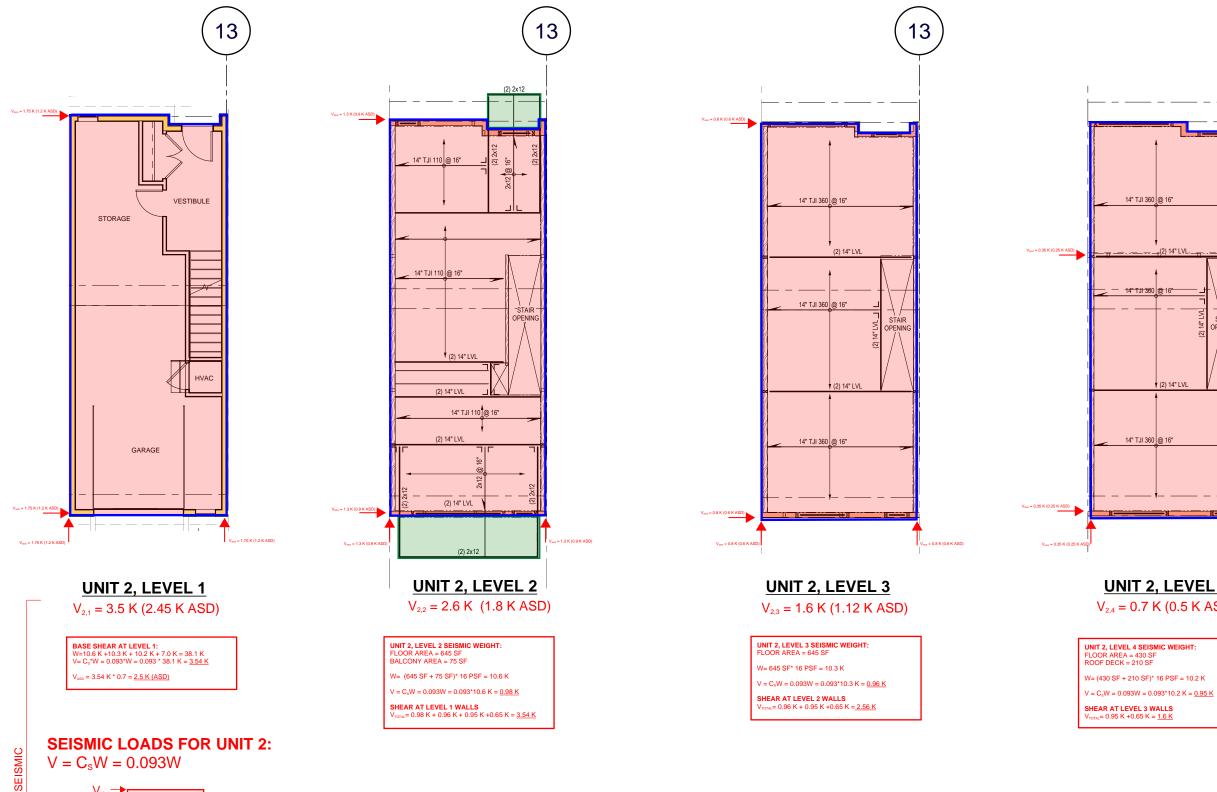

COPYRIGHT 2019

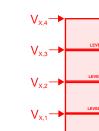


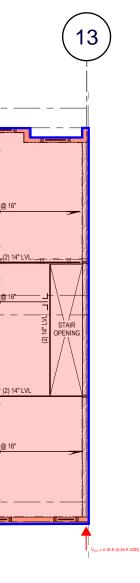

 $\begin{array}{l} \textbf{BASE SHEAR AT LEVEL 1:} \\ W= 14.4 \ K+12.9 \ K+3.8 \ K=49 \ K \\ V= C_s \ W= 0.093 \ W= 0.093 \ 49 \ K= \underline{4.5 \ K} \\ V_{\text{ASD}} = 4.5 \ K \ ^{\circ} 0.7 = \underline{3.2 \ K \ (ASD)} \end{array}$



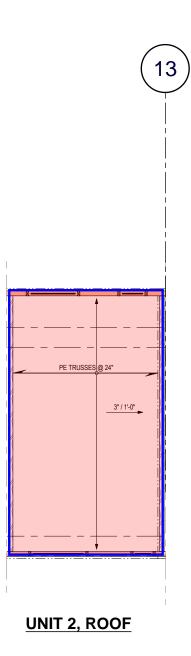
UNIT 1, LEVEL 4 SEISMIC WEI FLOOR AREA = 540 SF ROOF DECK = 265 SF
W= (540 SF + 265 SF)* 16 PSF
V = C _s W = 0.093W = 0.093*12.9
SHEAR AT LEVEL 3 WALLS V _{TOTAL} = 1.2 K + 0.82 K = <u>2.0 K</u>

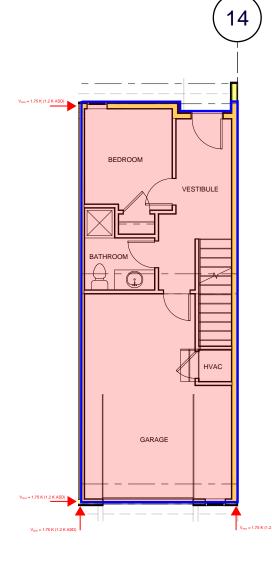


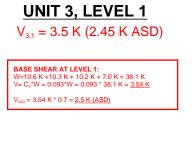


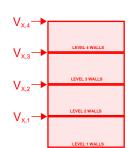


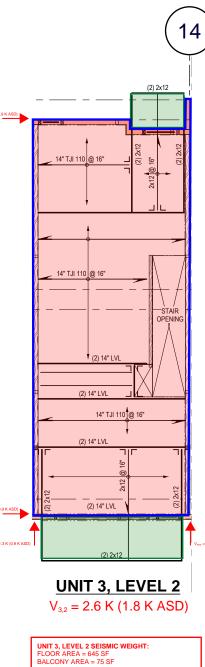
UNIT 1, ROOF SEISMIC WEIGHT: ROOF AREA = 550 SF
W= 550 SF* 16 PSF = 8.8 K
$V = C_s W = 0.093W = 0.093^* 8.8 \text{ K} = 0.82 \text{ K}$
SHEAR AT LEVEL 4 WALLS VTOTAL= 0.82 K

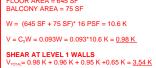


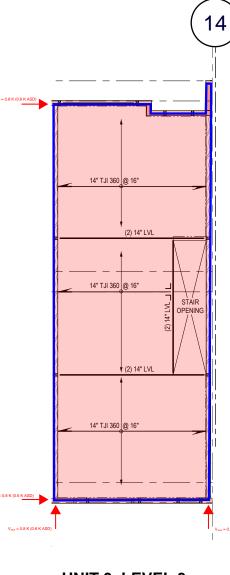


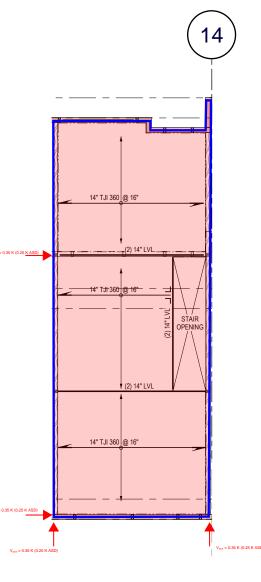






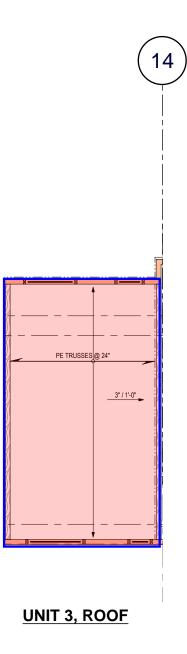



SEISMIC

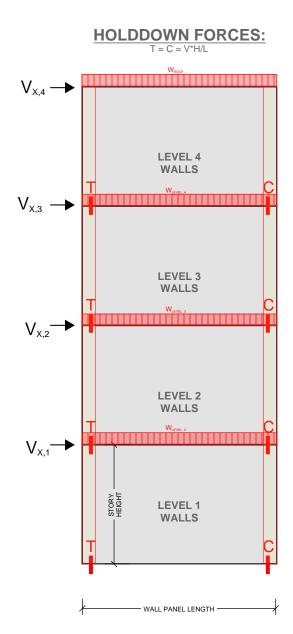


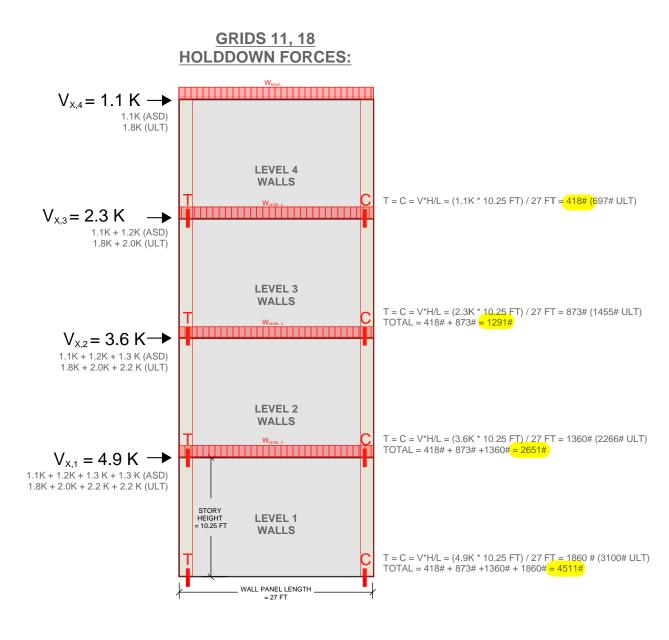
UNIT 3, LEVEL 3 V_{3,3} = 1.6 K (1.12 K ASD)

UNIT 3, LEVEL 3 SEISMIC WEIGHT: FLOOR AREA = 645 SF
W= 645 SF* 16 PSF = 10.3 K
$V = C_s W = 0.093 W = 0.093^{*}10.3 K = 0.96 K$
SHEAR AT LEVEL 2 WALLS V _{TOTAL} = 0.96 K + 0.95 K +0.65 K = <u>2.56 K</u>

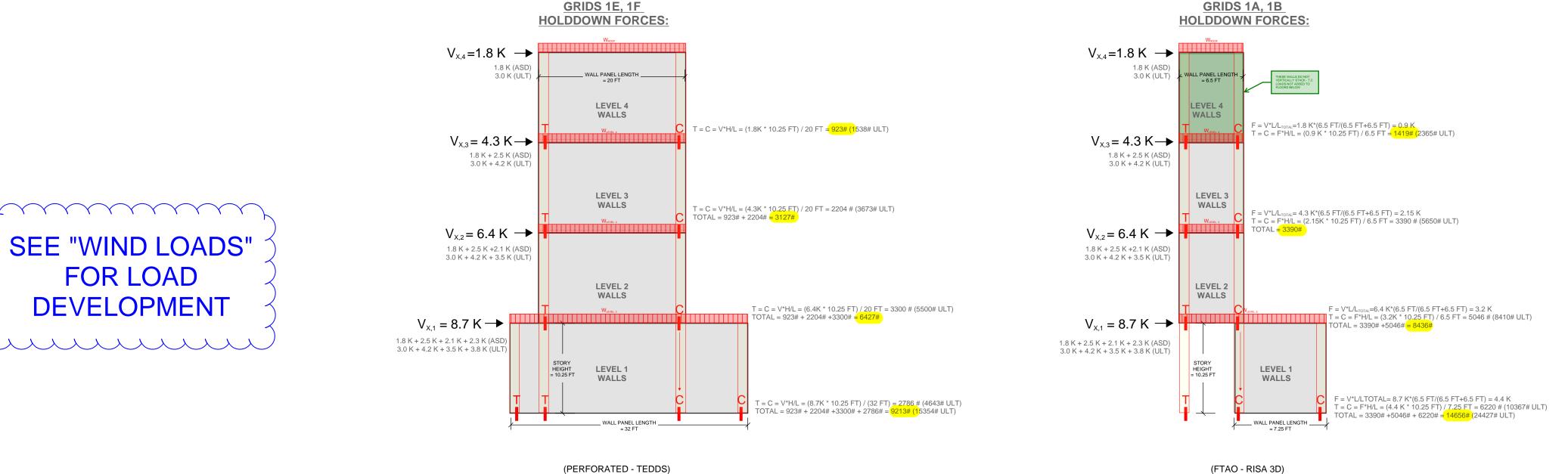


UNIT 3, LEVEL 4 SEISMIC WE FLOOR AREA = 430 SF ROOF DECK = 210 SF
W= (430 SF + 210 SF)* 16 PS
V = C _s W = 0.093W = 0.093*10.
SHEAR AT LEVEL 3 WALLS V _{TOTAL} = 0.95 K +0.65 K = <u>1.6 K</u>

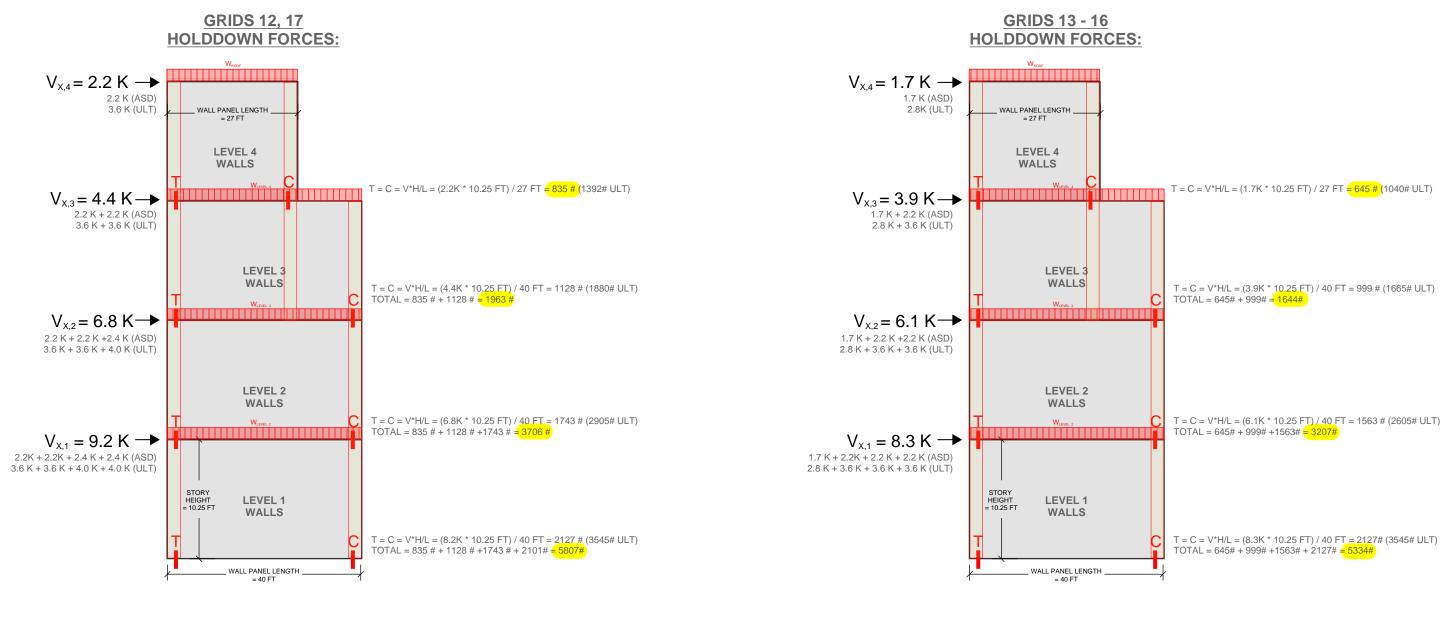



UNIT 3, ROOF SEISMIC WEIGHT: ROOF AREA = 435 SF W= 435 SF* 16 PSF = 7.0 K $V = C_{s}W = 0.093W = 0.093^{*}7.0 \text{ K} = \underline{0.65 \text{ K}}$

SHEAR AT LEVEL 4 WALLS


LATERAL DESIGNS

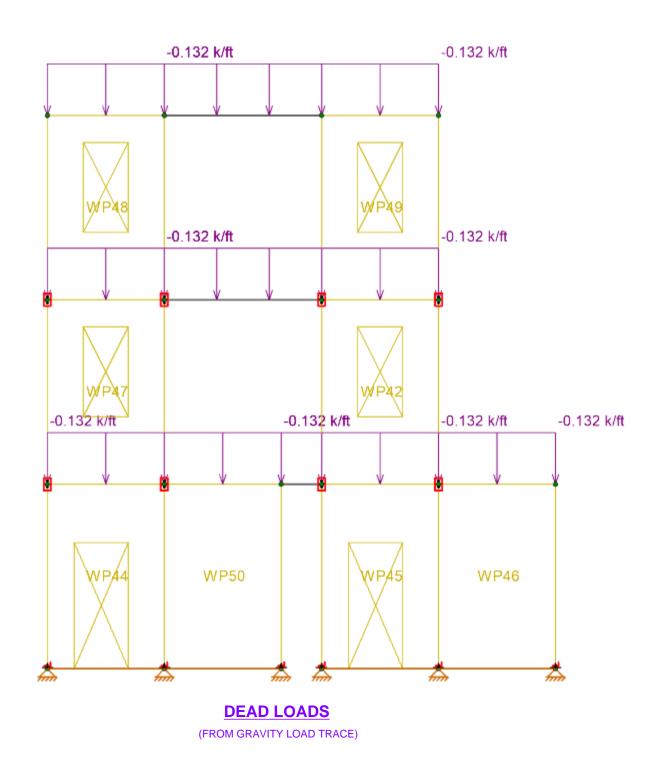
OVERTURNING FORCES: TH1

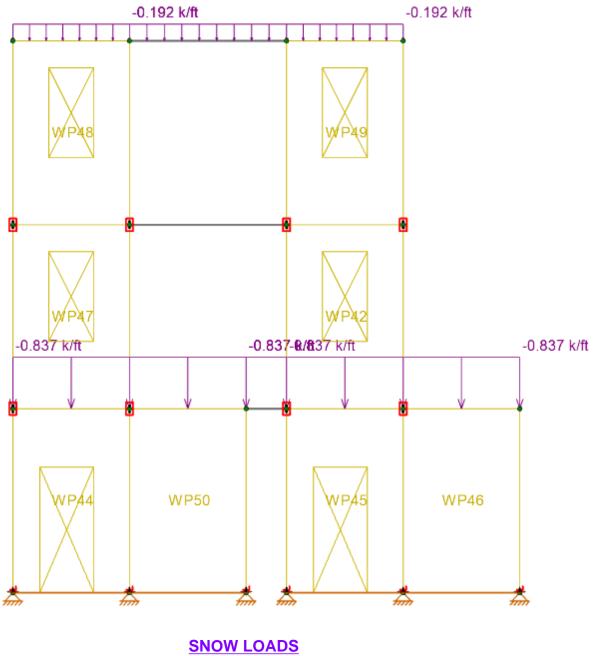


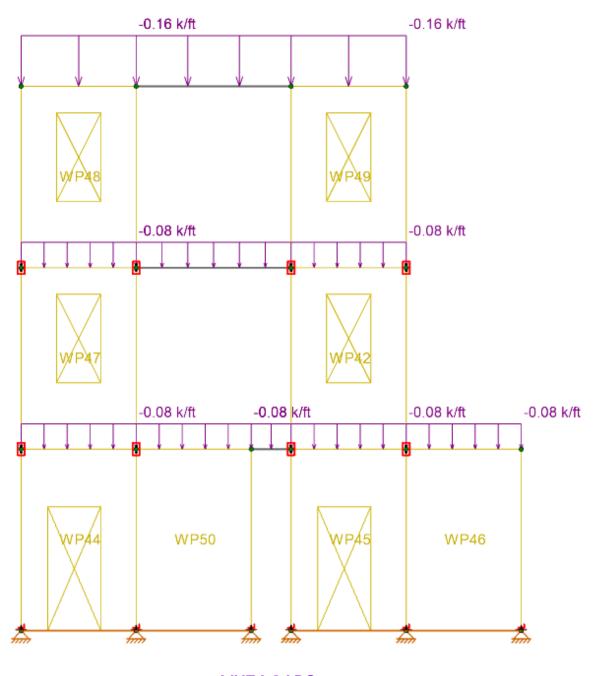
(PERFORATED - TEDDS)

(PERFORATED - TEDDS)

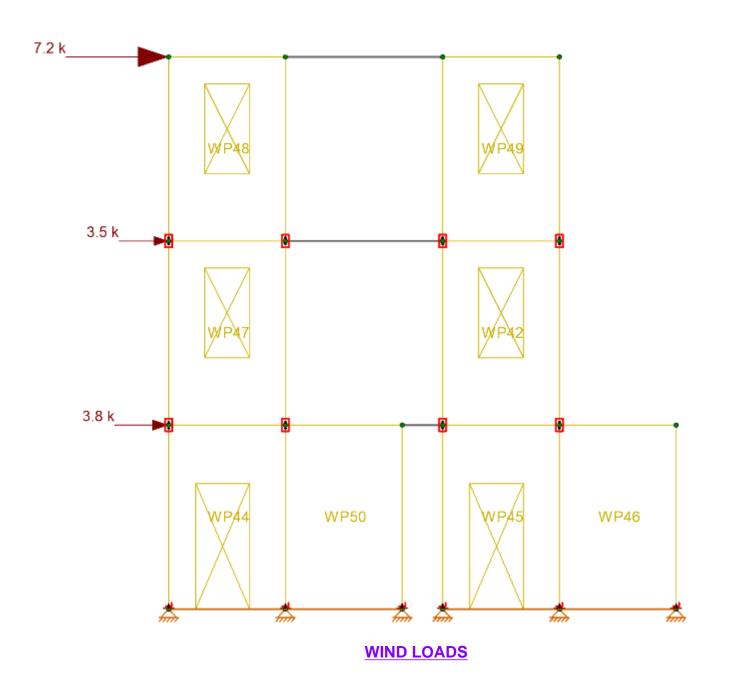
N-S WALLS

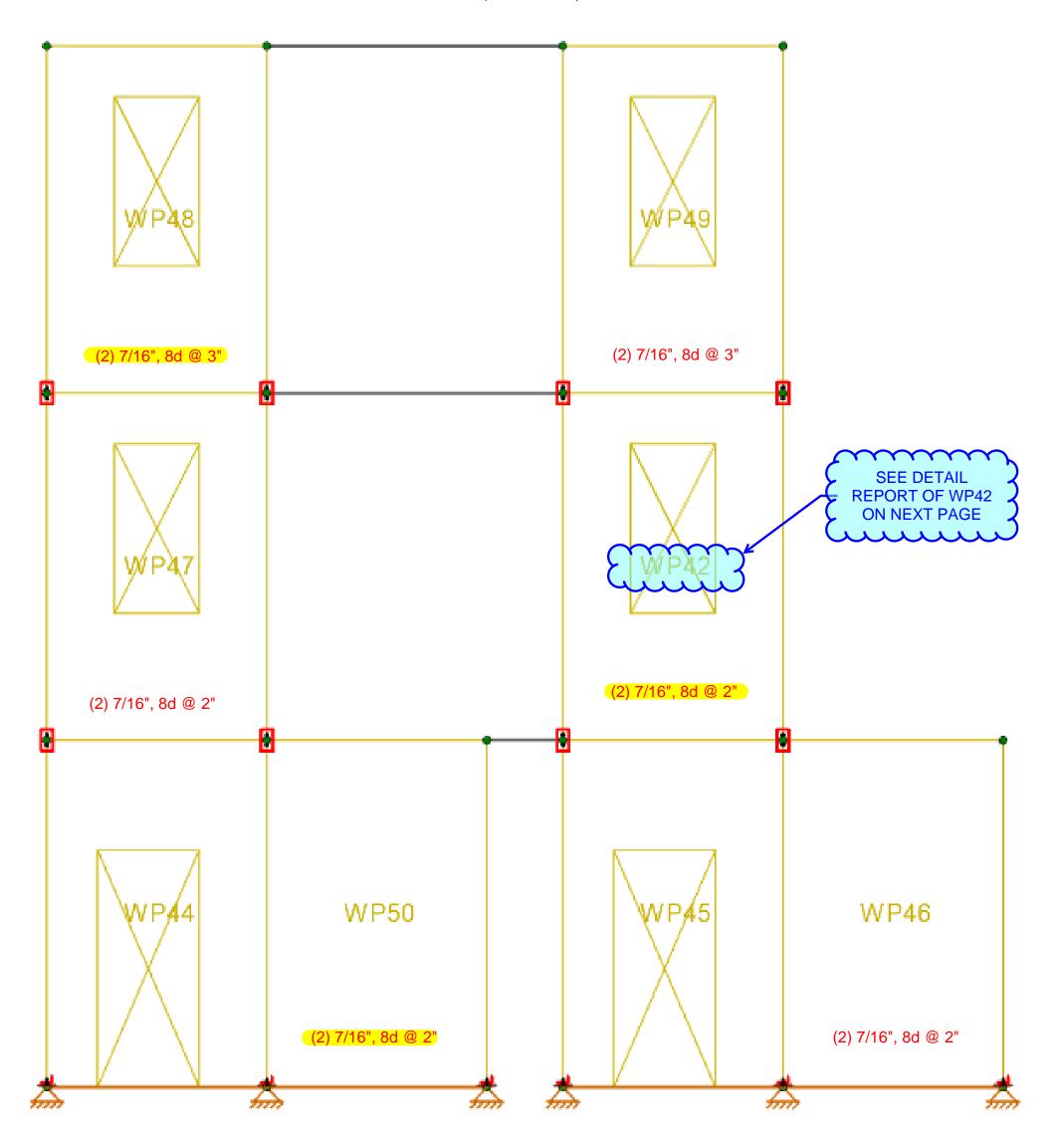

E-W WALLS


(PERFORATED - TEDDS)


(PERFORATED - TEDDS)

E-W WALLS GRIDS 1A, 1B (FTAO - RISA 3D)





(FROM GRAVITY LOAD TRACE)

LIVE LOADS (FROM GRAVITY LOAD TRACE)

Wood Wall Panel In Plane Code Checks (AWC NDS-18: ASD)											
Concrete	In Concre	ete Out Concrete Seismic	Masonry In Maso	onry Out M	lasonry Lintel N	lasonry Seisi	mic Wood Wall Axial W	Wood Wall In-Plane	Nood Header	CFS Wall Axial	FS Wall In-Plan
	Wall Pa	Shear Panel Label	Region	Shear Ch	Shear Force[k	Gov LC	Hold-Down Label	Chord Strap Label	Tension Ch	Tie-Down Forc	Gov LC
1	WP42	S1_(2)7/16_8d@2	N/A	0.811	1.132	1	NC	HST5_SPF/HF_Bolt	0.795	7.844	8
2	WP46	S1_7/16_8d@3	R1	0.863	0.567	2	HDU8-SDS2.5_3_SPF-HF	NC	0.846	4.927	8
3	WP47	S1_(2)7/16_8d@3	N/A	0.831	0.874	2	NC	HST3_DF/SP_Bolt	0.976	7.465	7
4	WP48	S1_(2)7/16_8d@2	N/A	0.838	1.17	2	NC	MST48_SPF/HF_Bolt	t 0.987	3.349	8
5	WP49	S1_(2)7/16_8d@2	N/A	0.774	1.081	1	NC	MSTC40_18_DF/SP	0.99	2.664	7
6	WP50	S1_7/16_8d@2	R1	0.901	0.786	2	HDU11-SDS2.5_5.5_SPF	. NC	0.947	7.601	8
			-		-	-		-		-	

Enveloped Results

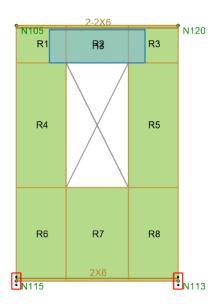
·····					Іпри	ıt Data:	
					Code	AW	C NDS-18: ASD
					Desig	n Method: FTA	0
					Heigh	nt (ft): 10.2	25
	N105	2-2X6		N120	Lengt	h (ft): 6.5	
	R1	R8	R3	N120	Wall	Material: Her	m-Fir No.2
		110			Panel	Schedule: AW	C 2015 OSB
		\land			Sel. S	hear Panel: S1_	(2)7/16_8d@2 16
		\backslash			Optin	nize HD: Yes	
						lanufacturer: SIN	IPSON
	R4	\land	R5		Wall	Properties:	
					Top P	late:	2-2X6
					Sill:		2X6
					Wall S	Stud:	2X6
					Chorc		6X8
	R6	R7	R8		Max I	H/W Ratio:	1.577
					К:		1
		2X6			Max	Opening Ht:	5
	•N115	270	÷	N113	Wall ((2w/h	Capacity Adj. Factor):	0.8
					Aspec	t Ratio Factor:	0.938
					Gov. I	H/W Ratio Factor:	1.12
					Shear	Cap. Adj Factor (Co): 0.849
					Sheat	hing Area Ratio (r):	0.766
Material Properties	5:						
Top Plate:	Hem-Fir No.2	Fb (ks	i):	0.85	Ft (ksi):	0.525	
Sill:	Hem-Fir No.2	Fv (ks	i):	0.15		er 2015 NDS Supple	
Wall Stud:	Hem-Fir No.2	Fc (ks	i):	1.3	(Reference De Dimension Lu	esign Values for Visu Imber)	ally Graded
Chord:	Hem-Fir No.2	Specif	fic Gravity:	0.43			
E:	1300	Densi	ty (k/ft³):	0.035			

Design Summary: Enveloped Results

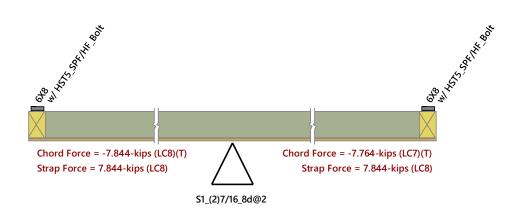
Limit State	Gov. LC	Required	Available	Unity Check	Result
Wood Wall Summary					PASS
Whole Wall (Shear)					
Total Shear	1 (W)	3.653 k			
Max Unit Shear	1 (W)	1.132 k/ft			
ShearPanel					
S1_(2)7/16_8d@2	1 (W)	1.132 k/ft	1.396 k/ft	0.811	PASS
Chord Straps / Hold Downs					
Strap / Hold Down Manufacturer : Simp	son Chord Straps				
HST5_SPF/HF_Bolt	8 (W)	7.844 k	9.87 k	0.795	PASS
Chords					

_

0.178	1	0.033 in	0 in	0.145 in	Adjustment Fa	
Deflection Results Total (Max)	Gov. LC	Elastic	HD	Shear	Shear Stiffness	
Studs 2X6		0 (W)	0 k	0 k	0.000	PASS
6X8 (Tension) 6X8 (Tension)		8 (W) 7 (W)	-8.504 k -8.418 k	24.75 k 24.75 k	0.344 0.340	PASS PASS


Code Check:

Limit State		Required	Available	Unity Check	Result
Shear Panel Design		1.132 k/ft	1.396 k/ft	0.811	PASS
Shear Panel: S1_(Panel Grade Panel Thickness Number Sides Over Gyp. Board Nail Size NOTE: AWC NDS Required Penetra	-18 defines a 8.000000d na tion	ail as being 2.5" x 0.131" con		.113" galvanized box	St-I 0.438in Two No 8.000000d 1.375 in 2 in
Required Spacing	} Adjustment Factor = [1-(0.5	-G)]			2 in 0.93
Shear Capacity		5)]			1.34 k/ft
Adjusted Capacit	:y				1.396 k/ft
Chord Design		7.844 k	24.75 k	0.317	PASS
Gov Compressio Compression An Gov Tension LC	alysis	9.205 k	30.348 k	0.303	PASS
Tension Analysis		7.844 k	24.75 k	0.317	PASS
Stud Design	NOTE: Stud design per	formed only for load comb	inations which d	lo not contain seismic o	r wind load
Chord Strap Design		7.844 k	9.87 k	0.795	PASS
	trap / Hold Down: Combination = 8	HST5_SPF/HF_Bolt			


Governing Load Combination = 8	
Clear Span	0 in
Fasteners	(12) 0.625 inch in
End Length	0 in
Req'd Chord Mat'l	SPF/HF
Base Cap (C _D =1)	6.169 k
C D Factor	1.6
Adjusted Capacity	9.87 k

Checked By : _____

Cross Section Detailing

Opening Design H3

Criteria:	
Code:	AWC NDS-18:ASD
Design Method:	FTAO
Geometry:	
Opening Ht:	5 ft
Opening Width:	2.5 ft
h/w Ratio:	2
Material Properties:	
Header Material: HF	Sill Material: HF
Header Size: 2-2X8	Sill Size: 2X6

WARNING: No header design for load combinations containing seismic or wind categories.

Code Check:

Limit State	Location	Required	Available	Unity Check	Result
Header Bending Design	Note: No header design f	or load combination	ations containin	g seismic or wind ca	tegories.
Header Shear Design	Note: No header design fo	or load combina	tions containing	seismic or wind cat	tegories.

Tekla Tedds Anthem Structural Engineers	Project					Job Ref.	
	Section				Sheet no./rev.	Sheet no./rev. 1	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date	

LEVEL 4

Tedds calculation version 1.2.08

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 allowable stress design and the perforated shear wall method

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	3436	1800	0.524	PASS
Chord capacity	lb/in ²	818	124	0.152	PASS
Collector capacity	lb/in ²	1508	32	0.022	PASS
Deflection	in	0.246	0.302	1.227	FAIL

h = **10.25** ft

Panel details

Structural I wood panel sheathing on one side

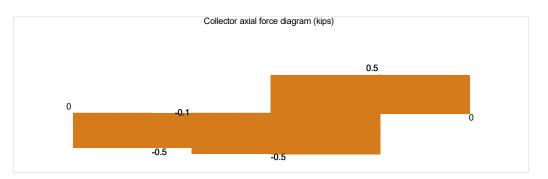
Panel height Panel length

b = **20** ft D + S W s1 s2 s3 δ ā o2 <u>_1</u> 10' 3"īο īo • 0 Ъ 2 1.153 kips Ch2 V 1.153 kips 5' 6" 4' 6"

Panel opening details

Width of opening	w _{o1} = 2 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	l _{o1} = 7.5 ft
Position of opening	P _{o1} = 4 ft
Width of opening	w _{o2} = 5.5 ft
Height of opening	h _{o2} = 5 ft
Height to underside of lintel over opening	l _{o2} = 7.5 ft
Position of opening	P _{o2} = 10 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ = 167.5 ft ²

Tekla Tedds	Project		Job Ref.					
Anthem Structural Engineers	Section				Sheet no./rev.	Sheet no./rev.		
	Calc. by	Date		Date		Date		
	S	8/1/2022	Chk'd by	Date	App'd by	Date		
Panel construction						LEV		
Nominal stud size		2" x 6"						
Dressed stud size		1.5" x 5.5"						
Cross-sectional area of studs		A _s = 8.25 in ²						
Stud spacing		s = 16 in						
Nominal end post size		2 x 2" x 6"						
Dressed end post size		2 x 1.5" x 5.5						
Cross-sectional area of end posts		A _e = 16.5 in ²						
Hole diameter		Dia = 1 in						
Net cross-sectional area of end po	osts	A _{en} = 13.5 in ²	2					
Nominal collector size		2 x 2" x 6"						
Dressed collector size		2 x 1.5" x 5.5	"					
Service condition		Dry						
Temperature		100 degF or	less					
Vertical anchor stiffness		k _a = 30000 lb	k _a = 30000 lb/in					
From NDS Supplement Table 44	- Reference	design values fo	or visually gra	aded dimensio	on lumber (2" - 4	" thick)		
Species, grade and size classifica		-	1 & btr grade,					
Specific gravity		G = 0.43	5,					
Tension parallel to grain			F _t = 725 lb/in ²					
Compression parallel to grain			F _c = 1350 lb/in ²					
Modulus of elasticity			E = 1500000 lb/in ²					
Minimum modulus of elasticity			E _{min} = 550000 lb/in ²					
Sheathing details								
Sheathing material		7/16" wood	nanel structu	ral Loriented	strandboard she	eathing		
Fastener type			nails at 6"ce		Strandboard Sh	cauning		
From SDPWS Table 4.3A Nomin Nominal unit shear capacity for		-						
Nominal unit shear capacity for			• •	· · ·	• •			
	-		v_w = min(785 plf × min[1 - (0.5 - G), 1], 2435 plf) = 730.1 lb/ft G _a = 16 kips/in					
Apparent shear wall shear stiff	1000	$G_a - IO KIPS$	9/111					
Loading details		_						
Dead load acting on top of panel		D = 32 lb/ft						
Snow load acting on top of panel		S = 96 lb/ft						
Self weight of panel			$S_{wt} = 10 \text{ lb/ft}^2$					
In plane wind load acting at head	of panel		W = 3000 lbs					
Wind load serviceability factor		f _{Wserv} = 1.00	f _{Wserv} = 1.00					
From ASCE 7-16 - cl.2.4.1 and c	. 2.4.5 Basic	combinations						
Load combination no.1		D + 0.6W						
Load combination no.2		D + 0.7E						
Load combination no.3		D + 0.75L _f +	D + 0.75L _f + 0.45W + 0.75(L _r or S or R)					
Load combination no.3	Load combination no.4		$D + 0.75L_f + 0.525E + 0.75S$					
			0.525E + 0.75	0				
		0.6D + 0.6W		0				


Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers	Section				Sheet no./rev.				
					3				
	Calc. by	Date	Chk'd by	Date	App'd by	Date			
	S	8/1/2022							
Adjustment fasters						LEVEL			
Adjustment factors Load duration factor – Table 2.3.2		C _D = 1.60							
Size factor for tension – Table 4A		C _{Ft} = 1.30							
Size factor for compression – Tab	le 4A	C _{Fc} = 1.10							
Wet service factor for tension – Ta		C _{Mt} = 1.00							
Wet service factor for compressio		C _{Mc} = 1.00							
Wet service factor for modulus of									
		Сме = 1.00							
Temperature factor for tension –	Table 2.3.3	$C_{tt} = 1.00$							
Temperature factor for compressi									
		C _{tc} = 1.00							
Temperature factor for modulus o	f elasticity – Tab								
•	,	C _{tE} = 1.00							
Incising factor – cl.4.3.8		C _i = 1.00							
Buckling stiffness factor – cl.4.4.2		$C_{\rm T} = 1.00$							
Adjusted modulus of elasticity		$E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_i \times C_T = 550000 \text{ psi}$							
Critical buckling design value		$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 904 psi$							
		$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = 2376 \text{ psi}$							
Reference compression design va	alue	c = 0.8							
For sawn lumber		c = 0.8 $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / C_c^*))}$							
Column stability factor – eqn.3	./-1	$C_P = (1 + (F_c + F_c^*) / c) = 0.3$	<i>,,</i> , ,) – √([(1 + (⊢ _{cE}	/ F _c *)) / (2×	C)] [∠] - (⊢ _{cE} /			
		, ,	4						
	<u> </u>								
From SDPWS Table 4.3.4 Maxim	num Shear Wal	-							
Maximum shear wall aspect ratio	num Shear Wal	3.5							
Maximum shear wall aspect ratio Perforated wall length	num Shear Wal	3.5 b ₁ = 4 ft							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio	num Shear Wal	3.5 b ₁ = 4 ft h / b ₁ = 2.563							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length	num Shear Wal	3.5 b ₁ = 4 ft h / b ₁ = 2.563 b ₂ = 4 ft							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio	num Shear Wal	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length	num Shear Wal	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto	or – cl.4.3.3.5	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$							
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto Sum of perforated shear wall length	or – cl.4.3.3.5 iths	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times 3$	$b_s / h + b_2 \times 2 \times l$		b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto Sum of perforated shear wall lengt Total length of perforated shear wall	or – cl.4.3.3.5 iths	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{o1}$	+ b ₂ + w _{o2} + b ₃ =	20 ft	b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto Sum of perforated shear wall length	or – cl.4.3.3.5 iths	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{o1}$		20 ft	b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto Sum of perforated shear wall lengt Total length of perforated shear wall	or – cl.4.3.3.5 iths	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$	+ b ₂ + w _{o2} + b ₃ =	: 20 ft . 5 ft ²	b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear wall	or – cl.4.3.3.5 ths vall	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37 .	: 20 ft . 5 ft ²	b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto Sum of perforated shear wall lengt Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6)	or – cl.4.3.3.5 ths vall	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_o)$	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37 .	: 20 ft . 5 ft ²	b _s / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment factor Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor	or – cl.4.3.3.5 _J ths vall (eqn. 4.3-5)	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_o)$ $C_o = 0.965$	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37 .	: 20 ft . 5 ft ²	b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment factor Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	or – cl.4.3.3.5 iths [/] all (eqn. 4.3-5) ind loading	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{01}$ $A_0 = w_{01} \times h_{01}$ $r = 1 / (1 + A_0)$ $C_0 = 0.965$ $V_{w_max} = 0.6 \Sigma$	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37 . /($h \times \Sigma L_i$)) = 0.72 × W = 1.8 kips	: 20 ft 5 ft ² 27	b₅ / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment factor Sum of perforated shear wall lengt Total length of perforated shear wall Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	or – cl.4.3.3.5 iths [/] all (eqn. 4.3-5) ind loading	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_o)$ $C_o = 0.965$ $V_{w_max} = 0.6 \times V_w = v_w \times C_o$	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37. /($h \times \Sigma L_i$)) = 0.72 × W = 1.8 kips × ΣL_i / 2 = 3.43	: 20 ft 5 ft ² 27	b _s / h = 9.756	ft			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment factor Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	or – cl.4.3.3.5 iths [/] all (eqn. 4.3-5) ind loading	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times $	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37. /($h \times \Sigma L_i$)) = 0.72 × W = 1.8 kips × ΣL_i / 2 = 3.430	20 ft 5 ft ² 27 6 kips					
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment facto Sum of perforated shear wall lengt Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wa Shear capacity for wind loading	or – cl.4.3.3.5 _j ths _{rall} (eqn. 4.3-5) ind loading	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times $	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37. /($h \times \Sigma L_i$)) = 0.72 × W = 1.8 kips × ΣL_i / 2 = 3.43	20 ft 5 ft ² 27 6 kips					
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment factor Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	or – cl.4.3.3.5 _j ths _{rall} (eqn. 4.3-5) ind loading	3.5 $b_1 = 4$ ft $h / b_1 = 2.563$ $b_2 = 4$ ft $h / b_2 = 2.563$ $b_3 = 4.5$ ft $h / b_3 = 2.278$ $\Sigma L_i = b_1 \times 2 \times $	+ b_2 + w_{o2} + b_3 = + $w_{o2} \times h_{o2}$ = 37. /($h \times \Sigma L_i$)) = 0.72 × W = 1.8 kips × ΣL_i / 2 = 3.430	20 ft 5 ft ² 27 6 kips					

Tekla Tedds	Project .			Job Ref.	Job Ref.			
Anthem Structural Engineers	Section		Sheet no./rev. 4					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Axial force for maximum tension		P = $(0.6 \times (D + S_{wt} \times h)) \times b / 2 = 0.807$ kips						
Maximum tensile force in chord		T = V × h / ((C _o × ΣL _i)) - P = 1.153 kips - HDU2-SDS2.5						
Maximum applied tensile stress		$f_t = T / A_{en} = 85 \text{ lb/in}^2$						
Design tensile stress		$F_{t}' = F_{t} \times C_{D} \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_{i} = 1508 \text{ lb/in}^{2}$						
Design tensile stress				f _t / F _t ' = 0.057				
Design tensile stress		f _t / F _t ' = 0.05	7					

Load combination 1	
Shear force for maximum compression	V = 0.6 × W = 1.8 kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h)) \times s / 2 = 0.09 $ kips
Maximum compressive force in chord	$C = V \times h / ((C_o \times \Sigma L_i)) + P = 2.050 \text{ kips}$
Maximum applied compressive stress	f _c = C / A _e = 124 lb/in ²
Design compressive stress	$\textbf{F_c'} = \textbf{F_c} \times \textbf{C_D} \times \textbf{C_{Mc}} \times \textbf{C_{tc}} \times \textbf{C_{Fc}} \times \textbf{C_i} \times \textbf{C_P} = \textbf{818} \ \textbf{lb}/\textbf{in}^2$
	fc / Fc' = 0.152

Collector capacity

Maximum shear force on wall Uniform shear applied to wall Shear resisted by wall segments Maximum force in collector Maximum applied tensile stress Design tensile stress

Maximum applied compressive stress Column stability factor Design compressive stress

$\begin{array}{l} V_{max} = V_{w_max} = \textbf{1.8 kips} \\ v_a = V_{max} / \left((C_o \times \Sigma L_i) \right) = \textbf{191.3 plf} \\ v_b = v_a \times b / (b_1 + b_2 + b_3) = \textbf{306 plf} \\ P_{coll} = \textbf{0.535 kips} \\ f_t = P_{coll} / (2 \times A_s) = \textbf{32 lb/in}^2 \\ F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1508 lb/in}^2 \\ f_t / F_t' = \textbf{0.022} \\ \textbf{PASS - Design tensile stress exceeds maximum applied tensile stress} \\ f_c = P_{coll} / (2 \times A_s) = \textbf{32 lb/in}^2 \\ C_P = \textbf{1.00} \\ F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{2376 lb/in}^2 \\ f_c / F_c' = \textbf{0.014} \\ \\ \textbf{PASS - Design compressive stress exceeds maximum applied compressive stress} \\ \end{array}$

Hold down force Chord 1

T1 = 1.153 kips

Tekla Tedds	Project		Job Ref.	Job Ref.		
Anthem Structural Engineers	Section				Sheet no./rev 5	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Chord 2		T ₂ = 1.153 k	ips			LEVEL 4
Wind load deflection						
Design shear force		$V_{\delta w} = f_{Wserv}$	\times W = 3 kips			
Deflection limit		$\Delta_{w_{allow}}$ = h /	500 = 0.246 ir	ı		
Induced unit shear		$v_{\delta w_{max}} = V_{\delta w}$	/ (C _o ×ΣL _i) = 3	18.75 lb/ft		
Anchor tension force		$T_{\delta} = max(0)$	$kips, v_{\delta w_{max}} \times h$	• 0.6 × (D + S	_{wt} × h) × b / 2) = 2	460 kips
Shear wall deflection - Eqn. 4.3-	1	$\delta_{sww} = 2 \times v_{\delta}$	$_{w_{max}} imes h^3$ / (3 $ imes$	$E \times A_{e} \times \Sigma L_{i}$)	+ $v_{\delta w_{max}} \times h$ / (Ga) + h $ imes$ T $_{\delta}$ / (k _a $ imes$
		ΣL _i) = 0.302	in			
		$\delta_{sww} / \Delta_{w allow}$	4 007			

FAIL - Shear wall deflection exceeds deflection limit

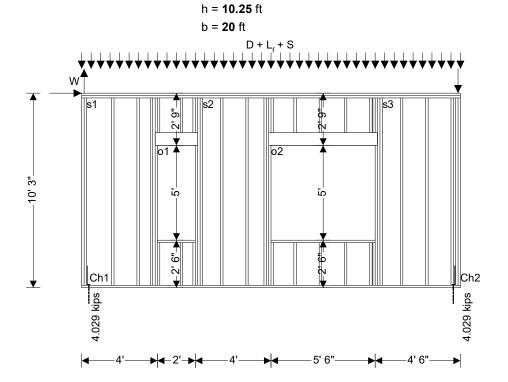
Anthem Structural Engineers	Project	Job Ref.				
	Section				Sheet no./rev. 1	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

LEVEL 3

Tedds calculation version 1.2.08

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 allowable stress design and the perforated shear wall method


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	5274	4320	0.819	PASS
Chord capacity	lb/in ²	818	352	0.430	PASS
Collector capacity	lb/in ²	1508	78	0.052	PASS
Deflection	in	0.246	0.673	2.736	FAIL

Panel details

Structural I wood panel sheathing on one side

Panel height Panel length

Panel opening details

Width of opening	w _{o1} = 2 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	l _{o1} = 7.5 ft
Position of opening	P _{o1} = 4 ft
Width of opening	w _{o2} = 5.5 ft
Height of opening	h _{o2} = 5 ft
Height to underside of lintel over opening	l _{o2} = 7.5 ft
Position of opening	P _{o2} = 10 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ = 167.5 ft ²

	Tekla.		Project				Job Ref.				
Antl	hem Structural	Engineers	Section				Sheet no 2	o./rev.			
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Pan	el constructio	'n						LEVE			
	ninal stud size			2" x 6"							
	ssed stud size			1.5" x 5.5"							
	ss-sectional are	ea of studs		As = 8.25 i	1 ²						
Stuc	d spacing			s = 16 in							
	ninal end post s	size		2 x 2" x 6"							
	ssed end post			2 x 1.5" x 5	5.5"						
	ss-sectional are		3	A _e = 16.5 i	1 ²						
Hole	e diameter	•		Dia = 1 in							
Net	Net cross-sectional area of end posts				in²						
Nom	Nominal collector size			2 x 2" x 6"							
Dres	Dressed collector size				5.5"						
Serv	vice condition			Dry							
Tem	Temperature			100 degF o	100 degF or less						
Vertical anchor stiffness				k _a = 30000	k _a = 30000 lb/in						
From	m NDS Supple	ement Table 4	A - Reference	design values	for visually g	raded dimens	ion lumber (2	" - 4" thick)			
Spe	cies, grade and	d size classifica	ation	Hem-Fir, n	o.1 & btr grade	e, 2'' & wider					
Spe	cific gravity			G = 0.43							
Ten	sion parallel to	grain		Ft = 725 lb.	/in²						
Corr	npression para	llel to grain		F _c = 1350	b/in²						
Mod	lulus of elastici	ty		E = 15000	00 lb/in ²						
Mini	mum modulus	of elasticity		E _{min} = 5500	000 lb/in ²						
She	athing details										
She	athing materi	ial		7/16" woo	d panel struc	tural I oriente	d strandboard	d sheathing			
Fas	tener type			8d comm	on nails at 4"	centers		_			
From	m SDPWS Tab	ole 4.3A Nomiı	nal Unit Shear	Capacities for	r Wood-Frame	e Shear Walls	- Wood-based	l Panels			
Non	ninal unit she	ar capacity fo	r seismic des	ign v _s = min(8	60 plf \times min[1 - (0.5 - G), 1	l], 1740 plf) =	799.8 lb/ft			
Non	ninal unit she	ar capacity fo	r wind design	$v_w = min(2)$	205 plf $ imes$ mir	n[1 - (0.5 - G),	1], 2435 plf)	= 1120.6 lb/ft			
	oarent shear v		•	,	$G_a = 21$ kips/in						
				u	P - ,						
	ding details				161						
	d load acting o			D = 164 lb/							
	or live load actin		nei	L _f = 80 lb/f							
	w load acting c			S = 96 lb/fl							
	weight of pane		of papel	S _{wt} = 10 lb/ W = 7200							
	lane wind load d load servicea	-		f _{Wserv} = 1.0							
				TWserv - 1.U	U						
	ord forces from							<u> </u>			
hord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	DT_ch[i] (lbs)	Lf_ch[i] (lbs)	Lr_ch[i] (lbs)	S _{ch[i]} (Ibs)	R _{ch[i]} (lbs)			
			0;	0;	0.	0;	0;	1 11			
Ch1 Ch2	-1538; 1538;	0; 0;	0;	0;	0; 0;	0;	0;	0; 0;			

D + 0.6W

D + 0.7E

Load combination no.1 Load combination no.2

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev 3	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Load combination no.3		D + 0.75L _f + 0	.45W + 0.75(I	L _r or S or R)		LEVEL
Load combination no.4		D + 0.75L _f + 0	.525E + 0.758	S		
Load combination no.5		0.6D + 0.6W				
Load combination no.6		0.6D + 0.7E				
Adjustment factors						
Load duration factor - Table 2.3.2		C _D = 1.60				
Size factor for tension – Table 4A		C _{Ft} = 1.30				
Size factor for compression – Tab	le 4A	C _{Fc} = 1.10				
Wet service factor for tension - Ta	able 4A	C _{Mt} = 1.00				
Wet service factor for compressio	n – Table 4A	C _{Mc} = 1.00				
Wet service factor for modulus of	elasticity – Table					
		C _{ME} = 1.00				
Temperature factor for tension – 1		C _{tt} = 1.00				
Temperature factor for compression	on – Table 2.3.3	a				
Tomporature factor for modulus of	folgoticity Tabl	$C_{tc} = 1.00$				
Temperature factor for modulus of	relasticity – radi	e 2.3.3 C _{tE} = 1.00				
Incising factor – cl.4.3.8		CtE = 1.00 Ci = 1.00				
Buckling stiffness factor – cl.4.4.2		C₁ = 1.00 C⊤ = 1.00				
Adjusted modulus of elasticity				× C _T = 550000	nsi	
Critical buckling design value		$F_{cE} = 0.822 \times$			poi	
Reference compression design value			. ,	$F_{Fc} \times C_i = 2376$	nai	
For sawn lumber	alue	$r_{c} = r_{c} \times C_{D}$	CMc X Ctc X C	Fc × Ci - 2376	psi	
	7 1		/	$(a) = \sqrt{(1/1)}$		ν a)12 (Γ /
Column stability factor – eqn.3.	.7-1			< 0) - \([(1 + ((F _{cE} / F _c *)) / (2	× C)] ⁻ - (F _{cE} /
		F _c *) / c) = 0.3	4			
From SDPWS Table 4.3.4 Maxim	num Shear Wall	Aspect Ratios				
Maximum shear wall aspect ratio		3.5				
Perforated wall length		b ₁ = 4 ft				
Shear wall aspect ratio		h / b ₁ = 2.563				
Perforated wall length		b ₂ = 4 ft				
Shear wall aspect ratio		h / b ₂ = 2.563				
Perforated wall length Shear wall aspect ratio		b ₃ = 4.5 ft				
		h / b ₃ = 2.278				
Shear capacity adjustment facto		-			o i () -:	
Sum of perforated shear wall leng					2 × b _s / h = 9.75	6 ft
Total length of perforated shear w	all	$L_{tot} = b_1 + w_{o1}$				
Total area of openings		$A_o = w_{o1} \times h_{o1}$				
Sheathing area ratio (eqn. 4.3-6)		$r = 1 / (1 + A_o)$	$((\mathbf{n} \times \Sigma \mathbf{L}_i)) = 0$.727		
Shear capacity adjustment factor	(eqn. 4.3-5)	C _o = 0.965				
Perforated shear wall capacity						
	ind loading	$V_{w max} = 0.6$	× W = 4.32 ki	ips		
Maximum shear force under w	ind loading	-				
	•	$V_w = v_w \times C_o$		274 kips		

Tekla Tedds	Project	Job Ref.				
	Section		Sheet no./rev. 4			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

PASS - Shear capacity for wind load exceeds maximum shear force Chord capacity for chord 1 V = 0.6 × W = **4.32** kips Shear force for maximum tension Axial force for maximum tension P = $(0.6 \times (D + S_{wt} \times h)) \times b / 2 + 0.6 \times W_{ch1} = 0.676$ kips Maximum tensile force in chord T = V × h / ((C_o × ΣL_i)) - P = 4.029 kips + HDU5-SDS2.5 $f_t = T / A_{en} = 298 \text{ lb/in}^2$ Maximum applied tensile stress $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1508 \text{ lb/in}^2$ f_t / F_t' = 0.198

Shear force for maximum compression Axial force for maximum compression Maximum compressive force in chord Maximum applied compressive stress Design compressive stress

Load combination 5

Design tensile stress

Load combination 1

Chord capacity for chord 2

Shear force for maximum tension

Maximum tensile force in chord

Maximum applied tensile stress

Axial force for maximum tension

Load combination 5

Design tensile stress

PASS - Design tensile stress exceeds maximum applied tensile stress V = 0.6 × W = 4.32 kips $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} = 1.1 kips$ $C = V \times h / ((C_o \times \Sigma L_i)) + P = 5.805 kips$ $f_c = C / A_e = 352 \text{ lb/in}^2$ $F_{c}{'} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{818} \text{ lb/in}^{2}$

 $f_c / F_c' = 0.430$

PASS - Design compressive stress exceeds maximum applied compressive stress

V = 0.6 × W = 4.32 kips $P = (0.6 \times (D + S_{wt} \times h)) \times b / 2 + -1 \times 0.6 \times W_{ch2} = 0.676 \text{ kips}$ $T = V \times h / ((C_0 \times \Sigma L_i)) - P = 4.029 kips + HDU5-SDS2.5$ f_t = T / A_{en} = **298** lb/in² F_t = $F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i$ = **1508** lb/in² ft / Ft' = **0.198** PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1 Shear force for maximum compression Axial force for maximum compression Maximum compressive force in chord Maximum applied compressive stress Design compressive stress

V = 0.6 × W = 4.32 kips $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} = 1.1 kips$ $C = V \times h / ((C_o \times \Sigma L_i)) + P = 5.805 kips$ f_c = C / A_e = **352** lb/in² $F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 818 \text{ lb/in}^{2}$ fc / Fc' = 0.430

PASS - Design compressive stress exceeds maximum applied compressive stress

Tekla Tedds	Project				Job Ref.		
Anthem Structural Engineers	Section				Sheet no./rev	<i>.</i>	
					5		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date	
Collector capacity						LEVE	
	(Collector axial force dia	gram (kips)				
				_			
			1.	.2			
0	-0.2						
					U		
	-1.1	-1.3					
Maximum shear force on wall		V _{max} = V _{w_ma}	_× = 4.32 kips				
Uniform shear applied to wall		$v_a = V_{max} / (($	C _o × ΣL _i)) = 45 9	9 plf			
Shear resisted by wall segments	,		$(b_1 + b_2 + b_3) =$	734.4 plf			
Maximum force in collector		$P_{coll} = 1.285$ kips					
Maximum applied tensile stress		$f_t = P_{coll} / (2 \times A_s) = 78 \text{ lb/in}^2$					
Design tensile stress		$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1508 \text{ lb/in}^2$ $f_t / F_t' = 0.052$					
			_	ess exceeds i	maximum appli	ed tensile s	
Maximum applied compressive s	tress		× A _s) = 78 lb/in ²				
Column stability factor		C _P = 1.00					
Design compressive stress		$F_c' = F_c \times C_D$	$X imes C_{Mc} imes C_{tc} imes C$	$C_{Fc} \times C_i \times C_P =$	2376 lb/in ²		
		f _c / F _c ' = 0.0 3					
	PASS - E	Design compres	sive stress ex	ceeds maxim	um applied con	npressive s	
Hold down force		T 1 029 k	ine				
Chord 1		T₁ = 4.029 k T₂ = 4.029 k	-				
Chord 1 Chord 2		T₁ = 4.029 k T₂ = 4.029 k	-				
Chord 1 Chord 2 Wind load deflection		T ₂ = 4.029 k	ips	S			
Chord 1 Chord 2 Wind load deflection Design shear force		T ₂ = 4.029 k V _{δw} = f _{Wserv}	ips × W = 7.2 kips				
Chord 1 Chord 2 Wind load deflection Design shear force Deflection limit		T ₂ = 4.029 k V _{δw} = f _{Wserv} Δ _{w_allow} = h /	ips × W = 7.2 kips 500 = 0.246 ir	ı			
Chord 1 Chord 2 Wind load deflection Design shear force Deflection limit Induced unit shear		$T_2 = 4.029 \text{ k}$ $V_{\delta w} = f_{Wserv}$ $\Delta_{w_allow} = h / v_{\delta w_max} = V_{\delta w}$	· ips × W = 7.2 kips 500 = 0.246 ir / (C _o × ΣL _i) = 7	ר 65 lb/ft	∉ × h) × h / 2 +		
Chord 1 Chord 2 Wind load deflection Design shear force Deflection limit		$T_2 = 4.029 \text{ k}$ $V_{\delta w} = f_{W \text{serv}}$ $\Delta_{w_a \text{llow}} = h /$ $v_{\delta w_m \text{max}} = V_{\delta w}$ $T_{\delta} = \max(0 \text{ k})$	· ips × W = 7.2 kips 500 = 0.246 ir / (C _o × ΣL _i) = 7 kips,v _{δw_max} × h ·	n 65 lb/ft - 0.6 × (D + S _w	t × h) × b / 2 +		
Chord 1 Chord 2 Wind load deflection Design shear force Deflection limit Induced unit shear	1	$T_2 = 4.029 \text{ k}$ $V_{\delta w} = f_{W \text{serv}}$ $\Delta_{w_allow} = h / V_{\delta w_max} = V_{\delta w}$ $T_{\delta} = \max(0 \text{ k})$ $\max(abs(W_a)$	× W = 7.2 kips 500 = 0.246 ir / (C ₀ × ΣL _i) = 7 kips,v _{δw_max} × h -	n 65 lb/ft - 0.6 × (D + S _w = 7.780 kips	ıt × h) × b / 2 + + vδw_max × h / (Ga		
Chord 1 Chord 2 Wind load deflection Design shear force Deflection limit Induced unit shear Anchor tension force	1	$T_2 = 4.029 \text{ k}$ $V_{\delta w} = f_{W \text{serv}}$ $\Delta_{w_allow} = h / V_{\delta w_max} = V_{\delta w}$ $T_{\delta} = \max(0 \text{ k})$ $\max(abs(W_a)$	\times W = 7.2 kips 500 = 0.246 ir $/ (C_o \times \Sigma L_i) = 7$ $kips, v_{\delta w_max} \times h + k_{h1}, abs(W_{ch2})))$ $w_{max} \times h^3 / (3 \times 10^{-1})$	n 65 lb/ft - 0.6 × (D + S _w = 7.780 kips	·		
Chord 1 Chord 2 Wind load deflection Design shear force Deflection limit Induced unit shear Anchor tension force	1	$T_2 = 4.029 \text{ k}$ $V_{\delta w} = f_{W \text{serv}}$ $\Delta_{w_allow} = h /$ $v_{\delta w_max} = V_{\delta w}$ $T_{\delta} = max(0 \text{ k}$ $max(abs(W_d \delta_{sww} = 2 \times v_{\delta})$	\times W = 7.2 kips 500 = 0.246 ir $/ (C_0 \times \Sigma L_i) = 7$ $(c_{h1}),abs(W_{ch2})))$ $w_{max} \times h^3 / (3 \times in)$	n 65 lb/ft - 0.6 × (D + S _w = 7.780 kips	·		

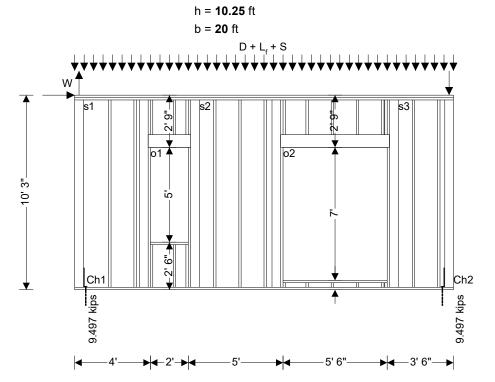
Tekla Tedds Anthem Structural Engineers	Project		Job Ref.			
	Section				Sheet no./rev. 1	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

LEVEL 2

Tedds calculation version 1.2.08

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 allowable stress design and the perforated shear wall method


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	7142	6420	0.899	PASS
Chord capacity	lb/in ²	818	402	0.491	PASS
Collector capacity	lb/in ²	1508	176	0.117	PASS
Deflection	in	0.246	1.094	4.447	FAIL

Panel details

Structural I wood panel sheathing on one side

Panel height Panel length

Panel opening details

Width of opening	w _{o1} = 2 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	l _{o1} = 7.5 ft
Position of opening	P _{o1} = 4 ft
Width of opening	w _{o2} = 5.5 ft
Height of opening	h _{o2} = 7 ft
Height to underside of lintel over opening	l _{o2} = 7.5 ft
Position of opening	P _{o2} = 11 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ = 156.5 ft ²

	Tekla		Project				Job Ref.				
Ant	them Structural	Engineers	Section				Sheet no	o./rev.			
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Pan	nel construction	n						LEVE			
	ninal stud size			2" x 6"							
	ssed stud size			1.5" x 5.5"							
Cro	ss-sectional are	a of studs		A _s = 8.25 ir	1 ²						
Stu	d spacing			s = 16 in							
	ninal end post s	ize		6" x 6"							
Dre	ssed end post s	ize		5.5" x 5.5"							
Cro	ss-sectional are	a of end posts	5	A _e = 30.25	in ²						
Hole	e diameter			Dia = 1 in							
Net	Net cross-sectional area of end posts				in²						
Non	ninal collector s	ize		2 x 2" x 6"							
	Dressed collector size				5.5"						
Ser	Service condition Temperature			Dry	-						
				100 degF o							
Ver	Vertical anchor stiffness				k _a = 30000 lb/in						
Fro	m NDS Supple	ment Table 4	A - Reference	design values	for visually g	graded dimens	ion lumber (2	" - 4" thick)			
Spe	cies, grade and	size classifica	ation	Hem-Fir, n	o.1 & btr grade	e, 2" & wider					
Spe	cific gravity			G = 0.43							
Ten	sion parallel to	grain		Ft = 725 lb/	′in²						
Con	npression paral	lel to grain		F _c = 1350 l	b/in²						
	dulus of elasticit	-		E = 15000)0 lb/in ²						
Min	imum modulus o	of elasticity		E _{min} = 5500)00 lb/in ²						
She	eathing details										
She	eathing materia	al		7/16" woo	d panel struc	ctural I oriente	d strandboard	d sheathing			
Fas	stener type			8d commo	on nails at 2"	centers					
Fro	m SDPWS Tab	le 4.3A Nomir	nal Unit Shear	Capacities for	Wood-Frame	e Shear Walls	- Wood-based	l Panels			
Nor	minal unit shea	ar capacity fo	r seismic des	ign v₅ = min(1	460 plf $ imes$ mir	n[1 - (0.5 - G),	1], 1740 plf)	= 1357.8 lb/ft			
Nor	minal unit shea	ar capacity fo	r wind design	$v_w = min(2)$	2045 plf $ imes$ mir	n[1 - (0.5 - G),	1], 2435 plf)	= 1901.9 lb/ft			
App	parent shear w	all shear stiff	ness	G _a = 40 ki	ps/in						
Loa	ding details										
	ad load acting or	n top of panel		D = 296 lb/	ft						
	or live load actin		nel	L _f = 160 lb/							
Floo	w load acting o			S = 196 lb/							
	-			S _{wt} = 10 lb/							
Sno	r weight of pane		of panel	W = 10700							
Sno Self	f weight of pane lane wind load a		•. p ••.		n						
Sno Self In p		acting at head	p=	f _{Wserv} = 1.0	0						
Sno Self In p Win	lane wind load and load servicea	acting at head bility factor		1 _{Wserv} = 1.0							
Sno Self In p Win Cho	lane wind load and load servicea	acting at head bility factor I shear walls a	above			Lr chiii (Ibs)	S _{chlil} (lbs)	R _{cbrit} (lbs)			
Sno Self In p Win	lane wind load and load servicea	acting at head bility factor		t _{Wserv} = 1.0 Dτ_ch[i] (Ibs) 0;	L _{f_ch[i]} (Ibs)	Lr_ch[i] (Ibs)	S ch[i] (Ibs) 0;	R ch[i] (Ibs) 0;			

D + 0.6W

D + 0.7E

Load combination no.1

Load combination no.2

Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers Section						Sheet no./rev.			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Load combination no.3		D + 0.75Lf	+ 0.45W + 0.75	(L _r or S or R)	· · · · · · · · · · · · · · · · · · ·	LEVE			
Load combination no.4			+ 0.525E + 0.75	. ,					
Load combination no.5		0.6D + 0.6V	V						
Load combination no.6		0.6D + 0.7E	Ē						
Adjustment factors									
Load duration factor – Table 2.3.2		C _D = 1.60							
Size factor for tension – Table 4A Size factor for compression – Table 4A Wet service factor for tension – Table 4A Wet service factor for compression – Table 4A		C _{Ft} = 1.30							
		C _{Fc} = 1.10							
		C _{Mt} = 1.00							
		C _{Mc} = 1.00							
Wet service factor for modulus of	elasticity – Tab	ole 4A							
		C _{ME} = 1.00							
Temperature factor for tension -	Table 2.3.3	C _{tt} = 1.00							
Temperature factor for compressi	on – Table 2.3	.3							
		C _{tc} = 1.00							
Temperature factor for modulus o	f elasticity – Ta								
		C _{tE} = 1.00							
Incising factor – cl.4.3.8		C _i = 1.00							
Buckling stiffness factor – cl.4.4.2		C⊤ = 1.00							
Adjusted modulus of elasticity		$E_{min}' = E_{min}$	\times C _{ME} \times C _{tE} \times C _i	× C _T = 550000	psi				
Critical buckling design value		F _{cE} = 0.822	imes E _{min} ' / (h / d) ²	= 904 psi					
Reference compression design va	alue	$F_{c}^{*} = F_{c} \times C$	$C_{\text{D}} imes C_{\text{Mc}} imes C_{\text{tc}} imes 0$	C _{Fc} × C _i = 2376	psi				
For sawn lumber		c = 0.8							
Column stability factor - eqn.3	.7-1	C _P = (1 + ((F _{cE} / F _c *)) / (2	× c) – √([(1 +	(F _{cE} / F _c *)) / (2	\times c)] ² - (F _{cE}			
		F _c *) / c) =	0.34						
From SDPWS Table 4.3.4 Maxin	num Shear Wa	all Aspect Ratio	os						
Maximum shear wall aspect ratio		3.5							
Perforated wall length		b₁ = 4 ft							
Shear wall aspect ratio		h / b1 = 2.5	63						
Perforated wall length		b ₂ = 5 ft							
Shear wall aspect ratio		h / b ₂ = 2.0	5						
Perforated wall length		b₃ = 3.5 ft							
Shear wall aspect ratio		h / b ₃ = 2.9	29						
Shear capacity adjustment factor	or – cl.4.3.3.5								
Sum of perforated shear wall leng	ths	$\Sigma L_i = b_1 \times 2$	imes b _s / h + b ₂ $ imes$ 2	$2 \times b_s$ / h + b ₃ ×	2 × b _s / h = 8.5	37 ft			
Total length of perforated shear w	all	$L_{tot} = b_1 + w$	/ ₀₁ + b ₂ + w ₀₂ + k	o ₃ = 20 ft					
Total area of openings		$A_o = w_{o1} \times I$	$h_{o1} + w_{o2} \times h_{o2} =$	48.5 ft ²					
Sheathing area ratio (eqn. 4.3-6)		r = 1 / (1 + .	$A_o /(h imes \Sigma L_i)) = 0$.643					
Shear capacity adjustment factor	(eqn. 4.3-5)	C _o = 0.88							
Perforated shear wall capacity									
Maximum shear force under w	ind loading	$V_{w_{max}} = 0.$	6 × W = 6.42 k	tips					
Shaar appacity for wind loading	a	$V_w = v_w \times 0$	$C_o \times \Sigma L_i / 2 = 7$.142 kips					
Shear capacity for wind loading									

Tekla Tedds	Project		Job Ref.			
	Section	Sheet no./rev. 4				
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

PASS - Shear capacity for wind load exceeds maximum shear force V = 0.6 × W = **6.42** kips Axial force for maximum tension $P = (0.6 \times (D + S_{wt} \times h)) \times b / 2 + 0.6 \times W_{ch1} = -0.736 \text{ kips}$ T = V × h / ((C_o × ΣL_i)) - P = 9.497 kips + HDU11-SDS2.5 ft = T / Aen = **384** lb/in²

> $F_t = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1508} \ lb/in^2$ f_t / F_t' = 0.254

PASS - Design tensile stress exceeds maximum applied tensile stress

Shear force for maximum compression	V = 0.6 × W = 6.42 kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} = 3.392 \text{ kips}$
Maximum compressive force in chord	C = V × h / ((C _o × Σ L _i)) + P = 12.154 kips
Maximum applied compressive stress	f _c = C / A _e = 402 lb/in ²
Design compressive stress	$\textbf{F_c'} = \textbf{F_c} \times \textbf{C}_{D} \times \textbf{C}_{Mc} \times \textbf{C}_{tc} \times \textbf{C}_{Fc} \times \textbf{C}_{i} \times \textbf{C}_{P} = \textbf{818} ~ lb/in^2$
	f _c / F _c ' = 0.491

PASS - Design compressive stress exceeds maximum applied compressive stress

V = 0.6 × W = 6.42 kips
P = $(0.6 \times (D + S_{wt} \times h)) \times b / 2 + -1 \times 0.6 \times W_{ch2}$ = -0.736 kips
T = V × h / (($C_o × \Sigma L_i$)) - P = 9.497 kips
f _t = T / A _{en} = 384 lb/in ²
$F_t = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1508} \text{ lb/in}^2$
ft / Ft' = 0.254
PASS - Design tensile stress exceeds maximum applied tensile stress

Shear force for maximum compression Axial force for maximum compression Maximum compressive force in chord Maximum applied compressive stress Design compressive stress

Chord capacity for chord 1

Shear force for maximum tension

Maximum tensile force in chord

Maximum applied tensile stress

Chord capacity for chord 2

Shear force for maximum tension

Maximum tensile force in chord

Maximum applied tensile stress

Axial force for maximum tension

Load combination 5

Design tensile stress

Load combination 1

Load combination 5

Design tensile stress

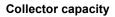
Load combination 1

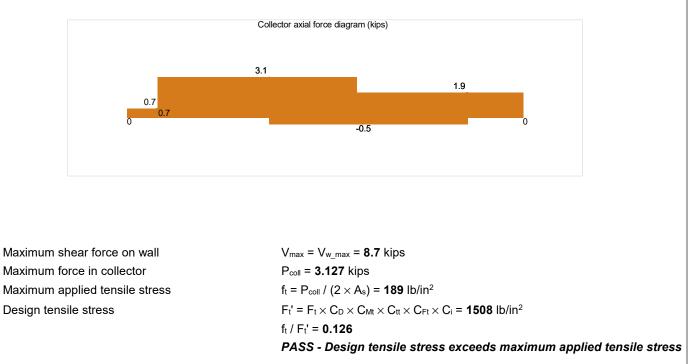
V = 0.6 × W = 6.42 kips $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} = 3.392$ kips $C = V \times h / ((C_o \times \Sigma L_i)) + P = 12.154 \text{ kips} + HDU14-SDS2.5$ f_c = C / A_e = 402 lb/in² $F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 818 \text{ lb/in}^{2}$ fc / Fc' = 0.491

PASS - Design compressive stress exceeds maximum applied compressive stress

Tekla Tedds	Project				Job Ref.			
Anthem Structural Engineers	Section				Sheet no./rev	·.		
					5			
	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	S	8/1/2022						
Collector capacity						LEVE		
		Collector axial force dia	agram (kips)					
				1.8				
0	-0.3							
					0			
	-2.1		-2.9					
Maximum shear force on wall		V _{max} = V _{w_m}	_{ax} = 6.42 kips					
Uniform shear applied to wall			(C _o × ΣL _i)) = 85 4	4.8 plf				
Shear resisted by wall segments		$v_b = v_a \times b /$	$(b_1 + b_2 + b_3) =$	1367.6 plf				
Maximum force in collector		P _{coll} = 2.906	3 kips					
Maximum applied tensile stress		$f_t = P_{coll} / (2$	\times A _s) = 176 lb/ir	1 ²				
Design tensile stress		F_t = $F_t \times C_D$	$0 \times C_{Mt} \times C_{tt} \times C_{F}$	$t \times C_i = 1508$ lb	o/in²			
		f _t / F _t ' = 0.1 1						
	4		-		naximum applie	ed tensile s		
Maximum applied compressive s Column stability factor	stress	$f_c = P_{coll} / (2 \times A_s) = 176 \text{ lb/in}^2$ $C_P = 1.00$						
Design compressive stress		$F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 2376 \text{ lb/in}^2$						
Design compressive succes		$f_c / F_c' = 0.074$						
	PASS -	Design compres		ceeds maxim	um applied con	npressive s		
Hold down force								
Chord 1		T ₁ = 9.497	kips					
Chord 2		T ₂ = 9.497	kips					
Wind load deflection								
Design shear force		$V_{\delta w} = f_{Wserv}$,×W = 10.7 kij	ps				
Deflection limit		$\Delta_{w_{allow}} = h$	/ 500 = 0.246 ir	า				
Induced unit shear		$v_{\delta w_{max}} = V_{\delta w}$	w / (C _o × ΣL _i) = 1	424.63 lb/ft				
Anchor tension force			kips, $v_{\delta w_{max}} \times h$:×h)×b/2+			
			/ _{ch1}), abs(W _{ch2})))					
Shear wall deflection - Eqn. 4.3-	1				$v_{\delta w_max} imes h / (G_a)$) + h \times T _{δ} / (
		ΣLi) = 1.09 4	1 in					
		,						
		$\delta_{ m sww}$ / $\Delta_{ m w}$ allow						

Tekla Tedds	Project				Job F	Ref.	
Anthem Structural Engineers	Section				Shee	t no./rev.	
	Couldri				1	110./101	
	Calc. by	Date	Chk'd by	Date	App'o	l by	Date
	S	8/1/2022					
							LEVEI
WOOD SHEAR WALL DESIGN							
In accordance with NDS2018 a	llowable stro	ess design and	the segment	ed shear wall		edds calcul	ation version 1
Design summary							
Description	Unit	Provided	Required	Utilization	Result		
Shear capacity	lbs	10936	8700	0.796	PASS		
Chord capacity	lb/in ²	818	479	0.585	PASS	_	
Collector capacity	lb/in ²	1508	189	0.126	PASS		
Panel details							
Structural I wood panel sheathin	g on one side	•					
Panel height		h = 10.2	5 ft				
Panel length		b = 32 ft					
			D + L _f + S + + + + + + + + + + + + + + + + + +				
W	* * * * * * * * * *	****	* * * * * * * * * * *	· • • • • • • • • • • • • •	* * * * * * * * * * * *	• • •	
		s2			s3		
	5 i0			5, 6			
p1	*		02	¥			
-0- -0-							
	7' 6"			7. 6"			
Ch1 Ch2	•	Chβ සු	Ch4	•	Ch5 ද	Ch6	
1 1		7 kip	2		0 Ki	9 kips	
		5.777 ki	5.777		5.629 ki	5.629 ki	
	9'	•	7'	9'	4' 6"-		
		Ĭ	Ĩ		ļ	I	
Panel opening details							
		w _{o1} = 9 f	t				
Width of opening							
Width of opening Height of opening	opening	h _{o1} = 7.5	ft				
Width of opening	opening		ft ft				

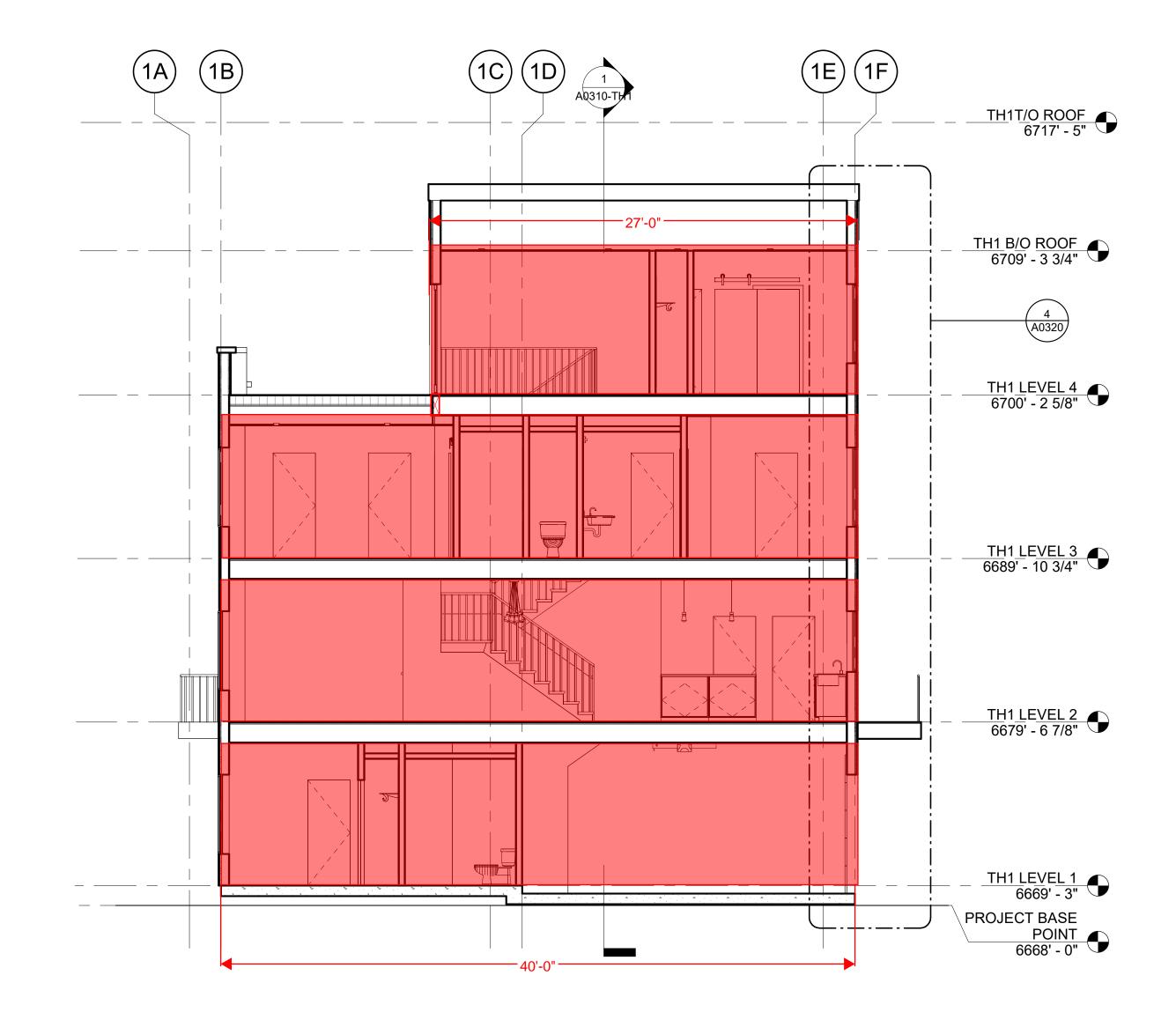

Position of opening	P _{o1} = 2.5 ft
Width of opening	w _{o2} = 9 ft
Height of opening	h _{o2} = 7.5 ft
Height to underside of lintel over opening	l _{o2} = 7.5 ft
Position of opening	P _{o2} = 18.5 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ = 193 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"
Cross-sectional area of studs	A _s = 8.25 in ²
Stud spacing	s = 16 in
Nominal end post size	2 x 2" x 6"
Dressed end post size	2 x 1.5" x 5.5"


Tekla Tedds	Project							
nthem Structural Engineers	Section				Sheet no./rev. 2			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Cross-sectional area of end posts	3	A _e = 16.5 in ²				LEVE		
Hole diameter		Dia = 1 in						
Net cross-sectional area of end p	osts	A _{en} = 13.5 in ²						
Nominal collector size		2 x 2" x 6"						
Dressed collector size		2 x 1.5" x 5.5"						
Service condition		Dry						
Temperature		100 degF or le	ess					
Vertical anchor stiffness		k _a = 30000 lb/	in					
From NDS Supplement Table 4	A - Reference d	lesign values fo	r visually gra	ded dimensio	on lumber (2" - 4	l" thick)		
Species, grade and size classification	ation	Hem-Fir, no.1	& btr grade, 2	2" & wider				
Specific gravity		G = 0.43						
Tension parallel to grain		Ft = 725 lb/in ²						
Compression parallel to grain		F _c = 1350 lb/ir	1 ²					
Modulus of elasticity		E = 1500000	b/in ²					
Minimum modulus of elasticity		E _{min} = 550000	lb/in ²					
Sheathing details								
Sheathing material		7/16'' wood r	oanel structu	ral I oriented	strandboard sh	eathing		
Fastener type		8d common nails at 2"centers						
						mala		
From SDPWS Table 4.3A Nomin		-				lieis		
Nominal unit shear capacity fo				· -				
Nominal unit shear capacity fo	-			0.5 - G), 1] = 1	1901.9 lb/ft			
Apparent shear wall shear stift	ness	G _a = 40 kips/	ïn					
Loading details								
Dead load acting on top of panel		D = 1024 lb/ft						
Floor live load acting on top of pa	nel	L _f = 1920 lb/ft						
Snow load acting on top of panel		S = 192 lb/ft						
Self weight of panel		S _{wt} = 10 lb/ft ²						
In plane wind load acting at head	of panel	W = 14500 lbs						
Wind load serviceability factor		f _{Wserv} = 1.00						
From ASCE 7-16 - cl.2.4.1 and c	:I. 2.4.5 Basic c	ombinations						
	:l. 2.4.5 Basic c	ombinations D + 0.6W						
Load combination no.1	:l. 2.4.5 Basic c							
Load combination no.1 Load combination no.2	:l. 2.4.5 Basic c	D + 0.6W	9.45W + 0.75([L _r or S or R)				
Load combination no.1 Load combination no.2 Load combination no.3	:I. 2.4.5 Basic c	D + 0.6W D + 0.7E						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4	:I. 2.4.5 Basic c	D + 0.6W D + 0.7E D + 0.75L _f + 0						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5	:l. 2.4.5 Basic c	D + 0.6W D + 0.7E D + 0.75Lf + 0 D + 0.75Lf + 0						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6	:I. 2.4.5 Basic c	D + 0.6W D + 0.7E D + 0.75Lf + 0 D + 0.75Lf + 0 0.6D + 0.6W						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors		D + 0.6W D + 0.7E D + 0.75Lf + 0 D + 0.75Lf + 0 0.6D + 0.6W						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors Load duration factor – Table 2.3.2	2	D + 0.6W D + 0.7E D + 0.75Lf + 0 D + 0.75Lf + 0 0.6D + 0.6W 0.6D + 0.7E $C_{D} = 1.60$						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors Load duration factor – Table 2.3.2 Size factor for tension – Table 4A	2	$D + 0.6W$ $D + 0.7E$ $D + 0.75L_{f} + 0$ $D + 0.75L_{f} + 0$ $0.6D + 0.6W$ $0.6D + 0.7E$ $C_{D} = 1.60$ $C_{Ft} = 1.30$						
From ASCE 7-16 - cl.2.4.1 and c Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors Load duration factor – Table 2.3.2 Size factor for tension – Table 4A Size factor for compression – Table 4A Size factor for compression – Table 4A	2 le 4A	$D + 0.6W$ $D + 0.7E$ $D + 0.75L_{f} + 0$ $D + 0.75L_{f} + 0$ $0.6D + 0.6W$ $0.6D + 0.7E$ $C_{D} = 1.60$ $C_{Ft} = 1.30$ $C_{Fc} = 1.10$						
Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors Load duration factor – Table 2.3.2 Size factor for tension – Table 4A	2 le 4A able 4A	$D + 0.6W$ $D + 0.7E$ $D + 0.75L_{f} + 0$ $D + 0.75L_{f} + 0$ $0.6D + 0.6W$ $0.6D + 0.7E$ $C_{D} = 1.60$ $C_{Ft} = 1.30$						

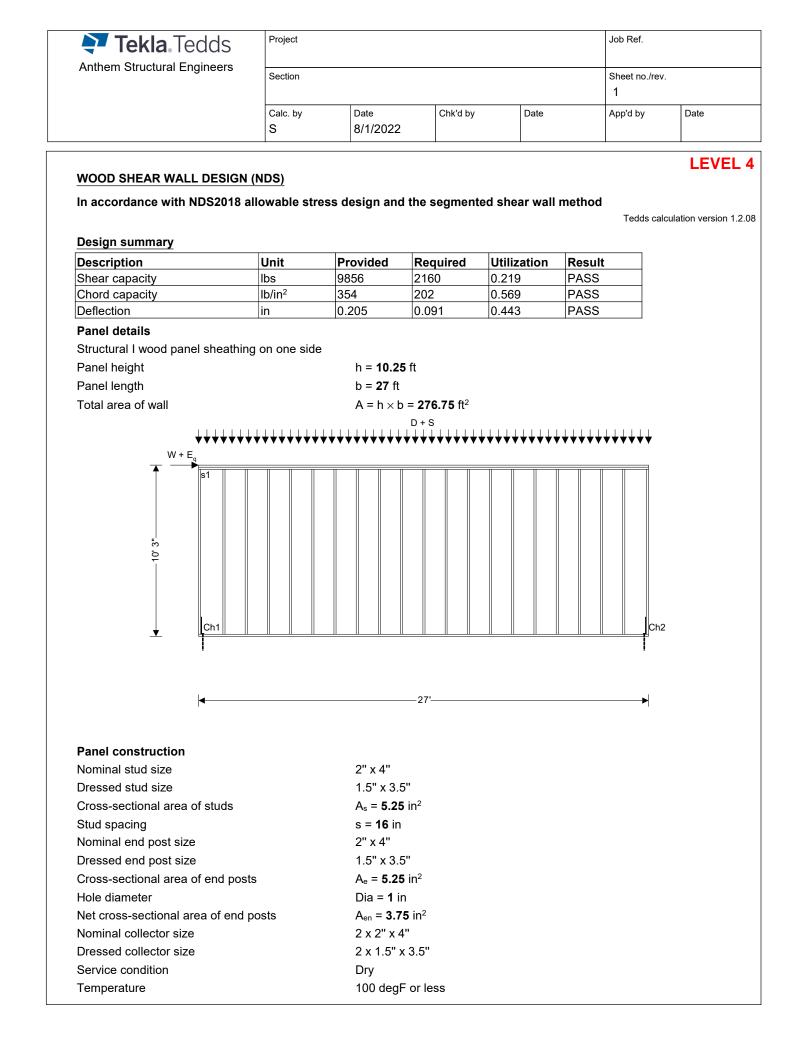
Tekla Tedds	Project				Job Ref.					
Anthem Structural Engineers	Section				Sheet no./rev.					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date				
		Сме = 1.00				LEVEL 1				
Temperature factor for tension – Ta Temperature factor for compression		C _{tt} = 1.00								
	–	C _{tc} = 1.00								
Temperature factor for modulus of	elasticity – I	able 2.3.3 Ct∈ = 1.00								
Incising factor – cl.4.3.8		CtE = 1.00 Ci = 1.00								
Buckling stiffness factor – cl.4.4.2		C _T = 1.00								
Adjusted modulus of elasticity			$C_{ME} \times C_{tE} \times C_i >$	< C⊤ = 550000 r	osi					
Critical buckling design value			< E _{min} ' / (h / d) ² =							
Reference compression design value	IA		$\times C_{Mc} \times C_{tc} \times C$	-	si					
For sawn lumber		c = 0.8								
Column stability factor – eqn.3.7	'_1			$(c) = \sqrt{((1 +))}$	= / F_*)) / (2 \	x c)1 ² - (E _{-F} /				
		F_{c}^{*} / c) = 0	$C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{((1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}))}$							
		, ,								
From SDPWS Table 4.3.4 Maximu	ım Shear W	-	S							
Maximum shear wall aspect ratio		3.5								
Segment 1 wall length		b₁ = 2.5 ft h / b₁ = 4.1								
Shear wall aspect ratio Segment 2 wall length		h / b ₁ = 4. 1 b ₂ = 7 ft								
Shear wall aspect ratio		h / b ₂ = 1.46	4							
Segment 3 wall length		$b_3 = 4.5$ ft	•							
Shear wall aspect ratio		h / b ₃ = 2.27	8							
Segmented shear wall capacity -	Strenath di	stribution metho	bd							
Maximum shear force under wir	-			s						
Shear capacity for wind loading	la localing		$b_2 + b_3) / 2 = 10$							
Shear capacity for wind loading		V _w – V _w ∧ (L V _{w max} / V _w =	,							
		_		for wind load e	vceeds maxin	num shear force				
Chand consists for should 1 and	•	1400 0	neur oupuony i							
Chord capacity for chords 1 and Shear wall aspect ratio	2	h / b₁ = 4.1								
onear wan aspect failo	Sea	ment not consid	lered. shear wa	ll aspect ratio	exceeds maxi	mum allowable.				
Chord capacity for chords 3 and	-		,							
Shear wall aspect ratio	4	h / b ₂ = 1.46	4							
Load combination 5		117 D2 - 1.40	+							
Shear force for maximum tension		$V = 0.6 \times W$	= 8.7 kips							
Axial force for maximum tensior	1		$D + S_{wt} \times h) \times$	$b_2/2 = 2.366$	kins					
Maximum tensile force in chord						HDU8-SI				
Maximum applied tensile stress		$f_t = T / A_{en} =$		// ^ (ii / 62) - i ² -						
Design tensile stress			\times C _{Mt} \times C _{tt} \times C _{Ft}	× Ci = 1508 lb/i	n ²					
		ft / Ft' = 0.28								
				ss exceeds m	aximum applie	ed tensile stress				
Load combination 1			- 1							
Shear force for maximum compress	sion	$V = 0.6 \times W$	= 8.7 kips							
	ession			= 0.751 kips						

Tekla Tedds	Project		Job Ref.						
Anthem Structural Engineers	Section		Sheet no./rev 4						
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Maximum compressive force in c	hord	$C = V \times (b_2)$	$(b_2 + 2 \times b_3^2 / 1)$	h)) × (h / b2) +	P = 8.894 kips	LEVEL 1			
Maximum applied compressive s	tress	$f_c = C / A_e =$	539 lb/in ²						
Design compressive stress		$F_c' = F_c \times C_c$	$0 imes C_{Mc} imes C_{tc} imes C_{tc}$	$C_{Fc} \times C_i \times C_P =$	818 lb/in ²				
		fc / Fc' = 0.6	59						
	PASS -	Design compres	sive stress ex	ceeds maxim	um applied con	pressive stress			
Chord capacity for chords 5 an	d 6								
Shear wall aspect ratio Load combination 5		h / b ₃ = 2.27	h / b ₃ = 2.278						
Shear force for maximum tensior	1	V = 0.6 × W = 8.7 kips							
Axial force for maximum tensi	on	$P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.521 \text{ kips}$							
Maximum tensile force in chord		$T = V \times (2 \times b_3^2 / h / (b_2 + 2 \times b_3^2 / h)) \times (h / b_3) - P = 5.629 \text{ kips} + HDU8 \text{ SE}$							
Maximum applied tensile stress		$f_t = T / A_{en} = 417 \text{ lb/in}^2$							
Design tensile stress		$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1508 \text{ lb/in}^2$							
		ft / Ft' = 0.27	7						
		PASS - Des	ign tensile str	ess exceeds l	maximum applie	ed tensile stress			
Load combination 1									
Shear force for maximum compre	ession	$V = 0.6 \times W$	= 8.7 kips						
Axial force for maximum comp	pression	P = ((D + S	$S_{wt} \times h)) \times s / 2$	= 0.751 kips					
Maximum compressive force in c	hord	$C = V \times (2 \times b_3^2 / h / (b_2 + 2 \times b_3^2 / h)) \times (h / b_3) + P = 7.901 \text{ kips}$							
Maximum applied compressive s	tress	$f_c = C / A_e =$	479 lb/in ²		-				
Design compressive stress		F_{c} ' = $F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P}$ = 818 lb/in ²							

PASS - Design compressive stress exceeds maximum applied compressive stress

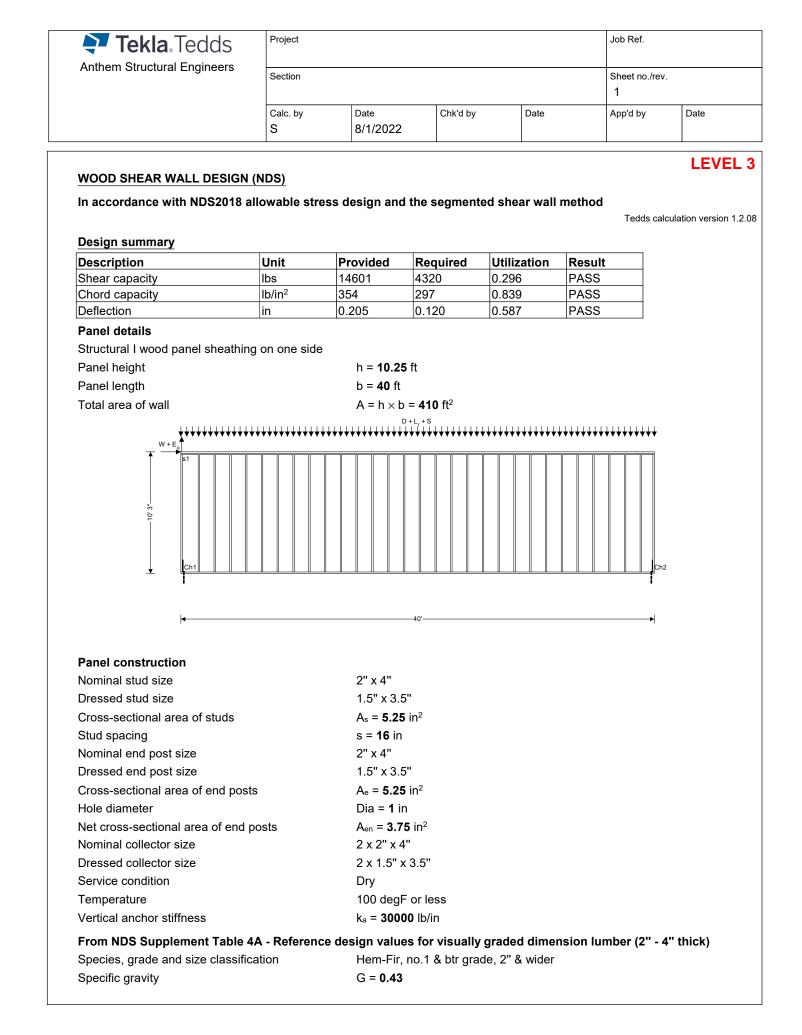


Tekla Tedds Anthem Structural Engineers	Project				Job Ref.	
	Section				Sheet no./rev. 5	
	- ,	Date 8/1/2022	Chk'd by	Date	App'd by	Date


Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 189 \text{ lb/in}^2$	LEVEL 1
Column stability factor	C _P = 1.00	
Design compressive stress	$\textbf{F_c'} = \textbf{F_c} \times \textbf{C_D} \times \textbf{C_{Mc}} \times \textbf{C_{tc}} \times \textbf{C_{Fc}} \times \textbf{C_i} \times \textbf{C_P} = \textbf{2376} \text{ lb/in}^2$	
	f _c / F _c ' = 0.080	
P	ASS - Design compressive stress exceeds maximum applied o	compressive stress
Hold down force		

Hold down lorce	
Chord 3	T ₃ = 5.777 kips
Chord 4	T ₄ = 5.777 kips
Chord 5	T₅ = 5.629 kips
Chord 6	T ₆ = 5.629 kips

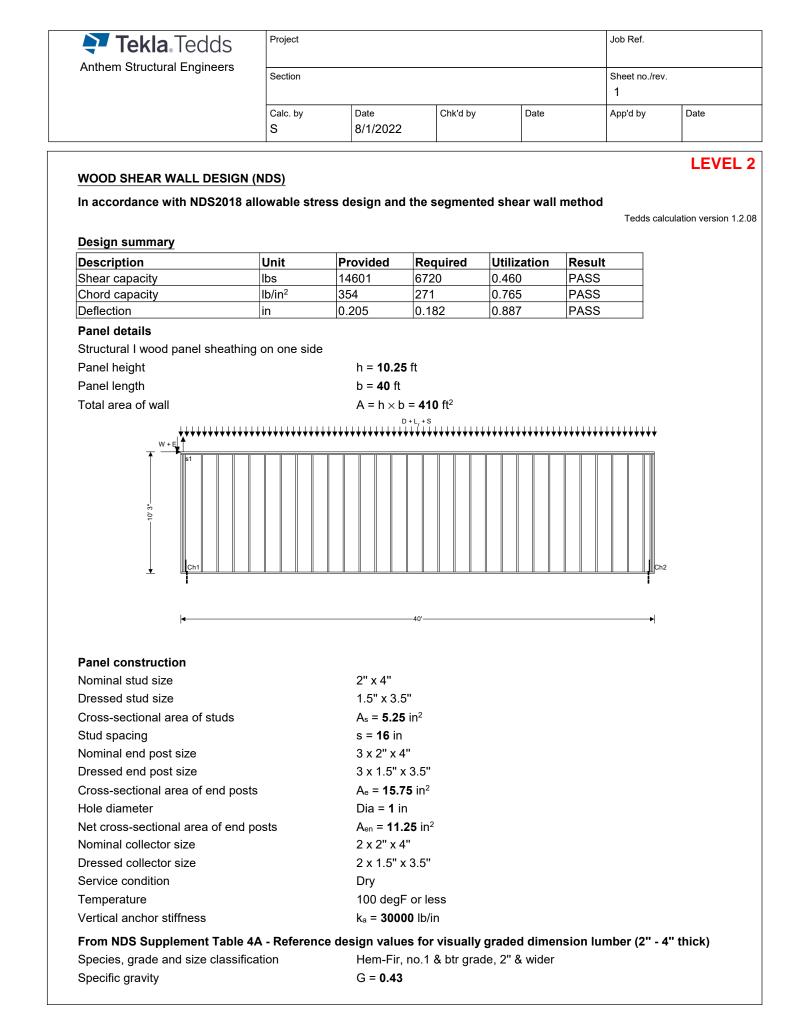
N-S WALLS TYPICAL INTERIOR WALL (SEGMENTED METHOD - TEDDS)



	Tekla	Tedds	Project				Job Ref.				
Anti	hem Structural	Engineers	Section				Sheet no	./rev.			
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Vert	ical anchor stif	fness		ka = 30000	lb/in			LEVEL 4			
				-		raded dimens	ion lumber (2'	" - 4" thick)			
Spe	cies, grade and	d size classifica	ation	Hem-Fir, n	o.1 & btr grade	e, 2" & wider					
Spe	cific gravity			G = 0.43							
Ten	sion parallel to	grain		Ft = 725 lb,	/in²						
Com	npression paral	llel to grain		Fc = 1350	b/in²						
Mod	lulus of elastici	ty		E = 15000	00 lb/in ²						
Mini	mum modulus	of elasticity		E _{min} = 5500)00 lb/in²						
She	athing details										
She	athing materi	al		7/16" woo	d panel struc	tural I oriente	d strandboard	d sheathing			
	tener type				on nails at 6"			U			
				-		• Shear Walls ·).5 - G), 1] = 5		Panels			
Nor	ninal unit she	ar capacity fo	r wind design	$v_{w} = 785 \text{ r}$	$f \times min[1 - ()$	0.5 - G), 1] = 7	' 30.1 lb/ft				
	arent shear w		-	G _a = 16 ki	- `						
Арр		vali shear sun	11655		p5/11						
Loa	ding details										
Dea	d load acting o	n top of panel		D = 256 lb/	′ft						
Sno	w load acting c	on top of panel		S = 1280 II	o/ft						
Self	weight of pane	el		S _{wt} = 10 lb/	′ft²						
In pl	lane wind load	acting at head	of panel	W = 3600	lbs						
Win	d load servicea	ability factor		f _{Wserv} = 1.0	0						
-	lane seismic lo ion spectral res	-	-	E _q = 400 lb ods S _{DS} = 0.33							
			-		•						
	ord forces fron										
Chord	W _{ch[i]} (lbs)	Eq_ch[i] (Ibs)	Dc_ch[i] (Ibs)	DT_ch[i] (Ibs)	L _{f_ch[i]} (Ibs)	Lr_ch[i] (Ibs)	S _{ch[i]} (lbs)	R _{ch[i]} (Ibs)			
Ch1	0;	0;	0;	0;	0;	0;	0;	0;			
Ch2	0;	0;	0;	0;	0;	0;	0;	0;			
Fro	m IBC 2021 cl.	1605.1 Basic	load combinat	tions from AS	CE 7, section	2.4					
Loa	d combination	no.1		D + 0.6W							
Loa	d combination	no.2		D + 0.7E							
	d combination			D + 0.75L _f	D + 0.75Lf + 0.45W + 0.75(Lr or S or R)						
Loa	d combination	no.4		D + 0.75L _f	+ 0.525E + 0.7	75S					
Loa	d combination	no.5		0.6D + 0.6	W						
Loa	d combination	no.6		0.6D + 0.7	E						
Adjı	ustment factor	rs									
Loa	d duration facto	or – Table 2.3.2		C _D = 1.60							
Size	e factor for tens	ion – Table 4A		C _{Ft} = 1.50							
Size	factor for com	pression – Tab	le 4A	CFc = 1.15							
Wet	service factor	for tension – Ta	able 4A	C _{Mt} = 1.00							
Wet	service factor	for compressic	n – Table 4A	C _{Mc} = 1.00							
Wet	service factor	for modulus of	elasticity – Tab	ole 4A							
				C _{ME} = 1.00							
Tem	perature factor	r for tension –	Table 2.3.3	C _{tt} = 1.00							

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./re	۷.
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Temperature factor for compress	ion – Table 2.3	3.3			I	LEVEI
		C _{tc} = 1.00				
Temperature factor for modulus of	of elasticity – 1					
Incident factor of 4.2.0		$C_{tE} = 1.00$				
Incising factor – cl.4.3.8 Buckling stiffness factor – cl.4.4.2)	Ci = 1.00 C⊤ = 1.00				
Adjusted modulus of elasticity	-		$C_{\text{ME}} imes C_{\text{tE}} imes C_{\text{i}}$	× CT = 55000	0 psi	
Critical buckling design value			< E _{min} ' / (h / d) ²		e poi	
Reference compression design v	alue		$\times C_{Mc} \times C_{tc} \times C_{tc}$	-	1 nsi	
For sawn lumber	aluc	c = 0.8			P p si	
Column stability factor – eqn.3	3.7-1		F _{cF} / Fc*)) / (2)	× c) – √([(1 +	(F _{cE} / F _c *)) / (2	\times c)] ² - (F _{CE} /
		F_{c}^{*}) / c) = 0			(1 02 / 1 0)) / (2	, o)] (i ce i
From CDDWC Table 4.2.4 Mavin		, ,				
From SDPWS Table 4.3.4 Maxim Maximum shear wall aspect ratio		3.5	5			
Shear wall length		b = 27 ft				
Shear wall aspect ratio		h / b = 0.38				
Segmented shear wall capacity	1					
Maximum shear force under w		$V_{w max} = 0.6$	δ × W = 2.16 k	ips		
Shear capacity for wind loadin	•	_	/ 2 = 9.856 kip			
offical capacity for white loadin	9	V _w – V _w × D V _{w max} / V _w =		55		
		_		for wind load	l exceeds maxi	mum shear fo
Maximum shear force under s	eismic loadir		′ × E _q = 0.28 k			
Shear capacity for seismic loa	ding		/ 2 = 7.031 kip			
	0	$V_{s max} / V_{s} =$	•			
		—		r seismic load	l exceeds maxi	mum shear fo
Chord capacity for chord 1						
Shear wall aspect ratio Load combination 5		h / b = 0.38				
Shear force for maximum tension	1	$V = 0.6 \times W$	= 2.16 kips			
Axial force for maximum tensi	on	P = (0.6 × (D + S _{wt} × h)) >	× b ₁ / 2 = 2.9	04 kips	
Maximum tensile force in chord		$T = V \times h / (I$	o) - P = <mark>-2.084</mark>	kips 🔶 NE	GATIVE. NO	
Maximum applied tensile stress		$f_t = T / A_{en} =$			ERTURNING	
Design tensile stress		F_t = $F_t \times C_D$	$ imes C_{Mt} imes C_{tt} imes C_{F}$	t × Ci = 1740	b/in²	
		f _t / F _t ' = -0.3 1				
		PASS - Des	ign tensile str	ess exceeds	maximum appli	ed tensile str
Load combination 1			0.401			
Shear force for maximum compre		$V = 0.6 \times W$	-			
Axial force for maximum comp			wt×h))×s / 2			
Maximum compressive force in c			b) + P = <mark>1.059</mark>	kips		
Wayimum applied compressive s	tress	$f_c = C / A_e =$	202 ID/In-			
Maximum applied compressive st Design compressive stress			\times C _{Mc} \times C _{tc} \times C		2EA lb/in?	

Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers	Section				Sheet no./rev. 4				
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
	PASS - L	Design compres	sive stress ex	ceeds maxim	um applied com	LEVEL			
Chord capacity for chord 2									
Load combination 5									
Shear force for maximum tensior		$V = 0.6 \times W$	-						
Axial force for maximum tensi	on		$D + S_{wt} \times h)) >$		-				
Maximum tensile force in chord			o) - P = <mark>-2.084</mark>		GATIVE. NO ERTURNING				
Maximum applied tensile stress		$f_t = T / A_{en} =$							
Design tensile stress			$\times C_{Mt} \times C_{tt} \times C_{Ft}$	$1 \times C_i = 1740$ lb	0/In²				
		$f_t / F_t' = -0.31$		ass avcads n	naximum applie	d toncilo stro			
Load combination 1		PASS - Des	iyii terisile sire	ess exceeds n	пахіпійті аррпе	u lensne stre			
Shear force for maximum compre	ession	$V = 0.6 \times W$	= 2.16 kips						
Axial force for maximum com			-	= 0 239 kips					
Maximum compressive force in c		P = ((D + S _{wt} × h)) × s / 2 = 0.239 kips C = V × h / (b) + P = 1.059 kips							
Maximum applied compressive s		$f_c = C / A_e =$,						
Design compressive stress		F_c ' = $F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P$ = 354 lb/in ²							
200.g.t compressive en coc		f _c / F _c ' = 0.569							
	PASS - L	Design compres	sive stress ex	ceeds maxim	um applied com	pressive stre			
Wind load deflection									
Design shear force		$V_{\delta w} = f_{Wserv}$	× W = 3.6 kips	3					
Deflection limit		$\Delta_{w_{allow}} = h / 600 = 0.205$ in							
Induced unit shear		$v_{\delta w} = V_{\delta w} / b = 133.33 \text{ lb/ft}$							
Anchor tension force		$T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$							
Shear wall deflection - Eqn. 4.3-	1	$\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times T_{\delta} / (k_a \times b) =$							
		0.091 in							
		δ_{sww} / Δ_{w_allow}	= 0.443						
			PASS - She	ar wall deflect	tion is less than	deflection lir			
Seismic deflection									
Design shear force		$V_{\delta s} = E_q = 0$.4 kips						
Deflection limit		$\Delta s_{allow} = 0.0$	20 × h = 2.46 i	in					
Induced unit shear		$v_{\delta s} = V_{\delta s} / b =$	= 14.81 lb/ft						
Anchor tension force		T_{δ} = max(0 k	ips, $v_{\delta s} imes h$ - (0.6	$6 - 0.2 imes S_{DS}) imes$	$(D + S_{wt} \times h) \times h$	o / 2) = 0.000			
		kips							
Shear wall elastic deflection - Ec	ın. 4.3-1	$\delta_{swse} = 2 \times v_{\delta}$	$_{ m s}$ $ imes$ h ³ / (3 $ imes$ E $ imes$	$(A_e \times b) + v_{\delta s} \times b$	$h / (G_a) + h \times T_{\delta}$	/ (k _a ×b) = 0.0			
		in							
Deflection ampification factor		$C_{d\delta} = 4$							
Seismic importance factor	am 10.0.15	le = 1.25		i					
Amp. seis. deflection – ASCE7 E	qn. 12.8-15		oswse / le = 0.032	in					
		δ_{sws} / Δ_{s_allow}			diam in taxa di				
			PASS - She	ar wall deflect	tion is less than	deflecti			

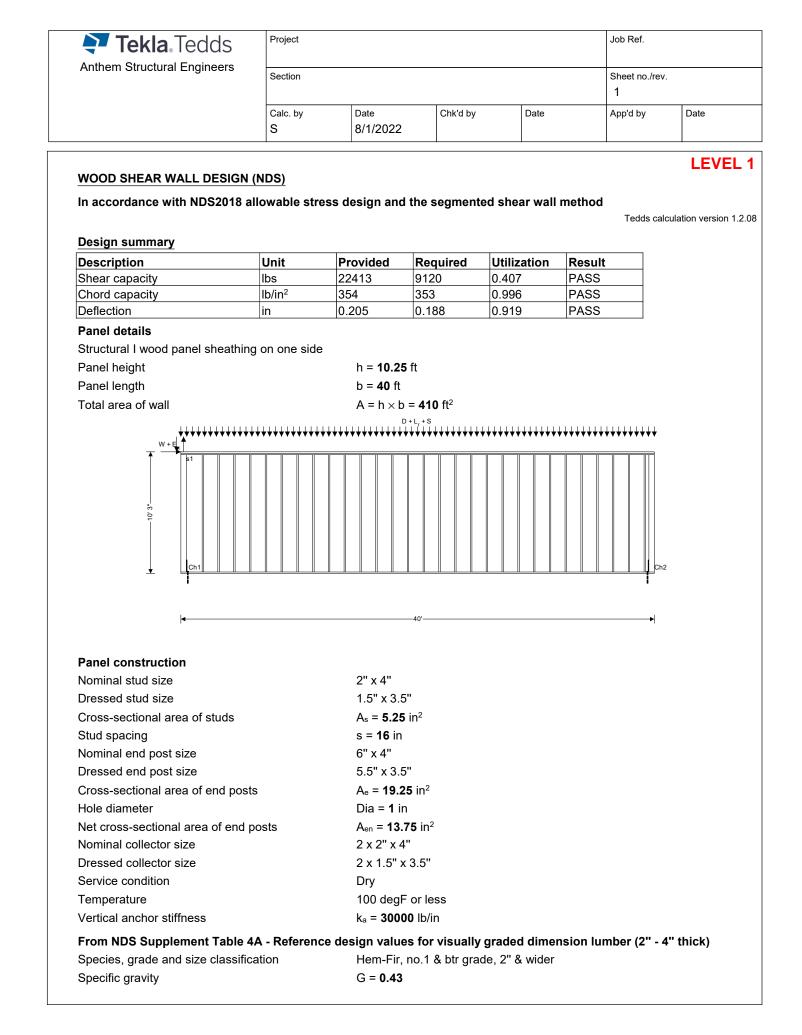


	Tekla , 7	edds	Project				Job Ref.				
Antl	hem Structural I	Engineers	Section				Sheet no	Irov			
			Section				2	./lev.			
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Ten	sion parallel to g	grain		Ft = 725 lb/	/in ²			LEVEL	3		
Com	npression parall	el to grain		Fc = 1350 l	b/in²						
Mod	lulus of elasticit	у		E = 15000)0 lb/in ²						
Mini	imum modulus o	of elasticity		E _{min} = 5500	E _{min} = 550000 lb/in ²						
She	athing details										
	eathing materia	al		7/16" woo	d panel struc	tural I oriente	d strandboard	d sheathing			
	stener type				on nails at 6"			J. J			
		la 4 2 A Nomin	al Unit Chaor	Consoltion for	Wood Frame		Wood bood	Denelo			
	m SDPWS Tabl			-				Paneis			
	ninal unit shea					<i>,</i> -					
	ninal unit shea		0			0.5 - G), 1] = 7	730.1 lb/ft				
Арр	parent shear w	all shear stiff	ness	Ga = 16 ki	ps/in						
Loa	ding details										
Dea	id load acting or	n top of panel		D = 512 lb/	ft						
Floo	or live load actin	g on top of pa	nel	L _f = 640 lb/	ft						
Sno	w load acting or	n top of panel		S = 1280 lk	o/ft						
Self	weight of panel	l		S _{wt} = 10 lb/	ft²						
In pl	lane wind load a	acting at head	of panel	W = 7200	bs						
Win	d load serviceal	bility factor		f _{Wserv} = 1.0	D						
-	lane seismic loa	-	-	E _q = 1000							
Des	ign spectral res	ponse accel. p	par., short perio	ds S _{DS} = 0.33	3						
Cho	ord forces from	shear walls	above								
Chord	W _{ch[i]} (Ibs)	Eq_ch[i] (Ibs)	Dc_ch[i] (Ibs)	D _{T_ch[i]} (Ibs)	L _{f_ch[i]} (Ibs)	Lr_ch[i] (Ibs)	S _{ch[i]} (Ibs)	R _{ch[i]} (Ibs)			
Ch1	-1392;	0;	0;	0;	0;	0;	0;	0;			
Ch2	0;	0;	0;	0;	0;	0;	0;	0;			
From	m IBC 2021 cl.1	1605.1 Basic	load combinat	ions from AS	CE 7, section	2.4					
Load	d combination n	10.1		D + 0.6W							
Load	d combination n	10.2		D + 0.7E							
Load	d combination n	10.3		D + 0.75L _f	+ 0.45W + 0.7	′5(L _r or S or R)					
Load	d combination n	10.4		D + 0.75L _f	+ 0.525E + 0.1	75S					
	d combination n	-		0.6D + 0.6	N						
Load	d combination n	10.6		0.6D + 0.7	Ξ						
Adju	ustment factor	s									
Load	d duration facto	r – Table 2.3.2	2	C _D = 1.60							
Size	e factor for tensi	on – Table 4A		C _{Ft} = 1.50							
Size	e factor for comp	pression – Tab	le 4A	C _{Fc} = 1.15							
Wet	t service factor f	or tension – Ta	able 4A	C _{Mt} = 1.00							
	t service factor f	•		C _{Mc} = 1.00							
Wet	t service factor f	or modulus of	elasticity – Tab								
_		.		C _{ME} = 1.00							
	perature factor			Ctt = 1.00							
Iem	perature factor	ior compressi	on – Table 2.3.								
Tom	perature factor	for modulus o	f elasticity To	Ctc = 1.00							
Tell				510 2.0.0							

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev.	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
		C _{tE} = 1.00				LEVE
Incising factor – cl.4.3.8		C _i = 1.00				
Buckling stiffness factor – cl.4.4.2		C⊤ = 1.00				
Adjusted modulus of elasticity		E_{min} ' = $E_{min} \times C$	$C_{ME} \times C_{tE} \times C_{i}$	< C⊤ = 550000	psi	
Critical buckling design value		F_{cE} = 0.822 $ imes$	E _{min} ' / (h / d)² =	= 366 psi		
Reference compression design valu	le	$F_{c}^{*} = F_{c} \times C_{D} \times$	$\mathbf{K} \mathbf{C}_{Mc} \times \mathbf{C}_{tc} \times \mathbf{C}_{tc}$	Fc × Ci = 2484	psi	
For sawn lumber		c = 0.8				
Column stability factor - eqn.3.7	-1	$C_{P} = (1 + (F_{cl}))$	_E / F _c *)) / (2 ×	<pre>c c) – √([(1 + (</pre>	F _{cE} / F _c *)) / (2 ×	c c)] ² - (F _{cE}
		F _c *) / c) = 0.1	4			
From SDPWS Table 4.3.4 Maximu	ım Shear Wall	Aspect Ratios				
Maximum shear wall aspect ratio		3.5				
Shear wall length		b = 40 ft				
Shear wall aspect ratio		h / b = 0.256				
Segmented shear wall capacity						
Maximum shear force under win	d loading	$V_{w_{max}} = 0.6$	< W = 4.32 ki	ps		
Shear capacity for wind loading		$V_w = v_w \times b / $	2 = 14.601 ki	ps		
		$V_{w_{max}} / V_{w} = 0$				
					exceeds maxim	um shear f
Maximum shear force under seis	Ũ	$V_{s_max} = 0.7 \times$	•			
Shear capacity for seismic loading	ng	$V_s = v_s \times b / 2$	2 = 10.416 kip	DS		
		$V_{s_{max}} / V_{s} = 0.$		a a ia mia la a d	avaa da maxim	
.		PASS - Shear	capacity for	seismic Ioad	exceeds maxim	um snear f
Chord capacity for chord 1		h / b = 0.256				
Shear wall aspect ratio Load combination 5		n/b - 0.256				
Shear force for maximum tension		V = 0.6 × W =	4.32 kips			
Axial force for maximum tension	1		•	(b ₁ /2+0.6×	≪W _{ch1} = 6.539 k	ips
Maximum tensile force in chord		$T = V \times h / (b)$,,			1
Maximum applied tensile stress		$f_t = T / A_{en} = -1$			RTURNING	
Design tensile stress				× Ci = 1740 lb/	′in²	
C C		f _t / F _t ' = -0.832				
		PASS - Desig	n tensile stre	ess exceeds m	naximum applie	d tensile st
Load combination 1						
Shear force for maximum compress		V = 0.6 × W =	•			
Axial force for maximum compre	ession	$P = ((D + S_{wt}$	\times h)) \times s / 2	+ -1 \times 0.6 \times V	V _{ch1} = 1.245 kip	s
Maximum compressive force in cho	rd	$C = V \times h / (b)$	+ P = <mark>2.352 k</mark>	tips		
Maximum applied compressive stre	SS	$f_c = C / A_e = 44$	18 lb/in ²			
Design compressive stress		$F_c' = F_c \times C_D \times$		$F_{C} \times C_{i} \times C_{P} = 3$	54 lb/in ²	
		f _c / F _c ' = 1.264				

Chord capacity for chord 2 Load combination 5

Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers	Section				Sheet no./re	ev.			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Shear force for maximum tension		V = 0.6 × W	= 4.32 kips			LEVE			
Axial force for maximum tension	on	P = (0.6 × (I	P = $(0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 7.374$ kips T = V × h / (b) - P = -6.267 kips ← NEGATIVE. NO						
Maximum tensile force in chord									
		$T = V \times h / (b) - P = -6.267 \text{ kips} \longleftarrow \text{NEGATIVE. NO}$							
Maximum applied tensile stress Design tensile stress		$F_t' = F_t \times C_D$	$\mathbf{K} \mathbf{C}_{Mt} \times \mathbf{C}_{tt} \times \mathbf{C}_{Ft}$	× C _i = 1740	lb/in ²				
		f _t / F _t ' = -0.96	0						
		PASS - Desi	gn tensile stre	ss exceeds	s maximum appl	lied tensile st			
Load combination 3									
Shear force for maximum compre	ssion	$V = 0.45 \times W$	′ = 3.24 kips						
Axial force for maximum comp	oression	P = ((D + S ₁	_{vt} × h) + 0.75 >	< L _f) × s / 2	= 0.73 kips				
Maximum compressive force in cl	nord	$C = V \times h / (k$	o) + P = <mark>1.560</mark> k	ips					
Maximum applied compressive st	ress	$f_c = C / A_e = 2$	2 97 lb/in²						
Design compressive stress		$F_c' = F_c \times C_D$	\times C _{Mc} \times C _{tc} \times C	$c_{\rm c} \times C_{\rm i} \times C_{\rm P}$	= 354 lb/in²				
		f _c / F _c ' = 0.83							
	PASS -	Design compress	sive stress exc	eeds maxi	mum applied co	mpressive st			
Wind load deflection									
Design shear force		$V_{\delta w} = f_{Wserv}$	< W = 7.2 kips						
Deflection limit		$\Delta_{w_{allow}} = h / b$	600 = 0.205 in						
Induced unit shear		$v_{\delta w} = V_{\delta w} / b =$	= 180 lb/ft						
Anchor tension force		$T_{\delta} = max(0 k)$	$ps, v_{\delta w} imes h - 0.6$	\times (D + S _{wt} \times	< h) × b / 2 +				
		max(abs(W _{ct}	1),abs(W _{ch2}))) =	0.000 kips					
Shear wall deflection - Eqn. 4.3-1		δ_{sww} = 2 × $v_{\delta w}$	imes h ³ / (3 $ imes$ E $ imes$	$A_e \times b$) + $v_{\delta v}$	$_{a} \times h / (G_{a}) + h \times $	$T_{\delta} / (k_a \times b) = C$			
		in							
		δ_{sww} / Δ_{w_allow}							
			PASS - Shea	r wall defle	ection is less the	an deflection			
Seismic deflection									
Design shear force		$V_{\delta s} = E_q = 1$	kips						
Deflection limit		Δ_{s_allow} = 0.02	20 × h = 2.46 i	n					
Induced unit shear		$v_{\delta s} = V_{\delta s} / b =$	25 lb/ft						
Anchor tension force		$T_{\delta} = max(0 k)$	$ips, v_{\delta s} imes h$ - (0.6	- $0.2 \times S_{\text{DS}}$	$) \times (D + S_{wt} \times h) >$	< b / 2) = 0.000			
		kips							
Shear wall elastic deflection – Eq	n. 4.3-1	δ _{swse} = 2 × v _{δs} 0.017 in	$_{3} \times h^{3} / (3 \times E \times$	$A_e \times b$) + $v_{\delta e}$	$_{s} \times h / (G_{a}) + h \times $	$T_{\delta} / (k_a \times b) =$			
Deflection ampification factor		$C_{d\delta} = 4$							
Seismic importance factor		l _e = 1.25							
Amp. seis. deflection – ASCE7 Ed	qn. 12.8-15		_{swse} / I _e = 0.053	in					
		δ_{sws} / $\Delta_{s_{allow}}$ =	= 0.022						



	⊺ Tekla ₀⊺	edds	Project				Job Ref.				
Antl	hem Structural E	Engineers	Section				Sheet no) /rev			
			0000011				2				
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Tens	sion parallel to g	prain		Ft = 725 lb/	ín²			LEVEL 2			
	npression paralle	-		F _c = 1350							
	Iulus of elasticity	-		E = 150000)0 lb/in ²						
Mini	mum modulus c	of elasticity		E _{min} = 5500	E _{min} = 550000 lb/in ²						
She	athing details										
	athing materia	al		7/16'' woo	d panel struc	ctural I oriente	d strandboard	d sheathing			
	tener type				on nails at 6"			g			
	m SDPWS Tabl			-				l Panels			
	ninal unit shea			• •							
Non	ninal unit shea	r capacity fo	r wind design	v _w = 785 p	$f \times min[1 - (0)]$	0.5 - G), 1] = 7	730.1 lb/ft				
Арр	parent shear wa	all shear stiff	ness	Ga = 16 ki	ps/in						
Loa	ding details										
Dea	d load acting on	n top of panel		D = 774 lb/	ft						
Floo	or live load acting	g on top of pa	nel	L _f = 512 lb/	ft						
Sno	w load acting or	n top of panel		S = 1280 lk	o/ft						
Self	weight of panel			S _{wt} = 10 lb/	ft²						
In pl	lane wind load a	acting at head	of panel	W = 11200	lbs						
Win	d load serviceat	oility factor		f _{Wserv} = 1.0)						
-	lane seismic loa ign spectral resi	-	-	E _q = 1600							
			-	us obs - 0.33.							
	ord forces from						0 (11)				
Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	DT_ch[i] (Ibs)	Lf_ch[i] (lbs)	Lr_ch[i] (lbs)	S _{ch[i]} (Ibs)	R _{ch[i]} (lbs)			
Ch1	-3272;	0;	0;	0;	0;	0;	0;	0;			
Ch2	3272;	0;	0;	0;	0;	0;	0;	0;			
	m IBC 2021 cl.1		load combinat		CE 7, section	2.4					
	d combination n			D + 0.6W							
	d combination n			D + 0.7E							
	d combination n					'5(L _r or S or R)					
	d combination n				+ 0.525E + 0.7	758					
	d combination n			0.6D + 0.6							
Load	d combination n	0.0		0.6D + 0.7I	=						
-	ustment factors										
	d duration factor			C _D = 1.60							
	e factor for tensio			C _{Ft} = 1.50							
	e factor for comp			C _{Fc} = 1.15							
	service factor for			C _{Mt} = 1.00							
	service factor fo	•		C _{Mc} = 1.00							
vvet	service factor for	or modulus of									
Tom	perature factor	for tension	Table 2 2 2	C _{ME} = 1.00 C _{tt} = 1.00							
	perature factor										
			IGDIC 2.0.	C _{tc} = 1.00							
Tem	perature factor	for modulus o	f elasticity – Ta								

	roject				Job I	NCI.	
Anthem Structural Engineers	ection				Shee 3	et no./rev.	
С	alc. by	Date	Chk'd by	Date	App	d by	Date
S	6	8/1/2022					
		C _{tE} = 1.00					LEVE
Incising factor – cl.4.3.8		C _i = 1.00					
Buckling stiffness factor – cl.4.4.2		C _T = 1.00					
Adjusted modulus of elasticity		$E_{min}' = E_{min} \times C$			000 psi		
Critical buckling design value		$F_{cE} = 0.822 \times E$	= _{min} ' / (h / d) ² =	= 366 psi			
Reference compression design value		$F_{c}^{*} = F_{c} \times C_{D} \times$	$C_{\text{Mc}} \times C_{\text{tc}} \times C$	$F_c \times C_i = 24$	484 psi		
For sawn lumber		c = 0.8					
Column stability factor - eqn.3.7-1		$C_{P} = (1 + (F_{cE}))$	= / F _c *)) / (2 ×	c) – √([(1	1 + (F _{cE} / F _c *)) / (2 ×	c)] ² - (F _{cE}
		F _c *) / c) = 0.1 4	4				
From SDPWS Table 4.3.4 Maximum Maximum shear wall aspect ratio	n Shear Wall	Aspect Ratios 3.5					
Shear wall length		b = 40 ft					
Shear wall aspect ratio		h/b = 0.256					
Segmented shear wall capacity							
Maximum shear force under wind	loading	$V_{w_{max}} = 0.6 \times$	< W = 6.72 ki	ps			
Shear capacity for wind loading	-	$V_w = v_w \times b / 2$	2 = 14.601 kii	os			
		$V_{w_{max}} / V_w = 0$.46		and avanada	movimu	um abaar f
Maximum shear force under seisr	nic looding	$V_{s_{max}} = 0.7 \times$	ear capacity f		Dad exceeds	maximu	ini shear i
Shear capacity for seismic loading	Ũ	$V_s = V_s \times b / 2$					
Shear capacity for seisific loading	1		•	15			
		V _{s_max} / V _s = 0. PASS - Shear		seismic lo	oad exceeds	maximu	ım shear f
Chord capacity for chord 1							
Shear wall aspect ratio Load combination 5		h / b = 0.256					
Shear force for maximum tension		V = 0.6 × W =	6.72 kips				
Axial force for maximum tension		P = (0.6 × (D	+ S _{wt} \times h)) \times	b ₁ / 2 + 0	$0.6 \times W_{ch1} =$	8.555 ki	ps
Maximum tensile force in chord		$T = V \times h / (b)$	- P = <mark>-6.833</mark> k	ips ┥ 🗕	NEGATIVE. N	0	
Maximum applied tensile stress		f _t = T / A _{en} = -6	07 lb/in ²		OVERTURNIN	١Ġ	
Design tensile stress		F_t = $F_t \times C_D \times C_D$	$C_{Mt} imes C_{tt} imes C_{Ft}$	× Ci = 174	10 lb/in ²		
		f _t / F _t ' = -0.349					
		PASS - Desig	n tensile stre	ss exceed	ds maximum	applied	l tensile st
Load combination 1			• =• · ·				
Shear force for maximum compression		V = 0.6 × W =	•				
Axial force for maximum compres		$P = ((D + S_{wt}$			$\delta \times W_{ch1} = 2.$	548 kips	5
Maximum compressive force in chord		$C = V \times h / (b)$		ips			
Maximum applied compressive stress	3	$f_c = C / A_e = 27$					
Design compressive stress		$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 354 \text{ lb/in}^{2}$					
		fc / Fc' = 0.765					

Chord capacity for chord 2 Load combination 5

Tekla Tedds	Project				Job Ref.			
Anthem Structural Engineers	Section				Sheet no./rev 4	Ι.		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Shear force for maximum tension		V = 0.6 × W	= 6.72 kips			LEVE		
Axial force for maximum tension	'n			$h_1/2 + -1$	$\times 0.6 \times W_{ch2} = 8$	555 kins		
	''''	$P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} = 8.555 \text{ kips}$ T = V × h / (b) - P = -6.833 kips VEGATIVE. NO						
Maximum tensile force in chord Maximum applied tensile stress Design tensile stress		$T = V \times h / (b) - P = -6.833 \text{ kips} \bullet \text{NEGATIVE. NO}$ $f_t = T / A_{en} = -607 \text{ lb/in}^2 \bullet \text{OVERTURNING}$						
			× Смt × Ctt × CFt	× Ci = 1740	b/in²			
5		f _t / F _t ' = -0.34						
				ss exceeds	maximum appli	ed tensile s		
Load combination 1			-					
Shear force for maximum compre	ssion	$V = 0.6 \times W$	= 6.72 kips					
Axial force for maximum comp	ression	P = ((D + S	_{wt} × h)) × s / 2	+ $0.6 imes W_{ch2}$	2 = 2.548 kips			
Maximum compressive force in ch	ord	$C = V \times h / (t)$	o) + P = <mark>4.270</mark> k	ips				
Maximum applied compressive st		$f_{c} = C / A_{e} = 2$						
Design compressive stress		$F_c' = F_c \times C_D$	$ imes C_{Mc} imes C_{tc} imes C$	$c_{c} \times C_{i} \times C_{P} =$	354 lb/in ²			
-		f _c / F _c ' = 0.76	5					
	PASS -	Design compres	sive stress exc	eeds maxin	num applied con	npressive s		
Wind load deflection								
Design shear force		V _{δw} = f _{Wserv} :	× W = 11.2 kip	s				
Deflection limit			, 600 = 0.205 in					
Induced unit shear		$v_{\delta w} = V_{\delta w} / b$						
Anchor tension force			ips,v _{ðw} × h - 0.6	\times (D + S _{ut} \times	h) × h / 2 +			
			•	•				
Shear wall deflection – Eqn. 4.3-1		$\begin{split} &\max(abs(W_{ch1}),abs(W_{ch2}))) = \textbf{0.000} \text{ kips} \\ &\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times T_{\delta} / (k_a \times b) = \\ &\textbf{0.182} \text{ in} \end{split}$						
		δ_{sww} / Δ_{w_allow}	= 0.887					
			PASS - Shea	r wall defled	ction is less tha	n deflection		
Seismic deflection								
Design shear force		$V_{\delta s} = E_q = 1$. 6 kips					
Deflection limit		$\Delta_{s allow} = 0.02$	20 × h = 2.46 i	า				
Induced unit shear								
Anchor tension force		T _δ = max(0 k kips	ips, $v_{\delta s} imes h$ - (0.6	- $0.2 \times S_{DS}$)	\times (D + S _{wt} \times h) \times	b / 2) = 0.00		
Shear wall elastic deflection – Eq	า. 4.3-1	δ _{swse} = 2 × v _δ 0.026 in	$_{s}$ $ imes$ h ³ / (3 $ imes$ E $ imes$	$A_e \times b$) + $v_{\delta s}$:	imes h / (G _a) + h $ imes$ Ta	$_{\delta}$ / (k _a × b) =		
Deflection ampification factor		$C_{d\delta} = 4$						
Seismic importance factor		l _e = 1.25						
Amp. seis. deflection – ASCE7 Ec	n. 12.8-15	$\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta$	_{swse} / I _e = 0.083	in				
		δ_{sws} / Δ_{s_allow} =	= 0.034					

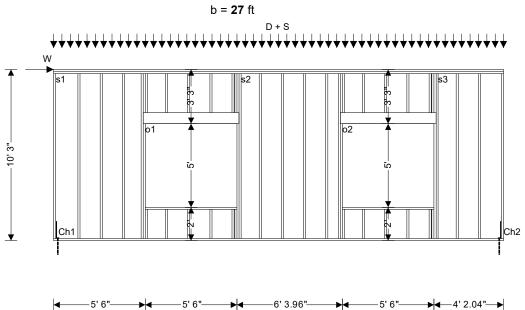
	Tekla ₀⊺	edds	Project				Job Ref.					
Ant	hem Structural E	Engineers	Section				Sheet no	o./rev.				
							2					
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date				
Ten	sion parallel to g	grain		Ft = 725 lb/	in ²			LEVE	L 1			
	npression paralle	-		F₀ = 1350 I	o/in²							
Mod	lulus of elasticity	/		E = 150000	0 lb/in ²							
Mini	mum modulus c	of elasticity		E _{min} = 5500	E _{min} = 550000 lb/in ²							
She	athing details											
	athing materia	al		7/16'' woo	d panel struc	tural I oriente	d strandboard	d sheathing				
	tener type				on nails at 4"			J. J				
		o 4 2 A Nomir	al Unit Shoor				Wood based	Banala				
	m SDPWS Tabl			-				Paneis				
	ninal unit shea					, -						
	ninal unit shea		•			(0.5 - G), 1] =	1120.6 lb/ft					
Арр	parent shear wa	all shear stiff	ness	G _a = 21 ki	os/in							
Loa	ding details											
Dea	d load acting on	top of panel		D = 1024 lk	o/ft							
Floc	or live load acting	g on top of pa	nel	L _f = 1920 lk	o/ft							
Sno	w load acting or	n top of panel		S = 1280 lb	/ft							
Self	weight of panel			S _{wt} = 10 lb/	ft ²							
	lane wind load a	-	of panel	W = 15200	lbs							
Win	d load serviceat	oility factor		f _{Wserv} = 1.00)							
-	lane seismic loa	-	-	Eq = 2250								
Des	ign spectral resp	ponse accel. p	oar., short perio	ds $S_{DS} = 0.333$	3							
	ord forces from							,				
Chord	W _{ch[i]} (Ibs)	Eq_ch[i] (Ibs)	Dc_ch[i] (Ibs)	D _{T_ch[i]} (Ibs)	L _{f_ch[i]} (Ibs)	Lr_ch[i] (Ibs)	S _{ch[i]} (Ibs)	R _{ch[i]} (Ibs)				
Ch1	-6177;	0;	0;	0;	0;	0;	0;	0;				
Ch2	6177;	0;	0;	0;	0;	0;	0;	0;				
Fro	m IBC 2021 cl.1	605.1 Basic	load combinat	ions from ASC	CE 7, section	2.4						
	d combination n			D + 0.6W								
	d combination n			D + 0.7E								
	d combination n					′5(L _r or S or R)						
	d combination n				+ 0.525E + 0.	75S						
	d combination n			0.6D + 0.6\								
Loa	d combination n	0.6		0.6D + 0.7I	=							
Adju	ustment factors	5										
Loa	d duration factor	r – Table 2.3.2	2	C _D = 1.60								
Size	e factor for tensio	on – Table 4A		C _{Ft} = 1.50								
	e factor for comp			C _{Fc} = 1.15								
	service factor for			C _{Mt} = 1.00								
	service factor for	•		C _{Mc} = 1.00								
Wet	service factor for	or modulus of	elasticity – Tab									
–	noroting ft-	for tonnian -		$C_{ME} = 1.00$								
	nperature factor			Ctt = 1.00								
101		ior compressi	on - Table 2.3.	C _{tc} = 1.00								
Tem	perature factor	for modulus o	f elasticity – Ta									

	Project				Job Ref.				
Anthem Structural Engineers	Section				Sheet no./rev.				
C	Calc. by	Date	Chk'd by	Date	App'd by	Date			
5	3	8/1/2022							
		CtE = 1.00				LEVE			
Incising factor – cl.4.3.8		C _i = 1.00							
Buckling stiffness factor – cl.4.4.2		C⊤ = 1.00							
Adjusted modulus of elasticity	$E_{min}' = E_{min} \times C$			psi					
Critical buckling design value		$F_{cE} = 0.822 \times E$	= _{min} ' / (h / d) ² =	= 366 psi					
Reference compression design value	e	$F_{c^*} = F_c \times C_D \times$	$C_{\text{Mc}} \times C_{\text{tc}} \times C$	_{Fc} × C _i = 2484	psi				
For sawn lumber		c = 0.8							
Column stability factor - eqn.3.7-	1	$C_{P} = (1 + (F_{cE}))$	= / F _c *)) / (2 ×	: c) – √([(1 + ((F _{cE} / F _c *)) / (2 >	≺ c)]² - (F _{cE}			
		F _c *) / c) = 0.1 4	4						
From SDPWS Table 4.3.4 Maximum	n Shear Wall	•							
Maximum shear wall aspect ratio Shear wall length		3.5 b = 40 ft							
Shear wall length Shear wall aspect ratio		b = 40 π h / b = 0.256							
Segmented shear wall capacity		II / D = 0.230							
Maximum shear force under wind	loading	$V_{w max} = 0.6 \times$	/// = 9 12 ki	ne					
	loauling	-		•					
Shear capacity for wind loading		$V_w = v_w \times b / 2$		ps					
		$V_{w_{max}} / V_{w} = 0$		for wind lood	avaaada maxim	um abaar f			
Maximum shear force under seisi	mic loading	$V_{s_{max}} = 0.7 \times$			exceeds maxim	iuiii Shedi i			
	U U	_		•					
Shear capacity for seismic loading	g	$V_s = v_s \times b / 2$	•	DS					
		V _{s_max} / V _s = 0. PASS - Shear		seismic load	exceeds maxim	num shear f			
Chord capacity for chord 1			, ,						
Shear wall aspect ratio		h / b = 0.256							
Load combination 5									
Shear force for maximum tension		$V = 0.6 \times W =$	9.12 kips						
Axial force for maximum tension		P = (0.6 × (D	+ S _{wt} \times h)) \times	b ₁ /2+0.6>	< W _{ch1} = 9.812 k	kips			
Maximum tensile force in chord		$T = V \times h / (b)$	- P = <mark>-7.475</mark> k	ips 🔶 NE	GATIVE. NO				
Maximum applied tensile stress		ft = T / A _{en} = -5	44 lb/in ²	OV	ERTURNING				
Design tensile stress		F_t = $F_t \times C_D \times C_D$	$C_{Mt} imes C_{tt} imes C_{Ft}$	× Ci = 1740 lb	/in²				
		f _t / F _t ' = -0.312							
		PASS - Desig	n tensile stre	ss exceeds n	naximum applie	d tensile st			
Load combination 1									
Shear force for maximum compression	on	$V = 0.6 \times W =$	9.12 kips						
Axial force for maximum compres	ssion	$P = ((D + S_{wt}))$	\times h)) \times s / 2	+ -1 × 0.6 × \	N _{ch1} = 4.457 kip	S			
Maximum compressive force in chord	b	$C = V \times h / (b)$	+ P = <mark>6.794</mark> k	tips					
	s	C = V × h / (b) + P = <mark>6.794 kips</mark> f _c = C / A _e = 353 lb/in ²							
Maximum applied compressive stres				$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 354 \text{ lb/in}^{2}$					
Maximum applied compressive stres Design compressive stress		F_c ' = $F_c \times C_D \times$	$C_{\text{Mc}} imes C_{\text{tc}} imes C_{\text{F}}$	$F_{C} \times C_{i} \times C_{P} = 3$	354 lb/in ²				

Chord capacity for chord 2 Load combination 5

Tekla Tedds	Project				Job Ref.			
Anthem Structural Engineers	Section				Sheet no./rev 4	1.		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Shear force for maximum tension		V = 0.6 × W	= 9.12 kips			LEVE		
Axial force for maximum tensior	ı	P = (0.6 × ($(D + S_{wt} \times h)) \times$	b ₁ /2+-1	$\times 0.6 \times W_{ch2} = 9$.812 kips		
Maximum tensile force in chord		$P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} = 9.812 \text{ kips}$ $T = V \times h / (b) - P = -7.475 \text{ kips} \bullet \qquad \text{NEGATIVE. NO}$ $f_t = T / A_{en} = -544 \text{ lb/in}^2 \bullet \qquad \text{OVERTURNING}$						
		T = V × h / (b) - P = -7.475 kips						
Maximum applied tensile stress Design tensile stress		$F_t' = F_t \times C_D$	$\mathbf{K} \mathbf{C}_{Mt} \times \mathbf{C}_{tt} \times \mathbf{C}_{Ft}$	× Ci = 1740	lb/in²			
		f _t / F _t ' = -0.31	2					
		PASS - Desi	gn tensile stre	ss exceeds	maximum appli	ed tensile s		
Load combination 1								
Shear force for maximum compres	sion	$V = 0.6 \times W$	= 9.12 kips					
Axial force for maximum compre	ession	P = ((D + S,	$_{vt} \times h)) \times s / 2$	+ $0.6 \times W_{ch}$	₂ = 4.457 kips			
Maximum compressive force in cho	ord	$C = V \times h / (k$	o) + P = <mark>6.794</mark> k	ips				
Maximum applied compressive stre	ss	$f_c = C / A_e = C$	353 lb/in ²					
Design compressive stress		$F_c' = F_c \times C_D$	$ imes C_{Mc} imes C_{tc} imes C_{tc}$	$c_{c} \times C_{i} \times C_{P} =$	354 lb/in ²			
		fc / Fc' = 0.99	6					
	PASS -	Design compres	sive stress exc	eeds maxin	num applied con	npressive s		
Wind load deflection								
Design shear force		V _{δw} = f _{Wserv} >	< W = 15.2 kip	s				
Deflection limit		$\Delta_{\rm w}$ allow= h /	600 = 0.205 in					
Induced unit shear		$v_{\delta w} = V_{\delta w} / b =$	= 380 lb/ft					
Anchor tension force		T _δ = max(0 k	ips, $v_{\delta w} imes h - 0.6$	\times (D + S _{wt} \times	h)×b/2+			
		max(abs(W _{ct}	1),abs(W _{ch2}))) =	0.000 kips				
Shear wall deflection – Eqn. 4.3-1		δ_{sww} = 2 × $v_{\delta w}$	imes h ³ / (3 $ imes$ E $ imes$.	$A_e \times b$) + $v_{\delta w}$	imes h / (G _a) + h $ imes$ Ta	$_{\delta}$ / (k _a × b) =		
		0.188 in						
		δ_{sww} / Δ_{w_allow}	= 0.919					
			PASS - Shea	r wall defle	ction is less tha	n deflection		
Seismic deflection								
Design shear force		$V_{\delta s} = E_q = 2$. 25 kips					
Deflection limit		$\Delta_{s_{allow}} = 0.02$	20 × h = 2.46 i	า				
Induced unit shear		$v_{\delta s} = V_{\delta s} / b =$	56.25 lb/ft					
Anchor tension force		$T_{\delta} = max(0 k)$	ips, $v_{\delta s} imes h$ - (0.6	- $0.2 \times S_{DS}$)	imes (D + S _{wt} $ imes$ h) $ imes$	b / 2) = 0.00		
		kips						
Shear wall elastic deflection - Eqn.	4.3-1	$\delta_{swse} = 2 \times v_{\delta s}$	$_{\rm s} imes {\rm h}^{\rm 3}$ / (3 $ imes$ E $ imes$	$A_e \times b$) + $v_{\delta s}$	imes h / (G _a) + h $ imes$ Ta	$_{\delta}$ / (k _a × b) =		
		0.028 in						
Deflection ampification factor		$C_{d\delta} = 4$						
Seismic importance factor		l _e = 1.25						
Amp. seis. deflection – ASCE7 Eqr	. 12.8-15		swse / I _e = 0.089	in				
		δ_{sws} / Δ_{s_allow} =						
			PASS - Shea	r wall defle	ction is less thai	n deflection		

<u>N-S WALLS</u> EAST, WEST ELEVATIONS (PERFORATED METHOD - TEDDS)



Tekla Tedds	Project					Job Ref.	
Anthem Structural Engineers	Section		Sheet no./rev. 1				
	Calc. by S	Date 8/1/2022	Chk'd by	Date		App'd by	Date
WOOD SHEAR WALL DESIGN	<u> </u>	ess design and	d the perforate	ed shear wall i	method		r, LEVEI
In accordance with NDS2018 a Design summary	allowable stro		-			Tedds calcula	T, LEVEI
In accordance with NDS2018 a Design summary	<u> </u>	ess design and Provided	Required	ed shear wall i Utilization	method Result	Tedds calcula	
In accordance with NDS2018 a Design summary Description	allowable stro		-			Tedds calcula	
	allowable stro	Provided	Required	Utilization	Result	Tedds calcula	
In accordance with NDS2018 a Design summary Description Shear capacity	Unit	Provided 4790	Required	Utilization 0.225	Result	Tedds calcula	

Structural I wood panel sheathing on one side

Panel height Panel length

h = **10.25** ft

4	5' 6"				── • 4 ′ 2.04
-	5 0	5.0	0 0.00	5.0	4 4 2.04

Panel opening details

Width of opening	w _{o1} = 5.5 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	l _{o1} = 7 ft
Position of opening	P _{o1} = 5.5 ft
Width of opening	w _{o2} = 5.5 ft
Height of opening	h _{o2} = 5 ft
Height to underside of lintel over opening	l _{o2} = 7 ft
Position of opening	P _{o2} = 17.33 ft
Total area of wall	A = h \cdot b - w _{o1} \cdot h _{o1} - w _{o2} \cdot h _{o2} = 221.75 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"

Tekla Tedds	Project				Job Ref.			
Anthem Structural Engineers	Section				Sheet no./rev. 2			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Cross-sectional area of studs		A _s = 8.25 in	2		WES	ST, LEVE		
Stud spacing		s = 16 in						
Nominal end post size		2" x 6"						
Dressed end post size		1.5" x 5.5"						
Cross-sectional area of end post	S	A _e = 8.25 in	2					
Hole diameter		Dia = 1 in						
Net cross-sectional area of end p	osts	A _{en} = 6.75 ir	1 ²					
Nominal collector size		2 x 2" x 6"						
Dressed collector size		2 x 1.5" x 5.	5"					
Service condition		Dry						
Temperature		100 degF o	^r less					
Vertical anchor stiffness		k _a = 30000	b/in					
From NDS Supplement Table 4	A - Referenc	e design values	for visually gra	ded dimensio	on lumber (2" - 4	" thick)		
Species, grade and size classific	ation	Hem-Fir, no	.2 grade, 2" & v	wider				
Specific gravity		G = 0.43						
Tension parallel to grain		Ft = 525 lb/i	n²					
Compression parallel to grain		F_c = 1300 lb	/in²					
Modulus of elasticity		E = 130000	0 lb/in ²					
Minimum modulus of elasticity		E _{min} = 4700	00 lb/in ²					
Sheathing details								
Sheathing material		7/16'' wood	l panel structu	Iral I oriented	strandboard sh	eathing		
Fastener type		8d commo	n nails at 6"ce	enters				
From SDPWS Table 4.3A Nomi	nal Unit Shea	ar Capacities for	Wood-Frame S	Shear Walls -	Wood-based Pa	nels		
Nominal unit shear capacity for	or seismic de	sign v _s = min(56	60 plf · min[1 ·	- (0.5 - G), 1]	, 1740 plf) = 520).8 lb/ft		
Nominal unit shear capacity for	or wind desig	n $v_w = min(73)$	85 plf · min[1	- (0.5 - G), 1]	l, 2435 plf) = 73	0.1 lb/ft		
Apparent shear wall shear stif	fness	G _a = 16 kip	s/in					
Loading details								
Dead load acting on top of panel		D = 160 lb/f						
Snow load acting on top of panel		S = 800 lb/f						
Self weight of panel		S _{wt} = 10 lb/f						
In plane wind load acting at head	of panel	W = 1800 lb						
Wind load serviceability factor		f _{Wserv} = 1.00						
From IBC 2021 cl.1605.1 Basic	load combin		E 7, section 2.	4				
Load combination no.1		D + 0.6W						
Load combination no.2		D + 0.7E	A 4 - 1	. ·				
Load combination no.3			· 0.45W + 0.75(. ,				
Load combination no.4			0.525E + 0.75	S				
Load combination no.5		0.6D + 0.6V						
<i></i> -		0.6D + 0.7E						
Load combination no.6								
Adjustment factors	2	o (•••						
Adjustment factors Load duration factor – Table 2.3.2		C _D = 1.60						
Load combination no.6 Adjustment factors Load duration factor – Table 2.3.3 Size factor for tension – Table 4A Size factor for compression – Table	L Contraction of the second seco	C _D = 1.60 C _{Ft} = 1.30 C _{Fc} = 1.10						

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev.	
					3	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Wet service factor for tension – T	able 4A	C _{Mt} = 1.00			WES	ST, LEVEL
Wet service factor for compression	on – Table 4A	C _{Mc} = 1.00				
Wet service factor for modulus of	elasticity – Ta	ble 4A				
		C _{ME} = 1.00				
Temperature factor for tension –		C _{tt} = 1.00				
Temperature factor for compress	ion – Table 2.3	3.3				
		C _{tc} = 1.00				
Temperature factor for modulus of	of elasticity – T					
		C _{tE} = 1.00				
Incising factor – cl.4.3.8		C _i = 1.00				
Buckling stiffness factor – cl.4.4.2	2	C⊤ = 1.00				
Adjusted modulus of elasticity		$E_{min}' = E_{min} \cdot$	$C_{ME} \cdot C_{tE} \cdot C_i \cdot$	• C _T = 470000	psi	
Critical buckling design value		F _{cE} = 0.822 ·	E _{min} ' / (h / d) ²	= 772 psi		
Reference compression design v	alue	$F_c^* = F_c \cdot C_c$	$\cdot C_{Mc} \cdot C_{tc} \cdot C$	CFc · Ci = 2288	osi	
For sawn lumber		c = 0.8				
Column stability factor - eqn.3	.7-1	$C_{P} = (1 + (F_{P}))$	F _{cE} / F _c *)) / (2 ·	c) – Ӥ[(1 + (F _{cE} / F _c [*])) / (2 ·	c)] ² - (F _{cE} /
, i		F_{c}^{*}) / c) = 0	<i>,,</i> , ,	, (1) (
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		h / b ₁ = 1.86 b ₂ = 6.33 ft h / b ₂ = 1.61				
Perforated wall length		b ₃ = 4.17 ft				
-		h / b ₃ = 2.45	8			
Shear wall aspect ratio	or - cl 4 3 3 5	h / b₃ = 2.45	8			
Shear wall aspect ratio Shear capacity adjustment fact		h / b ₃ = 2.45		h = 15 223 ft		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng	gths	h / b ₃ = 2.45 SL _i = b ₁ + b ₂	+ b ₃ · 2 · b _s / ł			
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w	gths	$h / b_3 = 2.45$ $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_c$	+ b ₃ · 2 · b _s / ł ₁ + b ₂ + w _{o2} + b	93 = 27 ft		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings	gths	$h / b_3 = 2.45$ $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_c$ $A_o = w_{o1} \cdot h_c$	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_1$ + $w_{o2} \cdot h_{o2} = {$	₉₃ = 27 ft 55 ft ²		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6)	gths <i>v</i> all	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w _c A _o = w _{o1} · h _c r = 1 / (1 + A	+ b ₃ · 2 · b _s / ł ₁ + b ₂ + w _{o2} + b	₉₃ = 27 ft 55 ft ²		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor	gths <i>v</i> all	$h / b_3 = 2.45$ $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_c$ $A_o = w_{o1} \cdot h_c$	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_1$ + $w_{o2} \cdot h_{o2} = {$	₉₃ = 27 ft 55 ft ²		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	gths vall (eqn. 4.3-5)	h / b ₃ = 2.45 $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_0$ $A_0 = w_{01} \cdot h_0$ r = 1 / (1 + A) $C_0 = 0.862$	$\begin{array}{c} + b_{3} \cdot 2 \cdot b_{s} / h_{1} \\ + b_{2} + w_{o2} + b_{1} \\ + w_{o2} \cdot h_{o2} = b_{0} \\ - ((h \cdot SL_{i})) = 0 \end{array}$	n3 = 27 ft 55 ft ² .739		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	yths vall (eqn. 4.3-5) vind loading	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w ₀ A ₀ = w ₀₁ · h ₀ r = 1 / (1 + A C ₀ = 0.862 $V_{w_max} = 0.6$	$ + b_{3} \cdot 2 \cdot b_{s} / h_{1} + b_{2} + w_{o2} + b_{1} + w_{o2} \cdot h_{o2} = b_{1} + w_{o2} \cdot h_{o2} = b_{0} / (h \cdot SL_{i})) = 0 $	n₃ = 27 ft 55 ft² .739 ips		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	yths vall (eqn. 4.3-5) vind loading	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w _o A _o = w _{o1} · h _o r = 1 / (1 + A C _o = 0.862 $V_{w_max} = 0.6$	$\begin{array}{c} + b_{3} \cdot 2 \cdot b_{s} / h_{1} \\ + b_{2} + w_{o2} + b_{1} \\ + w_{o2} \cdot h_{o2} = b_{0} \\ - ((h \cdot SL_{i})) = 0 \end{array}$	n₃ = 27 ft 55 ft² .739 ips		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	yths vall (eqn. 4.3-5) vind loading	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w _o A _o = w _{o1} · h _o r = 1 / (1 + A C _o = 0.862 V _{w_max} = 0.6 V _w = v _w · C V _{w_max} / V _w =	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $w_{o2} \cdot h_{o2} = \frac{1}{2}$ (h · SLi)) = 0 · W = 1.08 ki · SLi / 2 = 4. 0.225	n3 = 27 ft 55 ft ² .739 ips 79 kips		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	yths vall (eqn. 4.3-5) vind loading	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w _o A _o = w _{o1} · h _o r = 1 / (1 + A C _o = 0.862 V _{w_max} = 0.6 V _w = v _w · C V _{w_max} / V _w =	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $w_{o2} \cdot h_{o2} = \frac{1}{2}$ (h · SLi)) = 0 · W = 1.08 ki · SLi / 2 = 4. 0.225	n3 = 27 ft 55 ft ² .739 ips 79 kips	exceeds maxim	num shear fo
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	oths vall (eqn. 4.3-5) vind loading g	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w _o A _o = w _{o1} · h _o r = 1 / (1 + A C _o = 0.862 V _{w_max} = 0.6 V _w = v _w · C V _{w_max} / V _w =	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $w_{o2} \cdot h_{o2} = \frac{1}{2}$ (h · SLi)) = 0 · W = 1.08 ki · SLi / 2 = 4. 0.225	n3 = 27 ft 55 ft ² .739 ips 79 kips	exceeds maxim	num shear foi
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w Shear capacity for wind loadin Chord capacity for chords 1 an	oths vall (eqn. 4.3-5) vind loading g d 2	h / b ₃ = 2.45 SL _i = b ₁ + b ₂ L _{tot} = b ₁ + w _o A _o = w _{o1} · h _o r = 1 / (1 + A C _o = 0.862 V _{w_max} = 0.6 V _w = v _w · C V _{w_max} / V _w =	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $w_{o2} \cdot h_{o2} = 0$ ($h \cdot SL_i$)) = 0 W = 1.08 ki · SL_i / 2 = 4. 0.225 hear capacity	n3 = 27 ft 55 ft ² .739 ips 79 kips	exceeds maxim	num shear foi
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w Shear capacity for wind loadin Chord capacity for chords 1 an Load combination 5	yths vall (eqn. 4.3-5) rind loading g d 2	h / b ₃ = 2.45 $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_0$ $A_0 = w_{01} \cdot h_0$ r = 1 / (1 + A) $C_0 = 0.862$ $V_{w_max} = 0.6$ $V_w = v_w \cdot C$ $V_{w_max} / V_w = PASS - S$ $V = 0.6 \cdot W$	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $b_{o2} \cdot b_{o2} = 4$ + $(h \cdot SL_i) = 0$ + $W = 1.08 k_i$ + $O \cdot SL_i / 2 = 4$. - 0.225 - $hear capacity$ = $1.08 kips$	n3 = 27 ft 55 ft ² .739 ips 79 kips		num shear foi
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w Shear capacity for wind loadin Chord capacity for chords 1 and Load combination 5 Shear force for maximum tension	yths vall (eqn. 4.3-5) rind loading g d 2	h / b ₃ = 2.45 $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_0$ $A_o = w_{o1} \cdot h_0$ r = 1 / (1 + A) $C_o = 0.862$ $V_{w_max} = 0.6$ $V_w = v_w \cdot C$ $V_{w_max} / V_w = PASS - S$ $V = 0.6 \cdot W$ $P = (0.6 \cdot (1))$	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $w_{o2} \cdot h_{o2} = 4$ ($h \cdot SL_i$)) = 0 - $(H \cdot SL_i)$ = 0 - $SL_i / 2 = 4$. 0.225 hear capacity = 1.08 kips D + S _{wt} · h)) ·	 a = 27 ft 55 ft² .739 ips 79 kips for wind load of b / 2 = 2.126 		
Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall leng Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w Shear capacity for wind loadin Chord capacity for chords 1 an Load combination 5 Shear force for maximum tension Axial force for maximum tension	yths vall (eqn. 4.3-5) rind loading g d 2	h / b ₃ = 2.45 $SL_i = b_1 + b_2$ $L_{tot} = b_1 + w_0$ $A_o = w_{o1} \cdot h_0$ r = 1 / (1 + A) $C_o = 0.862$ $V_{w_max} = 0.6$ $V_w = v_w \cdot C$ $V_{w_max} / V_w = PASS - S$ $V = 0.6 \cdot W$ $P = (0.6 \cdot (1))$	+ $b_3 \cdot 2 \cdot b_s / h_1$ + $b_2 + w_{o2} + b_{o2}$ + $w_{o2} \cdot h_{o2} = 4$ o /($h \cdot SL_i$)) = 0. 5 · $W = 1.08 k_i$ o · $SL_i / 2 = 4$. 0.225 hear capacity = 1.08 kips D + S _{wt} · h)) · Co · SL_i)) - P =	 a = 27 ft 55 ft² .739 ips 79 kips for wind load of b / 2 = 2.126 	kips	NO

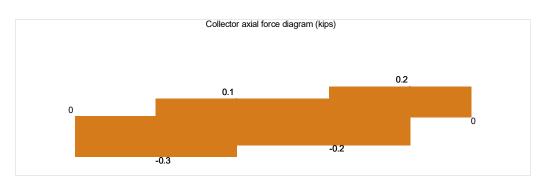
Anthem Structural Engineers	Project				Job Ref.	
	Section				Sheet no./rev. 4	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

$f_t / F_t' = -0.174$

WEST, LEVEL 4

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1 Shear force for maximum compression


Axial force for maximum compression

Maximum compressive force in chord

Maximum applied compressive stress Design compressive stress $V = 0.6 \cdot W = 1.08 \text{ kips}$ $P = ((D + S_{wt} \cdot h)) \cdot s / 2 = 0.175 \text{ kips}$ $C = V \cdot h / ((C_o \cdot SL_i)) + P = 1.019 \text{ kips}$ $f_c = C / A_e = 123 \text{ lb/in}^2$ $F_c' = F_c \cdot C_D \cdot C_{Mc} \cdot C_{tc} \cdot C_{Fc} \cdot C_i \cdot C_P = 709 \text{ lb/in}^2$ $f_c / F_c' = 0.174$

PASS - Design compressive stress exceeds maximum applied compressive stress

Collector capacity

Maximum shear force on wall Uniform shear applied to wall Shear resisted by wall segments Maximum force in collector Maximum applied tensile stress Design tensile stress

Maximum applied compressive stress Column stability factor Design compressive stress

 $\begin{array}{l} V_{max} = V_{w_max} = \textbf{1.08 kips} \\ v_a = V_{max} / \left((C_o \cdot SL_i) \right) = \textbf{82.3 plf} \\ v_b = v_a \cdot b / (b_1 + b_2 + b_3) = \textbf{138.9 plf} \\ P_{coll} = \textbf{0.311 kips} \\ f_t = P_{coll} / (2 \cdot A_s) = \textbf{19 lb/in}^2 \\ F_t' = F_t \cdot C_D \cdot C_{Mt} \cdot C_{tt} \cdot C_{Ft} \cdot C_i = \textbf{1092 lb/in}^2 \\ f_t / F_t' = \textbf{0.017} \\ \textbf{PASS - Design tensile stress exceeds maximum applied tensile stress} \\ f_c = P_{coll} / (2 \cdot A_s) = \textbf{19 lb/in}^2 \\ C_P = \textbf{1.00} \\ F_c' = F_c \cdot C_D \cdot C_{Mc} \cdot C_{tc} \cdot C_{Fc} \cdot C_i \cdot C_P = \textbf{2288 lb/in}^2 \\ f_c / F_c' = \textbf{0.008} \end{array}$

Wind load deflection

Design shear force Deflection limit Induced unit shear Anchor tension force
$$\begin{split} V_{dw} &= f_{Wserv} \cdot \ W = \textbf{1.8 kips} \\ D_{w_allow} &= h \ / \ 500 = \textbf{0.246 in} \\ v_{dw_max} &= V_{dw} \ / \ (C_o \cdot \ SL_i) = \textbf{137.16 lb/ft} \\ T_d &= max(0 \ kips, v_{dw_max} \cdot \ h - 0.6 \cdot \ (D + S_{wt} \cdot \ h) \cdot \ b \ / \ 2) = \textbf{0.000 kips} \end{split}$$

Tekla Tedds Anthem Structural Engineers	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev. 5	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Shear wall deflection – Eqn. 4.3-1		d _{sww} = 2 · v _{dw}	,_ _{_max} · h ³ / (3 ·	E · A _e · SL _i) + v _{dw_}	₩ ES1 _{max} · h / (G _a) +	, LEVEL 4 h · Td / (ka ·

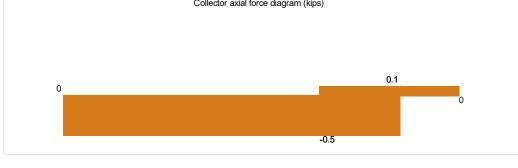
SLi) = **0.095** in

 d_{sww} / $D_{w_{allow}}$ = 0.387

PASS - Shear wall deflection is less than deflection limit

Tekla. Tedds	Project	Project						
Anthem Structural Engineers	Section	:	Sheet no./rev. 1					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	,	App'd by	Date	
WOOD SHEAR WALL DESIGN		ess design and	d the perforate	ed shear wall	method		T, LEVE	
Design summary Description	Unit	Provided	Required	Utilization	Result			
Shear capacity	lbs	7089	2280	0.322	PASS			
Chord capacity	lb/in ²	818	121	0.148	PASS			
Collector capacity	lb/in ²	1508	32	0.021	PASS			
Deflection	in	0.246	0.129	0.523	PASS			
Panel details Structural I wood panel sheathir	ng on one side	h = 10.2	- 4					
Panel height								
Panel length		b = 27 ft	D + S					
	↓↓↓↓↓↓	↓ ↓↓↓↓↓↓↓		****	↓ ↓↓↓↓↓↓	↓ ↓ ↓		
					s2			

V	Ch1							5				Ch2
	 		-17' 6'	n	 	 	•	-5' 6"-	 - >	—4'-	►	


Panel opening details

Width of opening	w _{o1} = 5.5 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	l _{o1} = 7 ft
Position of opening	P _{o1} = 17.5 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ = 249.25 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"
Cross-sectional area of studs	A _s = 8.25 in ²
Stud spacing	s = 16 in
Nominal end post size	2 x 2" x 6"
Dressed end post size	2 x 1.5" x 5.5"

	Tekla [®]		Project				Job Ref.		
Anth	hem Structural	Engineers	Section				Sheet no 2	o./rev.	
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date	
Cros	ss-sectional are	ea of end posts	3	A _e = 16.5 ir	1 ²		V	VEST, LEV	/EL
Hole	e diameter			Dia = 1 in					
Net	cross-sectiona	l area of end p	osts	A _{en} = 13.5	in²				
Nom	ninal collector s	size		2 x 2" x 6"					
Dres	ssed collector s	size		2 x 1.5" x 5	5.5"				
Serv	vice condition			Dry					
Tem	nperature			100 degF o	or less				
Verti	tical anchor stif	fness		k _a = 30000	lb/in				
Fror	m NDS Supple	ement Table 4	A - Reference	design values	for visually g	raded dimens	ion lumber (2	" - 4" thick)	
	cies, grade and			-	o.1 & btr grade		Ŷ	,	
Spe	cific gravity			G = 0.43	-				
-	sion parallel to	grain		Ft = 725 lb/	/in²				
Corr	npression paral	llel to grain		F _c = 1350 l	b/in²				
Mod	lulus of elastici	ty		E = 15000	00 lb/in ²				
Mini	imum modulus	of elasticity		E _{min} = 5500)00 lb/in ²				
She	athing details								
	eathing materi			7/16" woo	d panel struc	tural I oriente	d strandboard	d sheathing	
0110	•						a offantaboard	a onoaaning	
Fast	stener type			8d commo	on nails at 6"o	centers			
	tener type				on nails at 6"			Damala	
Fror	m SDPWS Tab			Capacities for	r Wood-Frame	Shear Walls			
Fror Nom	m SDPWS Tab minal unit shea	ar capacity fo	r seismic des	Capacities for ign v _s = min(5	Wood-Frame 60 plf × min[′	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Nom	m SDPWS Tab	ar capacity fo	r seismic des	Capacities for ign v _s = min(5	Wood-Frame 60 plf × min[′	Shear Walls], 1740 plf) =	520.8 lb/ft	
Fror Non Non	m SDPWS Tab minal unit shea	ar capacity fo ar capacity fo	r seismic des r wind design	Capacities for ign v _s = min(5	r Wood-Frame 60 plf × min[785 plf × min[Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non Non App	m SDPWS Tab minal unit she minal unit she parent shear w	ar capacity fo ar capacity fo	r seismic des r wind design	Capacities for ign v _s = min(5 v _w = min(7	r Wood-Frame 60 plf × min[785 plf × min[Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non Non App Load	m SDPWS Tab minal unit shea minal unit shea parent shear w ding details	ar capacity fo ar capacity fo vall shear stiff	r seismic des r wind design	Capacities for ign v _s = min(5 v _w = min(7	r Wood-Frame 60 plf × min[785 plf × min[ps/in	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non Non App Load	m SDPWS Tab minal unit shea minal unit shea minal unit shear w ding details id load acting o	ar capacity fo ar capacity fo vall shear stiff on top of panel	r seismic des r wind design fness	Capacities for ign v_s = min(5 v_w = min(7 G_a = 16 ki	r Wood-Frame 60 plf × min[[*] 785 plf × min[ps/in ft	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non App Load Snov	m SDPWS Tab minal unit shea minal unit shea parent shear w ding details	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel	r seismic des r wind design fness	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 460 lb/	r Wood-Frame 60 plf × min[785 plf × min[785 nlf ps/in ft	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non App Load Snov Self	m SDPWS Tab minal unit shea minal unit shea parent shear w ding details id load acting o w load acting o	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel	r seismic des r wind design fness	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/ S = 800 lb/	r Wood-Frame 60 plf × min[785 plf × min[785 nlf ft ft ft	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fron Non App Load Snov Self	m SDPWS Tab minal unit shea minal unit shea parent shear w ding details id load acting o w load acting o weight of pane	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel el acting at head	r seismic des r wind design fness	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 460 lb/ S = 800 lb/ $S_{wt} = 10$ lb/	r Wood-Frame 60 plf × min[785 plf × min[785 n ft ft ft ft	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fron Non App Load Dead Snov Self In pl	m SDPWS Tab minal unit shea parent shear w ding details id load acting o w load acting o weight of pane lane wind load	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor	r seismic des r wind design fness of panel	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 3800 l	r Wood-Frame 60 plf × min[785 plf × min[785 n ft ft ft ft	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non App Load Dead Snov Self In pl Wind Cho	m SDPWS Tab minal unit shea parent shear w ding details id load acting o w load acting o weight of pane lane wind load d load servicea	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor	r seismic des r wind design fness of panel	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 3800 l	r Wood-Frame 60 plf × min[785 plf × min[785 n ft ft ft ft	Shear Walls 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
Fror Non App Load Snov Self In pl Wind Cho	m SDPWS Tab minal unit shea parent shear w ding details id load acting o w load acting o w load acting o weight of pane lane wind load d load servicea ord forces from	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel el acting at head ability factor n shear walls	r seismic des r wind design fness of panel above	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 3800 l f _{Wserv} = 1.00	r Wood-Frame 60 plf × min[785 plf × min[785 plf × min[ft ft ft ft bs 0	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1], 1740 plf) = I], 2435 plf) =	520.8 lb/ft 730.1 lb/ft	
Fror Non App Load Dead Snov Self In pl Wind Cho	m SDPWS Tab minal unit shea minal unit shea parent shear w ding details id load acting o w load acting o w load acting o w load acting o w load acting o d load servicea ord forces from Wch[] (Ibs)	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel el acting at head ability factor n shear walls E q_ch[] (lbs)	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs)	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 460 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 3800 l f _{Wserv} = 1.00	r Wood-Frame 60 plf \times min[' 785 plf \times min[ps/in ft ft ft ft Lft ² bs 0 Lf_ch[i] (lbs)	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 7 Lr_ch[ī] (Ibs)], 1740 plf) = I], 2435 plf) = Schii] (Ibs)	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs)	
Fror Non App Load Dead Snov Self In pl Wind Cho nord h1 h2	m SDPWS Tab minal unit shear parent shear w ding details ad load acting of weight of pane lane wind load d load servicear ord forces from Wch[i] (lbs) -697; 697;	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}(lbs)$ 0; 0;	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ $D = 460 lb/S = 800 lb/S = 800 lb/S v_w = 10 lb/W = 3800 lb/S v_w = 1.000$ $D_{T_ch[1]}(lbs)$ 0; 0; 0;	r Wood-Frame 60 plf × min[785 plf × min[ps/in ft ft ft ft ft^2 bs 0 L _{f_ch[1]} (lbs) 0; 0;	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
From Nom App Load Dead Snow Self In pl: Wind Cho nord in1 in2	m SDPWS Tab minal unit shear parent shear w ding details ad load acting of weight of pane lane wind load d load servicear ord forces from Wch[i] (lbs) -697; 697;	ar capacity for ar capacity for vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[i]}$ (Ibs) 0; 0; 1605.1 Basic	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 460 lb/ S = 800 lb/ S = 800 lb/ W = 3800 l f _{Wserv} = 1.00 DT_ch[i] (lbs) 0; 0; tions from ASC	r Wood-Frame 60 plf × min[785 plf × min[ps/in ft ft ft ft ft^2 bs 0 L _{f_ch[1]} (lbs) 0; 0;	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
From Nom App Load Snow Self In pla Wind Cho nord in1 in2 From Load	m SDPWS Tab minal unit shear minal unit shear parent shear w ding details id load acting o w load acting o m load services for forces from -697; 697; m IBC 2021 cl.	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[]}$ (lbs) 0; 0; .1605.1 Basic no.1	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ $D = 460 lb/S = 800 lb/S = 800 lb/S v_w = 10 lb/W = 3800 lb/S v_w = 1.000$ $D_{T_ch[1]}(lbs)$ 0; 0; 0;	r Wood-Frame 60 plf × min[785 plf × min[ps/in ft ft ft ft ft^2 bs 0 L _{f_ch[1]} (lbs) 0; 0;	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
Fror Non App Load Dead Snov Self In pla Wind Cho nord in1 in2 Fror Load	m SDPWS Tab minal unit shear minal unit shear parent shear w ding details id load acting o w load acting o m load acting o for ces from a forces from -697; m IBC 2021 cl.	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 460 lb/ S = 800 lb/ S = 800 lb/ $S_wt = 10 lb/$ W = 3800 l $f_{Wserv} = 1.00$ $D_{T_ch[1]}(lbs)$ 0; tions from ASC D + 0.6W D + 0.7E	r Wood-Frame 60 plf × min[785 plf × min[785 plf × min[ps/in ft ft ft ft ft ft ft ft ft ft ft ft ft	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
From Nom App Load Dead Snow Self In pl: Wind Cho Ord in1 in2 From Load Load	m SDPWS Tab minal unit shear parent shear w ding details ad load acting of weight of pane lane wind load d load servicear ord forces from Wch[i] (lbs) -697; 697; m IBC 2021 cl. d combination in d combination in	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls E q_ch[1] (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/S = 800 lb/S = 800 lb/S wt = 10 lb/W = 3800 lb/W = 3800 lb/W = 3800 lb/W = 3800 lb/W = 0.000 lb/W = 0.0000 lb/W = 0.000 lb/W = 0.000 lb/W = 0.0000 lb/W	r Wood-Frame 60 plf × min[785 plf × min[785 plf × min[ps/in ft ft ft ft ft ft ft ft ft ft ft ft ft	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 L _{r_ch[]} (Ibs) 0; 0; 2.4 5(L _r or S or R)], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
From Nom App Load Snov Self In pla Wind Cho Ord h1 h2 From Load Load Load	m SDPWS Tab minal unit shear parent shear w ding details ad load acting o w load acting o m load services for forces from -697; 697; m IBC 2021 cl. d combination of d combination of	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/S = 800 lb/S = 10 lb/S wt = 10 lb/S	r Wood-Frame 60 plf × min[* 785 plf × min[785 plf × min[ps/in ft ft ft ft ft ft ft Characteristics CE 7, section + 0.45W + 0.7 + 0.525E + 0.7	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 L _{r_ch[]} (Ibs) 0; 0; 2.4 5(L _r or S or R)], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
Fror Non App Load Dead Snov Self In pl Wind Cho Cho nord in1 in2 Fror Load Load Load	m SDPWS Tab minal unit shear minal unit shear parent shear w ding details id load acting o w load acting o m load servicea ord forces from d load servicea ord forces from here for ces	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5 v_w = min(7 G_a = 16 ki))$ D = 460 lb/S = 800 lb/S = 800 lb/S = 10 lb/	r Wood-Frame 60 plf × min[785 plf × min[7	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 L _{r_ch[]} (Ibs) 0; 0; 2.4 5(L _r or S or R)], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
From Nom App Load Snov Self In pla Wind Cho Ord h1 h2 From Load Load Load Load	m SDPWS Tab minal unit shear minal unit shear minal unit shear oarent shear w ding details id load acting o w load acting o in load servicear ord forces from Wch(1) (lbs) -697; m IBC 2021 cl. d combination of d combina	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5 no.6	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 460 lb/ S = 800 lb/ S = 800 lb/ W = 3800 lb/ $O_{T_ch[1]}(lbs)$ 0; 0; tions from ASC D + 0.6W $D + 0.75L_f$ $D + 0.75L_f$ 0.6D + 0.61	r Wood-Frame 60 plf × min[785 plf × min[7	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 L _{r_ch[]} (Ibs) 0; 0; 2.4 5(L _r or S or R)], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
Fror Non App Load Dead Snov Self In pl Wind Cho Cho Cho In ord Enord Load Load Load Load Load Load	m SDPWS Tab ninal unit shea parent shear w ding details ad load acting o w load acting o m load servicea ord forces from Wch[i] (lbs) -697; m IBC 2021 cl. d combination of d combination of d combination of d combination of d combination of d combination of d	ar capacity for ar capacity for vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5 no.6 rs	of panel above Dc_ch[i] (Ibs) 0; Ioad combinat	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 460 lb/ S = 800 lb/ S = 800 lb/ $S_wt = 10 lb/$ W = 3800 lb/ W = 3800 lb/ W = 3800 lb/ W = 3800 lb/ W = 3800 lb/ $G_{r} = 10 lb/$ W = 3800 lb/ $G_{r} = 10 lb/$ $G_{r} = 1.00$ $G_{r} = 1.00$ $G_{r} = 0.75L_{f}$ $G_{r} = 0.75L_{f}$ $G_{r} = 0.75L_{f}$ $G_{r} = 0.71$ $G_{r} = 0.71$	r Wood-Frame 60 plf × min[785 plf × min[7	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 L _{r_ch[]} (Ibs) 0; 0; 2.4 5(L _r or S or R)], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	
Fror Non App Load Dead Snov Self In pl: Wind Cho Cho hord Cho Cho Cho Cho Cho Cho Cho Cho Cho Cho	m SDPWS Tab minal unit shear minal unit shear minal unit shear oarent shear w ding details id load acting o w load acting o in load servicear ord forces from Wch(1) (lbs) -697; m IBC 2021 cl. d combination of d combina	ar capacity for ar capacity for vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[i]}$ (lbs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5 no.6 rs or – Table 2.3.2	r seismic des r wind design fness of panel above Dc_ch[i] (Ibs) 0; 0; Ioad combinat	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 460 lb/ S = 800 lb/ S = 800 lb/ W = 3800 lb/ $O_{T_ch[1]}(lbs)$ 0; 0; tions from ASC D + 0.6W $D + 0.75L_f$ $D + 0.75L_f$ 0.6D + 0.61	r Wood-Frame 60 plf × min[785 plf × min[7	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 L _{r_ch[]} (Ibs) 0; 0; 2.4 5(L _r or S or R)], 1740 plf) = I], 2435 plf) = S ch[ī] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;	

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev	
			3			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
	0	0, 1/2022				
Wet service factor for tension – 1 Wet service factor for compression		C _{Mt} = 1.00 C _{Mc} = 1.00			WE	ST, LEVEL
Wet service factor for modulus o						
	relationly re	Сме = 1.00				
Temperature factor for tension –	Table 2.3.3	C _{tt} = 1.00				
Temperature factor for compress						
		C _{tc} = 1.00				
Temperature factor for modulus of	of elasticity – T	able 2.3.3				
		CtE = 1.00				
Incising factor – cl.4.3.8		C _i = 1.00				
Buckling stiffness factor - cl.4.4.2	2	C⊤ = 1.00				
Adjusted modulus of elasticity		E _{min} ' = E _{min} :	$< C_{ME} \times C_{tE} \times C_{i}$	× C _T = 550000	psi	
Critical buckling design value		F _{cE} = 0.822	imes E _{min} ' / (h / d) ²	= 904 psi		
Reference compression design v	alue	$F_{c^*} = F_{c} \times C$	$D imes C_{Mc} imes C_{tc} imes C_{tc}$	C _{Fc} × C _i = 2376	psi	
For sawn lumber		c = 0.8				
Column stability factor - eqn.3	3.7-1	C _P = (1 + (F _{cE} / F _c *)) / (2 >	× c) – √([(1 +	(F _{cE} / F _c *)) / (2	× c)]² - (F _{cE} /
		F _c *) / c) = (.34			
From SDPWS Table 4.3.4 Maxin	mum Shear W	/all Aspect Ratio	S			
Maximum shear wall aspect ratio		3.5	-			
Perforated wall length		b₁ = 17.5 ft				
Shear wall aspect ratio		h / b1 = 0.5 8	6			
Perforated wall length		b ₂ = 4 ft				
Shear wall aspect ratio		h / b ₂ = 2.56	3			
Shear capacity adjustment fact	tor – cl.4.3.3.5	5				
Sum of perforated shear wall leng	gths	$\Sigma L_i = b_1 + b_2$	$2 \times 2 \times b_s / h = 2$	0.622 ft		
Total length of perforated shear v	wall	$L_{tot} = b_1 + w$	_{p1} + b ₂ = 27 ft			
Total area of openings		$A_o = w_{o1} \times h$	_{o1} = 27.5 ft ²			
Sheathing area ratio (eqn. 4.3-6)		r = 1 / (1 + /	$A_o /(h \times \Sigma L_i)) = 0$.885		
Shear capacity adjustment factor	r (eqn. 4.3-5)	C _o = 0.942				
Perforated shear wall capacity						
Maximum shear force under v	vind loading	$V_{w_{max}} = 0.$	6 × W = 2.28 k	ips		
Shear capacity for wind loadin	g	$V_w = v_w \times 0$	$C_{o} \times \Sigma L_{i} / 2 = 7.$. 089 kips		
	-	V _{w max} / V _w =				
		-		for wind load	exceeds maxin	num shear for
Chord capacity for chord 1						
Load combination 5						
Shear force for maximum tensior	ı	$V = 0.6 \times W$	= 2.28 kips			
Axial force for maximum tensi	on		·	× b / 2 + 0.6 ×	: W _{ch1} = 4.138 k	ips
Maximum tensile force in chord		•			← NEGATIVE.	•
Maximum applied tensile stress		f _t = T / A _{en} =			OVERTURN	ING
		F_t = $F_t \times C_D$	\times C _{Mt} \times C _{tt} \times C _{Et}	t × Ci = 1508 lb	/in²	
Design tensile stress						
Design tensile stress		ft / Ft' = -0.1				

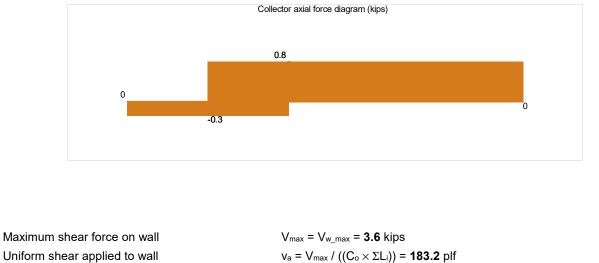
Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev 4	
	Calc. by S	Date 8/1/2022	App'd by Date			
Load combination 1					WE	ST, LEVE
Shear force for maximum compre	ession	$V = 0.6 \times W$	= 2.28 kips			
Axial force for maximum com	pression	P = ((D + S	$S_{wt} \times h) \times s / 2$	+ -1 × 0.6 ×	W _{ch1} = 0.793 kip	os
Maximum compressive force in c	hord	$C = V \times h / ($	$((C_o \times \Sigma L_i)) + P$	= 1.997 kips		
Maximum applied compressive s		$f_c = C / A_e =$				
Design compressive stress		$F_{c}' = F_{c} \times C_{c}$	$0 \times C_{Mc} \times C_{tc} \times C_{tc}$	$C_{Fc} \times C_i \times C_P =$	818 lb/in ²	
		fc / Fc' = 0.1 4	48			
	PASS -	Design compres	ssive stress ex	ceeds maxin	num applied con	npressive s
Chord capacity for chord 2 Load combination 5						
Shear force for maximum tensior		V = 0.6 × W	- 2 28 kins			
						120 kino
Axial force for maximum tensi	on		. ,,		$0.6 \times W_{ch2} = 4.1$	•
Maximum tensile force in chord				-2.935 KIPS	NEGATIVE. OVERTURN	
Maximum applied tensile stress		ft = T / A _{en} =			h /in2	
Design tensile stress		$F_t = F_t \times C_D$ $f_t / F_t' = -0.14$	$\times C_{Mt} \times C_{tt} \times C_{F}$	t × Ci = 1508 I	D/IN-	
				ass avraads	maximum applie	od tonsilo s
Load combination 1		7 400 - 203	ingir tensile str			
Shear force for maximum compre	ession	V = 0.6 × W	= 2.28 kips			
Axial force for maximum com			$S_{wt} \times h) \times s / 2$	$+0.6 \times W_{cb'}$	a = 0 793 kins	
Maximum compressive force in c			$((C_o \times \Sigma L_i)) + P$			
Maximum applied compressive s		$f_c = C / A_e =$				
Design compressive stress			$X \simeq C_{Mc} \times C_{tc} \times C_{tc}$	$C_{Fc} \times C_i \times C_P =$	818 lb/in ²	
g.,		f _c / F _c ' = 0.1			••••	
	PASS -	Design compres		ceeds maxin	num applied con	pressive s
Collector capacity						-
		Collector axial force dia	ıgram (kips)			

Maximum shear force on wall Uniform shear applied to wall Shear resisted by wall segments Maximum force in collector
$$\begin{split} V_{max} &= V_{w_max} = \textbf{2.28 kips} \\ v_a &= V_{max} / ((C_o \times \Sigma L_i)) = \textbf{117.4 plf} \\ v_b &= v_a \times b / (b_1 + b_2) = \textbf{147.4 plf} \\ P_{coll} &= \textbf{0.526 kips} \end{split}$$

Ə Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers	Section		Sheet no./rev.						
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Maximum applied tensile stress		$f_t = P_{coll} / (2$	× As) = 32 lb/in ²	2	WE	ST, LEVEL			
Design tensile stress		F_t = $F_t \times C_D$	imes C _{Mt} $ imes$ C _{tt} $ imes$ C _F	t × Ci = 1508 	b/in ²				
		ft / Ft' = 0.02	:1						
		PASS - Des	sign tensile str	ess exceeds	maximum applie	ed tensile stre			
Maximum applied compressive s	stress	$f_c = P_{coll} / (2$	× As) = 32 lb/in ²	2					
Column stability factor		C _P = 1.00							
Design compressive stress		$\textbf{F_c'} = \textbf{F_c} \times \textbf{C_D} \times \textbf{C_{Mc}} \times \textbf{C_{tc}} \times \textbf{C_{Fc}} \times \textbf{C_i} \times \textbf{C_P} = \textbf{2376} \text{ Ib/in}^2$							
		f _c / F _c ' = 0.013							
	PASS -	Design compres	ssive stress ex	ceeds maxim	um applied con	pressive stre			
Wind load deflection									
Design shear force		$V_{\delta w} = f_{Wserv}$	× W = 3.8 kips	s					
Deflection limit		$\Delta_{w_{allow}}$ = h /	500 = 0.246 ir	า					
Induced unit shear		$v_{\delta w_{max}} = V_{\delta w}$, / (C _o ×ΣL _i) = 1	95.67 lb/ft					
Anchor tension force		$T_{\delta} = max(0)$	kips,v $_{\delta w_max} \times h$ ·	- 0.6 × (D + S _w	$_{t} \times$ h) \times b / 2 +				
		max(abs(W	ch1), abs(W ch2)))	= 0.000 kips					
Shear wall deflection - Eqn. 4.3-	·1	$\delta_{sww} = 2 \times v_{\delta}$	$_{m_{max}} imes h^3$ / (3 $ imes$	$E \times A_e \times \Sigma L_i$) +	⊦ v _{δw_max} × h / (Ga)) + h $ imes$ T $_{\delta}$ / (k _a >			
		ΣLi) = 0.129	in						
		$\delta_{ m sww}$ / $\Delta_{ m w_allow}$, = 0.523						
			PASS - She	ar wall deflec	tion is less than	deflection li			

PASS - Shear wall deflection is less than deflection limit

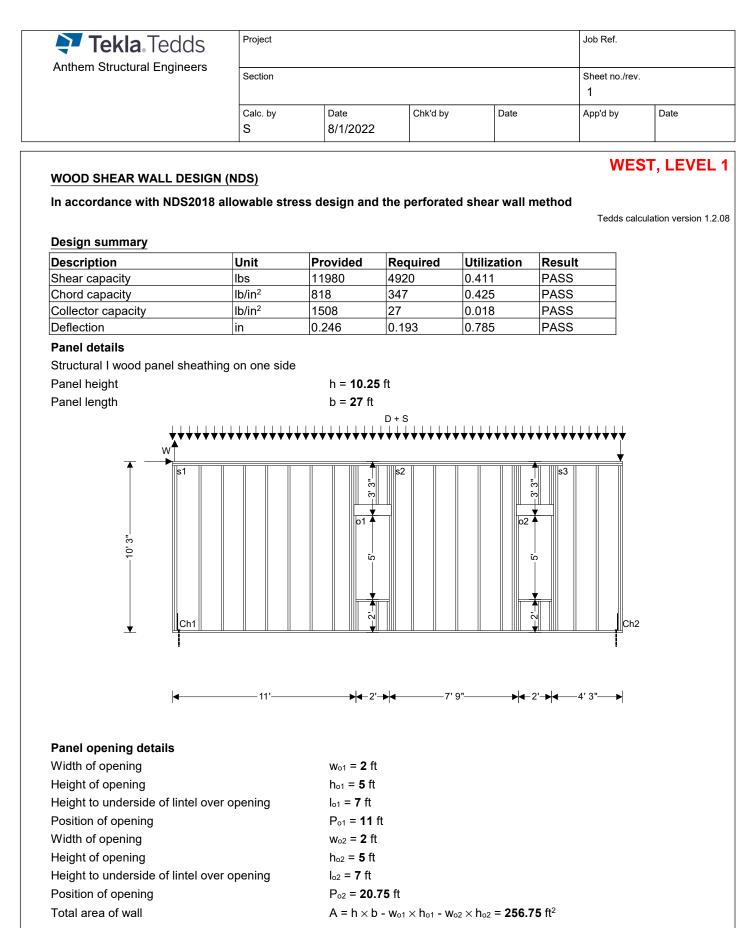
Tekla. Tedds	Project	Project								
Anthem Structural Engineers	Section	Section Sheet no./rev.								
	Calc. by S	Date 8/1/2022	Chk'd by	Date	9	App'd by	Date			
WOOD SHEAR WALL DESIGN	<u> </u>	design and t	he perforate	d shear wa	all method		T, LEVE			
Design summary Description	Unit F	Provided	Required	Utilizatio	n Result	:				
Shear capacity	lbs 7		3600	0.502	PASS					
Chord capacity	lb/in ² 8	818	204	0.250	PASS					
Collector capacity	lb/in ²	1508	45	0.030	PASS					
Deflection	in (0.246	0.201	0.815	PASS					
Panel details Structural I wood panel sheathin Panel height	g on one side	h = 10.25 fi b = 27 ft	t							
Panel length										
Panel length	· • • • • • • • • • • • • • • • • • • •		D+S	·+++++++	×++++++++					


•	Ch1			Ch2
	⊲ 5' 6"▶	⊲ 5'6"	→	 ►

Panel opening details	
Width of opening	w _{o1} = 5.5 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	I _{o1} = 7 ft
Position of opening	P _{o1} = 5.5 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ = 249.25 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"
Cross-sectional area of studs	A _s = 8.25 in ²
Stud spacing	s = 16 in
Nominal end post size	2 x 2" x 6"
Dressed end post size	2 x 1.5" x 5.5"

🗧	Tekla.	Tedds	Project				Job Ref.			
Antl	hem Structural	Engineers	Section					Sheet no./rev.		
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Cros	ss-sectional are	ea of end posts	;	A _e = 16.5 ii	n ²		v	VEST, LEVEL		
Hole diameter				Dia = 1 in	Dia = 1 in					
Net	cross-sectiona	l area of end p	osts	A _{en} = 13.5	in ²					
Nom	ninal collector s	size		2 x 2" x 6"						
Dres	ssed collector s	size		2 x 1.5" x 5	5.5"					
Serv	vice condition			Dry						
Temperature				100 degF o	or less					
Vert	Vertical anchor stiffness				lb/in					
From	m NDS Supple	ment Table 4	A - Reference	design values	for visually o	raded dimone	ion lumber (?	" - 4" thick)		
	cies, grade and			-	o.1 & btr grade			- + theky		
	cific gravity			G = 0.43	or a ba grade	, <u></u> a maoi				
	sion parallel to	orain		G = 0.43 Ft = 725 lb/	/in ²					
	npression paral	-		$F_c = 1350$						
	lulus of elastici	•								
	imum modulus	•			E = 1500000 lb/in ² E _{min} = 550000 lb/in ²					
		-								
	athing details									
	eathing materi	al			7/16" wood panel structural I oriented strandboard sheathing					
Fas	stener type			8d commo	on nails at 6"	centers				
Fro	m SDPWS Tab	le 4 3A Nomir	hal Unit Shear	Canacities for			M/			
				oupuonnoo ioi	r wood-Frame	e Shear Walls	- wood-based	l Panels		
	ninal unit she			-						
Non		ar capacity fo	r seismic des	ign v _s = min(5	60 plf × min[1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non	ninal unit she	ar capacity fo ar capacity fo	r seismic des r wind design	ign v _s = min(5 v _w = min(7	i60 plf × min[785 plf × min[], 1740 plf) =	520.8 lb/ft		
Non Non		ar capacity fo ar capacity fo	r seismic des r wind design	ign v _s = min(5	i60 plf × min[785 plf × min[1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non App	ninal unit she	ar capacity fo ar capacity fo	r seismic des r wind design	ign v _s = min(5 v _w = min(7	i60 plf × min[785 plf × min[1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non App Loa	minal unit shea parent shear w	ar capacity fo ar capacity fo vall shear stiff	r seismic des r wind design	ign v _s = min(5 v _w = min(7	60 plf × min[785 plf × min[ps/in	1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non App Loa Dea	minal unit shea parent shear w ding details	ar capacity fo ar capacity fo vall shear stiff n top of panel	r seismic des r wind design	ign v _s = min(5 v _w = min(7 G _a = 16 ki	i60 plf × min[785 plf × min[ps/in ′ft	1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non App Loa Dea Sno	ninal unit shea parent shear w ding details nd load acting o	ar capacity fo ar capacity fo vall shear stiff n top of panel on top of panel	r seismic des r wind design	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/	560 plf × min[785 plf × min[ps/in /ft	1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non App Loa Dea Sno Self	minal unit shea parent shear w ding details id load acting o w load acting c	ar capacity fo ar capacity fo vall shear stiff n top of panel on top of panel	r seismic des r wind design ness	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/	60 plf × min[785 plf × min[ps/in /ft /ft	1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non Non App Loa Dea Sno Self In pl	ninal unit shear parent shear w ding details id load acting o w load acting o weight of pane	ar capacity fo ar capacity fo vall shear stiff n top of panel on top of panel el acting at head	r seismic des r wind design ness	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/ S _{wt} = 10 lb/	60 plf × min[785 plf × min[ps/in /ft /ft /ft²	1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non App Loa Dea Sno Self In pl Win	ninal unit shea parent shear w ding details id load acting o w load acting o weight of pane lane wind load	ar capacity fo ar capacity fo vall shear stiff n top of panel on top of panel acting at head ability factor	r seismic des r wind design ness of panel	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 720 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 6000 lb/	60 plf × min[785 plf × min[ps/in /ft /ft /ft²	1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft		
Non App Loa Dea Sno Self In pl Win	minal unit shear barent shear w ding details id load acting o w load acting o w load acting o w load acting o weight of pane lane wind load d load servicea ord forces from	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel el acting at head ability factor n shear walls a	r seismic des r wind design ness of panel	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 6000 l f _{Wserv} = 1.00	60 plf × min[785 plf × min[ps/in /ft /ft /ft²	1 - (0.5 - G), 1], 1740 plf) = I], 2435 plf) =	520.8 lb/ft 730.1 lb/ft		
Non Non App Dea Sno Self In pl Win	minal unit shear barent shear w ding details id load acting o w load acting o w load acting o w load acting o w load acting o lane wind load d load servicea ord forces from Wchiji (lbs)	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel el acting at head ability factor n shear walls of $E_{q_ch(I)}$ (Ibs)	r seismic des r wind design ness of panel above Dc_chii (lbs)	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 720 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 6000 lb/	60 plf × min[785 plf × min[ps/in /ft ft ft2 lbs 0 Lf_ch[1] (Ibs)	1 - (0.5 - G), 1 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs)		
Non Non App Dea Sno Self In pl Win Chord	minal unit shear barent shear w ding details id load acting o w load acting o w load acting o w load acting o weight of pane lane wind load d load servicea ord forces from	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel el acting at head ability factor n shear walls a	r seismic des r wind design ness of panel above	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 6000 l f _{Wserv} = 1.00	60 plf × min[785 plf × min[ps/in /ft /ft lbs 0	1 - (0.5 - G), 1 1 - (0.5 - G), <i>1</i> Lr_ch[i] (Ibs)], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs)	520.8 lb/ft 730.1 lb/ft		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Ch1 Ch2	minal unit shear barent shear w ding details id load acting o w load acting o	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0;	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 720 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 6000 l $f_{Wserv} = 1.00$ $D_{T_ch[i]}(lbs)$ 0; 0;	60 plf × min[785 plf × min[ps/in /ft ft /ft² lbs 0 L _{f_ch[1]} (lbs) 0; 0;	1 - (0.5 - G), 1 1 - (0.5 - G), 7 1 - (0.5 - G), 7 0; 0;], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Ch1 Ch1 Ch2 Fror	minal unit shear barent shear w ding details id load acting o w load acting o m IBC 2021 cl.	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls a $E_{q_ch[]}$ (Ibs) 0; 0; 1605.1 Basic	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 6000 l f _{Wserv} = 1.00 DT_ch[i] (lbs) 0; 0; tions from ASC	60 plf × min[785 plf × min[ps/in /ft ft /ft² lbs 0 L _{f_ch[1]} (lbs) 0; 0;	1 - (0.5 - G), 1 1 - (0.5 - G), 7 1 - (0.5 - G), 7 0; 0;], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Ch1 Ch2	minal unit shear parent shear w ding details id load acting o w load acting o w load acting o weight of pane lane wind load d load servicea ord forces from Wch[i] (lbs) -1570; 1570; m IBC 2021 cl. d combination	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls a $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 6000 l f _{Wserv} = 1.00 D _{T_ch[1]} (lbs) 0; 0; tions from ASC D + 0.6W	60 plf × min[785 plf × min[ps/in /ft ft /ft² lbs 0 L _{f_ch[1]} (lbs) 0; 0;	1 - (0.5 - G), 1 1 - (0.5 - G), 7 1 - (0.5 - G), 7 0; 0;], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Chord Ch1 Ch2 Froi Load	minal unit shear parent shear w ding details ad load acting o w load servicea lane wind load d load servicea ord forces from Wchttl (lbs) -1570; 1570; m IBC 2021 cl. d combination of d combination of	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 720 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 6000 l f _{Wserv} = 1.00 D _{T_ch[i]} (lbs) 0; 0; tions from ASC D + 0.6W D + 0.7E	60 plf × min[785 plf × min[ps/in /ft ft /ft² lbs 0 Lf_ch[i] (lbs) 0; 0; 0; CE 7, section	1 - (0.5 - G), 1 1 - (0.5 - G), 7 1 - (0.5 - G), 7 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Ch1 Ch2 Fror Load Load	minal unit shear parent shear w ding details ad load acting o w load servicea ord forces from wch(i) (lbs) -1570; 1570; m IBC 2021 cl. d combination of d combination of d combination of	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls a $E_{q_ch[]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	$\begin{array}{l} \text{ign } v_{s} = \min(5) \\ v_{w} = \min(7) \\ G_{a} = 16 \text{ ki} \\ D = 720 \text{ lb/} \\ S = 800 \text{ lb/} \\ S_{wt} = 10 \text{ lb/} \\ W = 6000 \text{ l} \\ f_{Wserv} = 1.00 \\ \hline \\ \textbf{D}_{T_ch[1]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \\ \textbf{tions from ASC} \\ D + 0.6W \\ D + 0.7E \\ D + 0.75L_f \end{array}$	60 plf × min[785 plf × min[785 plf × min] ps/in /ft /ft /ft /ft /ft /ft /ft /ft /ft /ft	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft R ch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Ch1 Ch2 Fron Load Load	minal unit shear parent shear w ding details id load acting o w load acting o w load acting o weight of pane lane wind load d load servicea ord forces from Wch[i] (lbs) -1570; 1570; m IBC 2021 cl. d combination id d combination id d combination id	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls a $E_{q_ch(I)}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	$\begin{array}{l} \text{ign } v_{s} = \min(5) \\ v_{w} = \min(7) \\ G_{a} = 16 \text{ ki} \\ D = 720 \text{ lb/} \\ S = 800 \text{ lb/} \\ S_{wt} = 10 \text{ lb/} \\ W = 6000 \text{ l} \\ f_{Wserv} = 1.00 \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$	60 plf × min[785 plf × min[785 plf × min] ps/in ft ft ft ft ft ft ft ft ft ft ft ft ft	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Ch1 Ch2 Fror Load Load Load	minal unit shear parent shear w ding details ad load acting o w load servicea ord forces from Wchttl (lbs) -1570; 1570; m IBC 2021 cl. d combination of d combination of d combination of d combination of d combination of d combination of d combination of	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 720 lb/ S = 800 lb/ S = 800 lb/ S = 800 lb/ W = 6000 l $f_{Wserv} = 1.00$ $D_{T_ch[i]}$ (lbs) 0; 0; tions from ASC D + 0.6W D + 0.7E $D + 0.75L_f$ $0.6D + 0.6^{10}$	60 plf × min[785 plf × min[785 plf × min[ps/in /ft ft ft ft ft ft ft ft ft ft ft ft ft f	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Ch1 Ch2 Fror Load Load Load	minal unit shear parent shear w ding details id load acting o w load acting o w load acting o weight of pane lane wind load d load servicea ord forces from Wch[i] (lbs) -1570; 1570; m IBC 2021 cl. d combination id d combination id d combination id	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	$\begin{array}{l} \text{ign } v_{s} = \min(5) \\ v_{w} = \min(7) \\ G_{a} = 16 \text{ ki} \\ D = 720 \text{ lb/} \\ S = 800 \text{ lb/} \\ S_{wt} = 10 \text{ lb/} \\ W = 6000 \text{ l} \\ f_{Wserv} = 1.00 \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$ $\begin{array}{l} \textbf{D}_{T_{c}ch[i]}(\textbf{lbs}) \\ 0; \\ 0; \\ \hline \end{array}$	60 plf × min[785 plf × min[785 plf × min[ps/in /ft ft ft ft ft ft ft ft ft ft ft ft ft f	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Chord Ch1 Ch2 Fror Load Load Load Load Load Adju	minal unit shear parent shear w ding details ad load acting o w load servicea ord forces from wch[] (lbs) -1570; 1570; 1570; m IBC 2021 cl. d combination of d combination of d combination of d combination of d combi	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5 no.6 rs	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0; load combina	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 720 lb/ S = 800 lb/ S = 800 lb/ S = 800 lb/ W = 6000 l $f_{Wserv} = 1.00$ $D_{T_ch[1]}$ (lbs) 0; 0; 1005 $D_{T_ch[1]}$ (lbs) 0; 0; 1005 $D_{T_ch[1]}$ (lbs) 0; 0; 1005 $D_{T_ch[1]}$ (lbs) 0; 0; 1007 $D_{T_ch[1]}$ (lbs) 0; 0; 0; 1007 $D_{T_ch[1]}$ (lbs) 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	60 plf × min[785 plf × min[785 plf × min[ps/in /ft ft ft ft ft ft ft ft ft ft ft ft ft f	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Chord Chord Ch1 Ch2 Froi Load Load Load Load Load Adju	minal unit shear parent shear w ding details id load acting o w load acting o d load servicea ord forces from Wch[i] (lbs) -1570; 1570; m IBC 2021 cl. d combination id d combination id d combination id d combination id d combination id d combination id d combination id	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch[1]}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5 no.6 rs	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0; load combina	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 720 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10$ lb/ W = 6000 l $f_{Wserv} = 1.00$ $D_{T_ch[1]}$ (lbs) 0; tions from ASC D + 0.6W D + 0.7E $D + 0.75L_f$ $D + 0.75L_f$ $0.6D + 0.6^{10}$ 0.6D + 0.71	60 plf × min[785 plf × min[785 plf × min[ps/in /ft ft ft ft ft ft ft ft ft ft ft ft ft f	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;		
Non Non App Loa Dea Sno Self In pl Win Cho Chord Ch1 Ch2 Fror Load Load Load Load Load Load Load	minal unit shear parent shear w ding details ad load acting o w load servicea ord forces from wch[] (lbs) -1570; 1570; 1570; m IBC 2021 cl. d combination of d combination of d combination of d combination of d combi	ar capacity fo ar capacity fo vall shear stiff on top of panel on top of panel acting at head ability factor n shear walls $E_{q_ch(I)}$ (Ibs) 0; 0; 1605.1 Basic no.1 no.2 no.3 no.4 no.5 no.6 rs or – Table 2.3.2 ion – Table 4A	r seismic des r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0; Ioad combina	ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 720 lb/ S = 800 lb/ S = 800 lb/ S = 800 lb/ W = 6000 l $f_{Wserv} = 1.00$ $D_{T_ch[1]}$ (lbs) 0; 0; 1005 $D_{T_ch[1]}$ (lbs) 0; 0; 1005 $D_{T_ch[1]}$ (lbs) 0; 0; 1005 $D_{T_ch[1]}$ (lbs) 0; 0; 1007 $D_{T_ch[1]}$ (lbs) 0; 0; 0; 1007 $D_{T_ch[1]}$ (lbs) 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	60 plf × min[785 plf × min[785 plf × min[ps/in /ft ft ft ft ft ft ft ft ft ft ft ft ft f	1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) = I], 2435 plf) = S ch[i] (Ibs) 0;	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;		

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev	<i>י</i> .
					3	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Wet service factor for tension –	Table 44	C _{Mt} = 1.00	I	I	WF	ST, LEVEL
Wet service factor for compressi		С _{мс} = 1.00				
Wet service factor for modulus o						
	· · · · · · · · · · · · · · · · · · ·	Сме = 1.00				
Temperature factor for tension –	Table 2.3.3	C _{tt} = 1.00				
Temperature factor for compress	sion – Table 2.	3.3				
		C _{tc} = 1.00				
Temperature factor for modulus	of elasticity – 1	Table 2.3.3				
		C _{tE} = 1.00				
Incising factor – cl.4.3.8		C _i = 1.00				
Buckling stiffness factor - cl.4.4.	2	C⊤ = 1.00				
Adjusted modulus of elasticity		$E_{min}' = E_{min}$	$ imes C_{\text{ME}} imes C_{\text{tE}} imes C_{\text{i}}$	× C _T = 550000) psi	
Critical buckling design value		F _{cE} = 0.822	imes E _{min} ' / (h / d) ²	= 904 psi		
Reference compression design v	/alue	$F_{c}^{*} = F_{c} \times C$	$D imes C_{Mc} imes C_{tc} imes C$	C _{Fc} × C _i = 2376	psi	
For sawn lumber		c = 0.8				
Column stability factor - eqn.	3.7-1	C _P = (1 + (F _{cE} / F _c *)) / (2 >	× c) – √([(1 +	(F _{cE} / F _c *)) / (2	× c)] ² - (F _{cE} /
		F_{c}^{*}) / c) = (<i>,,</i> , ,			
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio	ton	b ₁ = 5.5 ft h / b ₁ = 1.8 6 b ₂ = 16 ft h / b ₂ = 0.6 4				
Shear capacity adjustment fac			04 5 4			
Sum of perforated shear wall len	-	$\Sigma L_i = b_1 + b_1$				
Total length of perforated shear	wali		_{o1} + b ₂ = 27 ft			
Total area of openings			l₀1 = 27.5 ft ²			
Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor		r = 1 / (1 +) C₀ = 0.914	$A_o /(h \times \Sigma L_i)) = 0$	0.003		
		00 - 0.314				
Perforated shear wall capacity		\/ ^	C = C + C			
Maximum shear force under v	0	-	6 × W = 3.6 kip			
Shear capacity for wind loadir	ng		$C_o \times \Sigma L_i / 2 = 7.$.171 kips		
		$V_{w_{max}} / V_{w}$				
		PASS - S	Snear capacity	tor wind load	exceeds maxin	num shear for
Chord capacity for chord 1 Load combination 5						
Shear force for maximum tension	n	V = 0.6 × W	/ = 3.6 kips			
Axial force for maximum tens				×b/2+06×	≪W _{ch1} = 5.72 ki	os
Maximum tensile force in chord	• •					
		f _t = T / A _{en} =			OVERTURN	
Maximum applied tensile stress			-	-		
Maximum applied tensile stress Design tensile stress		F _t ' = F _t × C _□ f _t / F _t ' = -0.1	$X \times C_{Mt} \times C_{tt} \times C_{F}$	_{it} × C _i = 1508 lk	o/in ²	

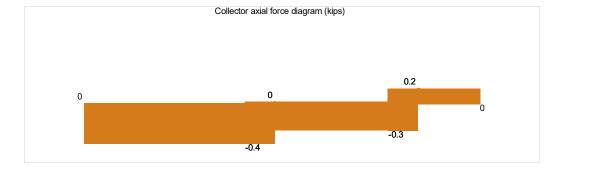

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev.	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Load combination 1					WES	ST, LEVI
Shear force for maximum compression		$V = 0.6 \times W$	′ = 3.6 kips			
Axial force for maximum compression		P = ((D + S	$S_{wt} \times h)) \times s / 2$	+ -1 × 0.6 × W	/ _{ch1} = 1.49 kips	
Maximum compressive force in c	hord	$C = V \times h / f$	$((C_o \times \Sigma L_i)) + P =$	3.369 kips		
Maximum applied compressive s	tress	$f_c = C / A_e =$	204 lb/in ²			
Design compressive stress		$F_c' = F_c \times C_l$	$0 \times C_{Mc} \times C_{tc} \times C_{tc}$	$C_{Fc} \times C_i \times C_P = 8$	18 lb/in²	
		f _c / F _c ' = 0.2	50			
	PASS -	Design compres	ssive stress ex	ceeds maximu	m applied com	pressive s
Chord capacity for chord 2 Load combination 5						
Shear force for maximum tensior	ı	$V = 0.6 \times W$	′ = 3.6 kips			
Axial force for maximum tensi	on	P = (0.6×	$(D + S_{wt} \times h)) >$	< b / 2 + -1 × 0	$.6 \times W_{ch2} = 5.7$	2 kips
Maximum tensile force in chord		$T = V \times h / ($	$(C_o \times \Sigma L_i)) - P =$	-3.842 kips -	— NEGATIVE. I	NO
Maximum applied tensile stress		f _t = T / A _{en} =	-285 lb/in ²		OVERTURNI	NG
Design tensile stress		F_t ' = $F_t \times C_D$	$\times C_{\text{Mt}} \times C_{\text{tt}} \times C_{\text{F}}$	t × Ci = 1508 lb/	in²	
		ft / Ft' = -0.1	89			
		PASS - Des	sign tensile str	ess exceeds m	aximum applie	d tensile s
Load combination 1						
Shear force for maximum compre	ession	$V = 0.6 \times W$	•			
Axial force for maximum com	pression	P = ((D + S	$S_{wt} \times h)) \times s / 2$	+ $0.6 \times W_{ch2}$ =	= 1.49 kips	
Maximum compressive force in c	hord	$C = V \times h / $	$((C_o \times \Sigma L_i)) + P =$	3.369 kips		
Maximum applied compressive s	tress	$f_c = C / A_e =$	204 lb/in ²			
Design compressive stress		$F_c' = F_c \times C_c$	$C \times C_{Mc} \times C_{tc} \times C_{tc}$	$F_{\rm Fc} \times C_{\rm i} \times C_{\rm P} = 8$	18 lb/in²	
		f _c / F _c ' = 0.2	50			
	_	Design compres				

Uniform shear applied to wall Shear resisted by wall segments Maximum force in collector
$$\begin{split} V_{max} &= V_{w_max} = \textbf{3.6 kips} \\ v_a &= V_{max} \ / \ ((C_o \times \Sigma L_i)) = \textbf{183.2 plf} \\ v_b &= v_a \times b \ / \ (b_1 + b_2) = \textbf{230.1 plf} \\ P_{coll} &= \textbf{0.75 kips} \end{split}$$

Ə Tekla Tedds	Project				Job Ref.			
Anthem Structural Engineers	Section	Section				Sheet no./rev. 5		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Maximum applied tensile stress		$f_t = P_{coll} / (2)$	× As) = 45 lb/in ²	2	WE	ST, LEVEL		
Design tensile stress		F_t = $F_t \times C_D$	\times C _{Mt} \times C _{tt} \times C _F	t × Ci = 1508 I	b/in²			
		ft / Ft' = 0.03	0					
		PASS - Design tensile stress exceeds maximum applied tensile stre						
Maximum applied compressive s	tress	$f_c = P_{coll} / (2 \times A_s) = 45 \text{ lb/in}^2$						
Column stability factor		C _P = 1.00						
Design compressive stress		$F_c' = F_c \times C_c$	$0 \times C_{Mc} \times C_{tc} \times C_{tc}$	$C_{Fc} \times C_i \times C_P =$	2376 lb/in ²			
		f _c / F _c ' = 0.019						
	PASS -	Design compres	sive stress ex	ceeds maxim	num applied con	pressive stre		
Wind load deflection								
Design shear force		$V_{\delta w} = f_{Wserv}$	\times W = 6 kips					
Deflection limit		Δ_{w_allow} = h /	500 = 0.246 ir	n				
Induced unit shear								
Anchor tension force		$T_{\delta} = \max(0 \text{ kips}, v_{\delta w_{max}} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 +$						
		max(abs(W	ch1),abs(Wch2)))	= 0.000 kips				
Shear wall deflection - Eqn. 4.3-	1	δ_{sww} = 2 \times V $_{\delta}$	$_{ m w_max} imes h^3$ / (3 $ imes$	$E \times A_e \times \Sigma L_i) \cdot \\$	+ $v_{\delta w_{max}} \times h$ / (Ga) + h \times T $_{\delta}$ / (ka		
		ΣL _i) = 0.201	in					
		$\delta_{ m sww}$ / $\Delta_{ m w_allow}$	= 0.815					

PASS - Shear wall deflection is less than deflection limit

Panel construction

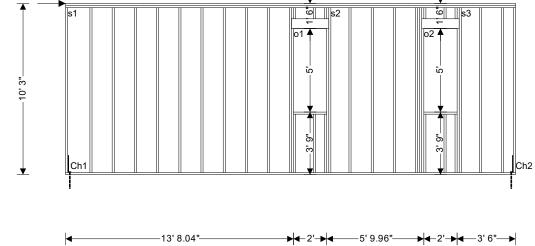

Nominal stud size Dressed stud size

2" x 6" 1.5" x 5.5"

Tekla Te		Project				Job Ref.	
Anthem Structural Eng	gineers	Section				Sheet no	./rev.
						2	I
		Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Cross-sectional area o	of studs		A _s = 8.25 ir	ו ²		N	/EST, LEVE
Stud spacing			s = 16 in				
Nominal end post size			2 x 2" x 6"				
Dressed end post size			2 x 1.5" x 5	.5"			
Cross-sectional area o	of end posts	;	A _e = 16.5 in	1 ²			
Hole diameter			Dia = 1 in				
Net cross-sectional are	ea of end p	osts	A _{en} = 13.5	in ²			
Nominal collector size			2 x 2" x 6"				
Dressed collector size			2 x 1.5" x 5	.5"			
Service condition			Dry				
Temperature			100 degF o				
Vertical anchor stiffnes	SS		k _a = 30000	lb/in			
From NDS Suppleme	nt Table 4	A - Reference	design values	for visually g	raded dimens	ion lumber (2'	" - 4" thick)
Species, grade and size	ze classifica	ation	Hem-Fir, n	o.1 & btr grade	e, 2'' & wider		
Specific gravity			G = 0.43				
Tension parallel to gra	in		Ft = 725 lb/	'in²			
Compression parallel	to grain		F _c = 1350 l	b/in²			
Modulus of elasticity			E = 15000)0 lb/in ²			
Minimum modulus of e	elasticity		E _{min} = 5500	00 lb/in ²			
Sheathing details							
Sheathing material			7/16" woo	d panel struc	tural I oriented	d strandboard	sheathing
Fastener type			8d commo	on nails at 4"	centers		
From SDPWS Table 4	4.3A Nomir	nal Unit Shear	Capacities for	Wood-Frame	e Shear Walls ·	- Wood-based	Panels
Nominal unit shear o	apacity fo	r seismic des	ign v₅ = min(8	60 plf × min[1 - (0.5 - G), 1], 1740 plf) =	799.8 lb/ft
Nominal unit shear o	apacity fo	r wind design	v _w = min(1	205 plf \times mir	n[1 - (0.5 - G),	1], 2435 plf)	= 1120.6 lb/ft
Apparent shear wall	shear stiff	ness	G _a = 21 ki	ps/in			
Loading details							
Dead load acting on to	op of panel		D = 980 lb/	ft			
	op of panel		S = 800 lb/	ft			
Snow load acting on to			S _{wt} = 10 lb/	ft ²			
Self weight of panel		of nonal	W = 8200	bs			
Self weight of panel In plane wind load acti	•	or panel					
Self weight of panel	•	or paner	f _{Wserv} = 1.0				
Self weight of panel In plane wind load acti Wind load serviceabili Chord forces from sh	ty factor near walls	above	f _{Wserv} = 1.0)	1	C	
Self weight of panel In plane wind load acti Wind load serviceabili Chord forces from sh hord W _{ch[1]} (lbs) E	ty factor near walls a _{q_ch[i]} (Ibs)	above Dc_ch[i] (Ibs)	f _{Wserv} = 1.00 D _{T_ch[i]} (Ibs)) L _{f_ch[i]} (Ibs)	L _{r_ch[i]} (Ibs)	Sch[i] (Ibs)	R _{ch[i]} (Ibs)
Self weight of panel In plane wind load acti Wind load serviceabili Chord forces from st hord Wchtil (Ibs) E. Ch1 -4418;	ty factor near walls a q_ch[i] (lbs) 0;	above Dc_ch[i] (Ibs) 0;	f _{Wserv} = 1.00 Dτ_ch[i] (Ibs) 0;) L _{f_ch[i]} (Ibs) 0;	0;	0;	0;
Self weight of panelIn plane wind load actiWind load serviceabilityChord forces from sthordWch[1] (lbs)Eh1-4418;Ch24418;	ty factor near walls a q_ch[] (lbs) 0; 0;	above Dc_ch[i] (Ibs) 0; 0;	f _{Wserv} = 1.00 DT_ch[i] (Ibs) 0; 0;	D Lf_ch[i] (Ibs) 0; 0;	0; 0;		
Self weight of panel In plane wind load acti Wind load serviceabilit Chord forces from st hord Weht (1bs) E Ch1 -4418; Ch2 4418; From IBC 2021 cl.160	ty factor near walls a n_ch[i] (lbs) 0; 0; 0; 0; 0;	above Dc_ch[i] (Ibs) 0; 0;	f _{Wserv} = 1.00 D _{T_ch[i]} (Ibs) 0; 0; tions from AS0	D Lf_ch[i] (Ibs) 0; 0;	0; 0;	0;	0;
Self weight of panel In plane wind load acti Wind load serviceability Chord forces from st hord Wch[1] (lbs) Eh1 -4418; Ch2 4418; From IBC 2021 cl.160 Load combination no.7	ty factor near walls : a_ch[i] (lbs) 0; 0; 0; 0; 05.1 Basic	above Dc_ch[i] (Ibs) 0; 0;	f _{Wserv} = 1.0 D _{T_ch[i]} (Ibs) 0; 0; tions from ASC D + 0.6W	D Lf_ch[i] (Ibs) 0; 0;	0; 0;	0;	0;
Self weight of panel In plane wind load acti Wind load serviceabilit Chord forces from sh hord Wch[1] (Ibs) E Ch1 -4418; Ch2 4418; From IBC 2021 cl.160 Load combination no.2	ty factor near walls a <u>a_ch[]</u> (Ibs) 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	above Dc_ch[i] (Ibs) 0; 0;	f _{Wserv} = 1.0 DT_ch[i] (lbs) 0; 0; tions from ASC D + 0.6W D + 0.7E	D L _{f_ch[i]} (Ibs) 0; 0; CE 7, section	0; 0; 2.4	0;	0;
Self weight of panel In plane wind load acti Wind load serviceabilit Chord forces from sh hord W _{ch[1]} (Ibs) E. Ch1 -4418; Ch2 4418; From IBC 2021 cl.160 Load combination no.2 Load combination no.3	ty factor near walls a n_ch[i] (Ibs) 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	above Dc_ch[i] (Ibs) 0; 0;	f _{Wserv} = 1.0 D _{T_ch[i]} (Ibs) 0; 0; tions from ASC D + 0.6W D + 0.7E D + 0.75Lf	D Lf_ch[i] (Ibs) 0; 0; CE 7, section + 0.45W + 0.7	0; 0; 2.4 5(Lr or S or R)	0;	0;
Self weight of panel In plane wind load acti Wind load serviceabilit Chord forces from st hord Wch[i] (Ibs) E Ch1 -4418; Ch2 4418; From IBC 2021 cl.160 Load combination no.2	ty factor near walls : a_ch[i] (Ibs) 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	above Dc_ch[i] (Ibs) 0; 0;	f _{Wserv} = 1.0 D _{T_ch[i]} (Ibs) 0; 0; tions from ASC D + 0.6W D + 0.7E D + 0.75Lf	L _{f_ch[i]} (Ibs) 0; 0; CE 7, section + 0.45W + 0.7 + 0.525E + 0.7	0; 0; 2.4 5(Lr or S or R)	0;	0;

Anthem Structural Engineers	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev.	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	S	8/1/2022				
Adjustment factors					WES	ST, LEVE
Load duration factor - Table 2.3.2	2	C _D = 1.60				
Size factor for tension – Table 4A		C _{Ft} = 1.30				
Size factor for compression – Tab	ole 4A	C _{Fc} = 1.10				
Wet service factor for tension – T	able 4A	C _{Mt} = 1.00				
Wet service factor for compression		C _{Mc} = 1.00				
Wet service factor for modulus of	f elasticity – Tal	ble 4A				
		C _{ME} = 1.00				
Temperature factor for tension – Temperature factor for compress		C _{tt} = 1.00 .3				
		C _{tc} = 1.00				
Temperature factor for modulus of	of elasticity – Ta					
		C _{tE} = 1.00				
Incising factor – cl.4.3.8		C _i = 1.00				
Buckling stiffness factor – cl.4.4.2	2	C⊤ = 1.00				
Adjusted modulus of elasticity		E_{min} ' = $E_{min} \times$	$C_{\text{ME}} imes C_{\text{tE}} imes C_{\text{i}}$	× C _T = 550000	psi	
Critical buckling design value		F_{cE} = 0.822 ×	< E _{min} ' / (h / d) ²	= 904 psi		
Reference compression design v	alue	$F_{c}^{*} = F_{c} \times C_{D}$	imes C _{Mc} $ imes$ C _{tc} $ imes$ C	C _{Fc} × C _i = 2376	psi	
For sawn lumber		c = 0.8				
Column stability factor - eqn.3	8.7-1	C _P = (1 + (F	_{сЕ} / F _c *)) / (2 >	< c) – √([(1 +	(F _{cE} / F _c *)) / (2 >	< c)] ² - (F _{cE} /
			<u> </u>			
		F_{c}^{*}) / c) = 0 .	<i>,,</i> , , ,			
From SDPWS Table 4.3.4 Maxir	num Shear Wa	$F_{c}^{*}) / c) = 0.$	34	, u		
From SDPWS Table 4.3.4 Maxir Maximum shear wall aspect ratio		$F_{c}^{*}) / c) = 0.$	34			
		F_{c}^{*}) / c) = 0. all Aspect Ratios	34	,		
Maximum shear wall aspect ratio		$F_c^*) / c) = 0.$ all Aspect Ratios 3.5	34			
Maximum shear wall aspect ratio Perforated wall length		F _c *) / c) = 0. all Aspect Ratios 3.5 b ₁ = 11 ft	34			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio		F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 $b_1 = 11 \text{ ft}$ $h / b_1 = 0.932$	34 2	,		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length		F _c *) / c) = 0. all Aspect Ratios 3.5 b ₁ = 11 ft h / b ₁ = 0.932 b ₂ = 7.75 ft	34 2	,		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 $b_1 = 11$ ft $h / b_1 = 0.932$ $b_2 = 7.75$ ft $h / b_2 = 1.323$	34 2 3			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length		F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 $b_1 = 11 \text{ ft}$ $h / b_1 = 0.932$ $b_2 = 7.75 \text{ ft}$ $h / b_2 = 1.323$ $b_3 = 4.25 \text{ ft}$	34 2 3			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio	or – cl.4.3.3.5	$F_c^*) / c) = 0.$ all Aspect Ratios 3.5 $b_1 = 11 \text{ ft}$ $h / b_1 = 0.932$ $b_2 = 7.75 \text{ ft}$ $h / b_2 = 1.323$ $b_3 = 4.25 \text{ ft}$ $h / b_3 = 2.412$	34 2 3			
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact	:or – cl.4.3.3.5 gths	$F_c^*) / c) = 0.$ all Aspect Ratios 3.5 $b_1 = 11$ ft $h / b_1 = 0.932$ $b_2 = 7.75$ ft $h / b_2 = 1.323$ $b_3 = 4.25$ ft $h / b_3 = 2.412$ $\Sigma L_i = b_1 + b_2$	34 2 3 2	h = 22.274 ft		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear wall	:or – cl.4.3.3.5 gths	$F_c^*) / c) = 0.$ all Aspect Ratios 3.5 $b_1 = 11 \text{ ft}$ $h / b_1 = 0.932$ $b_2 = 7.75 \text{ ft}$ $h / b_2 = 1.323$ $b_3 = 4.25 \text{ ft}$ $h / b_3 = 2.412$ $\Sigma L_i = b_1 + b_2$ $L_{tot} = b_1 + w_{or}$	34 2 3 2 4 b b b b b b c b c c c c c c c c	h = 22.274 ft ₁₃ = 27 ft		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings	t or – cl.4.3.3.5 gths vall	F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 $b_1 = 11$ ft $h / b_1 = 0.932$ $b_2 = 7.75$ ft $h / b_2 = 1.323$ $b_3 = 4.25$ ft $h / b_3 = 2.412$ $\Sigma L_i = b_1 + b_2$ $L_{tot} = b_1 + w_{o}$ $A_o = w_{o1} \times h_o$	34 34 2 3 2 4 $b_3 \times 2 \times b_8 / 1$ $b_1 + b_2 + w_{02} + b_1$ $b_1 + w_{02} \times h_{02} = 1$	h = 22.274 ft ₁₃ = 27 ft 20 ft ²		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6)	c or – cl.4.3.3.5 gths vall	$F_{c}^{*}) / c) = 0.$ all Aspect Ratios 3.5 $b_1 = 11 \text{ ft}$ $h / b_1 = 0.932$ $b_2 = 7.75 \text{ ft}$ $h / b_2 = 1.323$ $b_3 = 4.25 \text{ ft}$ $h / b_3 = 2.412$ $\Sigma L_i = b_1 + b_2$ $L_{tot} = b_1 + w_0$ $A_0 = w_{01} \times h_0$ $r = 1 / (1 + A_0)$	34 2 3 2 4 b b b b c b c c c c c c c c	h = 22.274 ft ₁₃ = 27 ft 20 ft ²		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor	c or – cl.4.3.3.5 gths vall	F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 $b_1 = 11$ ft $h / b_1 = 0.932$ $b_2 = 7.75$ ft $h / b_2 = 1.323$ $b_3 = 4.25$ ft $h / b_3 = 2.412$ $\Sigma L_i = b_1 + b_2$ $L_{tot} = b_1 + w_{o}$ $A_o = w_{o1} \times h_o$	34 34 2 3 2 4 $b_3 \times 2 \times b_8 / 1$ $b_1 + b_2 + w_{02} + b_1$ $b_1 + w_{02} \times h_{02} = 1$	h = 22.274 ft ₁₃ = 27 ft 20 ft ²		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	c or – cl.4.3.3.5 gths vall (eqn. 4.3-5)	$F_{c}^{*}) / c) = 0.$ all Aspect Ratios 3.5 b ₁ = 11 ft h / b ₁ = 0.932 b ₂ = 7.75 ft h / b ₂ = 1.323 b ₃ = 4.25 ft h / b ₃ = 2.412 $\Sigma L_{i} = b_{1} + b_{2}$ $L_{tot} = b_{1} + w_{o}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A_{o})$ $C_{o} = 0.96$	34 34 34 3 2 3 2 3 4 4 $b_3 \times 2 \times b_5 / 1$ $a_1 + b_2 + w_{02} + b_1$ $a_1 + w_{02} \times h_{02} = 1$ $b_1 / (h \times \Sigma L_i)) = 0$	h = 22.274 ft 3 = 27 ft 20 ft ² .919		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	t or – cl.4.3.3.5 gths vall (eqn. 4.3-5) <i>v</i> ind loading	$F_{c}^{*}) / c) = 0.$ all Aspect Ratios 3.5 b ₁ = 11 ft h / b ₁ = 0.932 b ₂ = 7.75 ft h / b ₂ = 1.323 b ₃ = 4.25 ft h / b ₃ = 2.412 $\Sigma L_{i} = b_{1} + b_{2}$ $L_{tot} = b_{1} + w_{0}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A_{o})$ $C_{o} = 0.96$ $V_{w_max} = 0.6$	34 34 2 2 3 2 4 $b_3 \times 2 \times b_8 / 1$ $a_1 + b_2 + w_{02} + b_1$ $a_1 + w_{02} \times h_{02} = 1$ $b_2 / (h \times \Sigma L_i)) = 0$ $\times W = 4.92 \text{ k}$	h = 22.274 ft ¹³ = 27 ft 20 ft ² .919 ips		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	t or – cl.4.3.3.5 gths vall (eqn. 4.3-5) <i>v</i> ind loading	$F_{c}^{*}) / c) = 0.$ all Aspect Ratios 3.5 b ₁ = 11 ft h / b ₁ = 0.932 b ₂ = 7.75 ft h / b ₂ = 1.323 b ₃ = 4.25 ft h / b ₃ = 2.412 $\Sigma L_{i} = b_{1} + b_{2}$ $L_{tot} = b_{1} + w_{0}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A_{o})$ $C_{o} = 0.96$ $V_{w_max} = 0.6$	34 34 34 3 2 3 2 3 4 4 $b_3 \times 2 \times b_5 / 1$ $a_1 + b_2 + w_{02} + b_1$ $a_1 + w_{02} \times h_{02} = 1$ $b_1 / (h \times \Sigma L_i)) = 0$	h = 22.274 ft ¹³ = 27 ft 20 ft ² .919 ips		
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	t or – cl.4.3.3.5 gths vall (eqn. 4.3-5) <i>v</i> ind loading	F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 b ₁ = 11 ft h / b ₁ = 0.932 b ₂ = 7.75 ft h / b ₂ = 1.323 b ₃ = 4.25 ft h / b ₃ = 2.412 $\Sigma L_{i} = b_{1} + b_{2}$ $L_{tot} = b_{1} + w_{0}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A_{c})$ $C_{o} = 0.96$ $V_{w_{max}} = 0.6$ $V_{w_{max}} / V_{w} =$	34 34 34 34 34 34 34 34 3 2 3 4 4 4 4 5 4 5 4 5 4 5 4 5 5 5 6 7 1 1 4 5 5 5 6 7 1 1 4 5 5 7 1 1 4 5 5 7 1 1 4 5 5 7 1 1 4 5 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1	h = 22.274 ft 3 = 27 ft 20 ft ² .919 ips 1.98 kips	exceeds maxim	um shear fo
Maximum shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w	t or – cl.4.3.3.5 gths vall (eqn. 4.3-5) <i>v</i> ind loading	F_{c}^{*}) / c) = 0. all Aspect Ratios 3.5 b ₁ = 11 ft h / b ₁ = 0.932 b ₂ = 7.75 ft h / b ₂ = 1.323 b ₃ = 4.25 ft h / b ₃ = 2.412 $\Sigma L_{i} = b_{1} + b_{2}$ $L_{tot} = b_{1} + w_{0}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A_{c})$ $C_{o} = 0.96$ $V_{w_{max}} = 0.6$ $V_{w_{max}} / V_{w} =$	34 34 34 34 34 34 34 34 3 2 3 4 4 4 4 5 4 5 4 5 4 5 4 5 5 5 6 7 1 1 4 5 5 5 6 7 1 1 4 5 5 7 1 1 4 5 5 7 1 1 4 5 5 7 1 1 4 5 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1	h = 22.274 ft 3 = 27 ft 20 ft ² .919 ips 1.98 kips	exceeds maxim	um shear fo

Tekla Tedds	Project				Job Ref.		
Anthem Structural Engineers	Section				Sheet no./rev		
					4		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date	
Axial force for maximum tensi	on	P = (0.6 × (D + S _{wt} × h)) >	× b / 2 + 0.6 >	WE Wch1 = 6.117 k	ST, LEVE	
Maximum tensile force in chord		$T = V \times h / (($	$C_o \times \Sigma L_i$)) - P =	-3.759 kips		. NO	
Maximum applied tensile stress		ft = T / A _{en} =	-278 lb/in ²		OVERTURI	NING	
Design tensile stress		$F_t' = F_t \times C_D$	\times C _{Mt} \times C _{tt} \times C _F	$t \times C_i = 1508$ lk	p/in²		
Ŭ		f _t / F _t ' = -0.18	5				
		PASS - Desi	ign tensile str	ess exceeds l	maximum applie	ed tensile str	
Load combination 1							
Shear force for maximum compre	ession	$V = 0.6 \times W$	= 4.92 kips				
Axial force for maximum comp	pression	P = ((D + S	_{wt} × h)) × s / 2	+ -1 $ imes$ 0.6 $ imes$	W _{ch1} = 3.372 kip	os	
Maximum compressive force in c	hord	C = V × h / (($(C_o \times \Sigma L_i)) + P$	5.731 kips			
Maximum applied compressive s	tress	$f_c = C / A_e = 3$	347 lb/in ²				
Design compressive stress		$F_c' = F_c \times C_D$	$ imes C_{Mc} imes C_{tc} imes C$	$C_{Fc} \times C_i \times C_P =$	818 lb/in ²		
		f _c / F _c ' = 0.425					
	PASS -	Design compres	sive stress ex	ceeds maxim	um applied com	pressive str	
Chord capacity for chord 2							
Load combination 5							
Shear force for maximum tension		$V = 0.6 \times W$	•				
-		P = (0.6 × (D + S _{wt} × h)) >		$0.6 imes W_{ch2}$ = 6.1		
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord		P = (0.6 × () T = V × h / (($D + S_{wt} \times h)) > C_o \times \Sigma L_i)) - P =$		- NEGATIVE.	NO	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress		P = $(0.6 \times (M_{T} = V \times h / ((M_{f_{t}} = T / A_{en} = M_{en})))$	D + S _{wt} × h)) × C _o × ΣL _i)) - P = -278 lb/in ²	-3.759 kips	NEGATIVE. OVERTURN	NO	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord		$P = (0.6 \times (10^{-1} \text{ C}) + (0.6 \times \text{ C}))$ $T = V \times \text{ h} / ((10^{-1} \text{ C}) + (0.6 \times \text{ C}))$ $f_t = T / A_{en} = F_t = F_t \times C_D \times C_D$	D + S _{wt} × h)) > C _o × ΣLi)) - P = - 278 lb/in ² × C _{Mt} × C _{tt} × C _F	-3.759 kips	NEGATIVE. OVERTURN	NO	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress		$P = (0.6 \times (10^{-5} \text{ Cm}) + (0.6 \times 10^{-5} \text{ Cm}) + (0.6 \times 10^{-5}$	$D + S_{wt} \times h)) > C_o \times \Sigma L_i)) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_F$ -5	<mark>-3.759 kips</mark> t × Ci = 1508 l t	NEGATIVE. OVERTURN 0/in ²	NO IING	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress Design tensile stress		$P = (0.6 \times (10^{-5} \text{ Cm}) + (0.6 \times 10^{-5} \text{ Cm}) + (0.6 \times 10^{-5}$	$D + S_{wt} \times h)) > C_o \times \Sigma L_i)) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_F$ -5	<mark>-3.759 kips</mark> t × Ci = 1508 l t	NEGATIVE. OVERTURN	NO IING	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1	on	$P = (0.6 \times (10^{-5} \text{ Cm}) + (0.6 \times 10^{-5} \text{ Cm}) + (0.6 \times 10^{-5}$	$D + S_{wt} \times h)) > C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ ign tensile stre	<mark>-3.759 kips</mark> t × Ci = 1508 l t	NEGATIVE. OVERTURN D/in ²	NO IING	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum compre	on	$P = (0.6 \times (10^{-5} \times 10^{-5} \times 10$	$D + S_{wt} \times h)) > C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ 5 ign tensile structure = 4.92 kips	- 3.759 kips t × Ci = 1508 lt ess exceeds i	NEGATIVE. OVERTURN D/in ² maximum applie	NO IING	
Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum comprese Axial force for maximum comprese	on ession pression	$P = (0.6 \times (0.5 \times 10^{-5} \text{ Cm})^{-5} $	$D + S_{wt} \times h)) \times C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ ign tensile structure $= 4.92 \text{ kips}$ wt × h)) × s / 2	-3.759 kips t × Ci = 1508 lk ess exceeds i + 0.6 × Wch2	NEGATIVE. OVERTURN D/in ² maximum applie	NO IING	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum compressive force in c	on ession pression hord	$P = (0.6 \times (10^{-5} \times 10^{-5} \times 10$	$D + S_{wt} \times h)) \times C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ 5 ign tensile structure = 4.92 kips wt × h)) × s / 2 (C_{o} × \Sigma L_{i})) + P =	-3.759 kips t × Ci = 1508 lk ess exceeds i + 0.6 × Wch2	NEGATIVE. OVERTURN D/in ² maximum applie	NO IING	
Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum compre- Axial force for maximum compre- Maximum compressive force in c Maximum applied compressive s	on ession pression hord	$P = (0.6 \times (l + 1) + 1) + (0.6 \times l + 1) + (0$	$D + S_{wt} \times h)) \times C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ 5 ign tensile structure = 4.92 kips $Mt \times h)) \times s / 2$ i(C_{o} × \Sigma L_{i})) + P = 347 lb/in ²	-3.759 kips t × Ci = 1508 lk ess exceeds i + 0.6 × W _{ch2} = 5.731 kips	NEGATIVE. OVERTURN b/in ² maximum applie = 3.372 kips	NO IING	
Shear force for maximum tension Axial force for maximum tensi Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum compressive force in c	on ession pression hord	$P = (0.6 \times (10^{-5} \times 10^{-5} \times 10$	$D + S_{wt} \times h)) \times C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ 5 ign tensile structure = 4.92 kips $Mt \times h)) \times s / 2$ $(C_{o} \times \Sigma L_{i})) + P =$ 347 lb/in ² $\times C_{Mc} \times C_{tc} \times C_{tc} \times C_{tc}$	-3.759 kips t × Ci = 1508 lk ess exceeds i + 0.6 × W _{ch2} = 5.731 kips	NEGATIVE. OVERTURN b/in ² maximum applie = 3.372 kips	NO IING	
Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum compre- Axial force for maximum compre- Maximum compressive force in c Maximum applied compressive s	on ession pression hord tress	$P = (0.6 \times (1 + 1)^{2})^{2}$ $T = V \times h / ((1 + 1)^{2})^{2}$ $F_{t} = T / A_{en} = F_{t} = T / A_{en} = F_{t} = F_{t} \times C_{D}$ $F_{t} / F_{t} = -0.18$ $PASS - Dest$ $V = 0.6 \times W$ $P = ((D + S_{e})^{2})^{2}$ $C = V \times h / (0 + S_{e})^{2}$ $F_{c} = C / A_{e} = F_{c}$ $F_{c} = F_{c} \times C_{D}$ $f_{c} / F_{c} = 0.42$	$D + S_{wt} \times h)) \times$ $C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ 5 ign tensile structure = 4.92 kips $Mt \times h)) \times s / 2$ $(C_{o} \times \Sigma L_{i})) + P =$ 347 lb/in ² $\times C_{Mc} \times C_{tc} \times C_{T}$ 5	- 3.759 kips t × Ci = 1508 lk ess exceeds i + 0.6 × W _{ch2} = 5.731 kips C _{Fc} × Ci × CP =	NEGATIVE. OVERTURN b/in ² maximum applie = 3.372 kips 818 lb/in ²	NO NNG	
Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Load combination 1 Shear force for maximum compre- Axial force for maximum compre- Maximum compressive force in c Maximum applied compressive s	on ession pression hord tress	$P = (0.6 \times (10^{-5} \times 10^{-5} \times 10$	$D + S_{wt} \times h)) \times$ $C_{o} \times \Sigma L_{i})) - P =$ -278 lb/in ² $\times C_{Mt} \times C_{tt} \times C_{F}$ 5 ign tensile structure = 4.92 kips $Mt \times h)) \times s / 2$ $(C_{o} \times \Sigma L_{i})) + P =$ 347 lb/in ² $\times C_{Mc} \times C_{tc} \times C_{T}$ 5	- 3.759 kips t × Ci = 1508 lk ess exceeds i + 0.6 × W _{ch2} = 5.731 kips C _{Fc} × Ci × CP =	NEGATIVE. OVERTURN b/in ² maximum applie = 3.372 kips 818 lb/in ²	NO NING	



Tekla Tedds Anthem Structural Engineers	Project				Job Ref.	
	Section				Sheet no./rev. 5	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

WEST, LEVEL 1

Maximum shear force on wall	$V_{max} = V_{w_max} = 4.92$ kips
Uniform shear applied to wall	$v_a = V_{max} / ((C_o \times \Sigma L_i)) = 230.1 \text{ plf}$
Shear resisted by wall segments	$v_b = v_a \times b / (b_1 + b_2 + b_3) = 270.1 \text{ plf}$
Maximum force in collector	P _{coll} = 0.44 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 27 \text{ Ib/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1508} \ lb/in^2$
	f _t / F _t ' = 0.018
	PASS - Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 27 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 2376 \text{ lb/in}^{2}$
	f _c / F _c ' = 0.011
PASS	- Design compressive stress exceeds maximum applied compressive stress
Wind load deflection	
Design shear force	$V_{\delta w} = f_{Wserv} \times W = 8.2 \text{ kips}$
Deflection limit	$\Delta_{w_{allow}} = h / 500 = 0.246$ in
Induced unit shear	$v_{\delta w_max} = V_{\delta w} / (C_o \times \Sigma L_i) = 383.52 \text{ lb/ft}$
Anchor tension force	T_{δ} = max(0 kips,v _{δw_max} × h - 0.6 × (D + S _{wt} × h) × b / 2 +
	max(abs(W _{ch1}),abs(W _{ch2}))) = 0.000 kips
Shear wall deflection – Eqn. 4.3-1	$\delta_{sww} = 2 \times v_{\delta w_max} \times h^3 / (3 \times E \times A_e \times \Sigma L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (k_a \times L_i) + v_{\delta w_max} \times h / (K_a \times L_i) + v_{\delta w_max} \times h / (K_a \times L_i) + v_{\delta w_max} \times h / (K_a \times L_i) + v_{\delta w_max} \times h / (K_a \times L_i) + v_{\delta w_max} \times h / (K_a \times L_i) + v_{\delta w_max} \times h / (K_a \times L$
	ΣL _i) = 0.193 in
	$\delta_{sww} / \Delta_{w_allow} = 0.785$
	PASS - Shear wall deflection is less than deflection limit

Tekla Tedds	Project			Job Ref.			
Anthem Structural Engineers	Section			Sheet no./rev.			
	Section						
	Calc. by	Date	Chk'd by	Date		App'd by	Date
	S	8/1/2022					
In accordance with NDS2018	allowable stre	ess design and	I the perforat	ed shear wall	method		
Design summary						Tedds calcu	lation version 1.
Design summary Description	Unit	Provided	Required	Utilization	Result	Tedds calcu	llation version 1
	lbs	7776	1080	0.139	Result PASS	Tedds calcu	llation version 1
Description						Tedds calcu	llation version 1
Description Shear capacity	lbs	7776	1080	0.139	PASS	Tedds calcu	Ilation version 1
Description Shear capacity Chord capacity	lbs lb/in²	7776 818	1080 84	0.139 0.103	PASS PASS	Tedds calcu	Ilation version 1
Description Shear capacity Chord capacity Collector capacity	lbs lb/in ² lb/in ² in	7776 818 1508 0.246	1080 84 7 0.057	0.139 0.103 0.005	PASS PASS PASS	Tedds calcu	Ilation version 1
Description Shear capacity Chord capacity Collector capacity Deflection Panel details	lbs lb/in ² lb/in ² in	7776 818 1508 0.246	1080 84 7 0.057	0.139 0.103 0.005	PASS PASS PASS	Tedds calcu	ilation version 1
Description Shear capacity Chord capacity Collector capacity Deflection Panel details Structural I wood panel sheathir	lbs lb/in ² lb/in ² in	7776 818 1508 0.246	1080 84 7 0.057	0.139 0.103 0.005	PASS PASS PASS	Tedds calcu	ilation version 1

Panel opening of	letails	
------------------	---------	--

Width of opening	w _{o1} = 2 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	I _{o1} = 8.75 ft
Position of opening	P _{o1} = 13.67 ft
Width of opening	$w_{o2} = 2$ ft
Height of opening	h _{o2} = 5 ft
Height to underside of lintel over opening	l _{o2} = 8.75 ft
Position of opening	P _{o2} = 21.5 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ = 256.75 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section				Sheet no./rev. 2	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Cross-sectional area of studs		A _s = 8.25 in ²			EAS	T, LEVE
Stud spacing		s = 16 in				
Nominal end post size		2" x 6"				
Dressed end post size		1.5" x 5.5"				
Cross-sectional area of end posts	3	A _e = 8.25 in ²				
Hole diameter		Dia = 1 in				
Net cross-sectional area of end p	osts	A _{en} = 6.75 in ²				
Nominal collector size		2 x 2" x 6"				
Dressed collector size		2 x 1.5" x 5.5				
Service condition		Dry				
Temperature		100 degF or	ess			
Vertical anchor stiffness		k _a = 30000 lb	/in			
From NDS Supplement Table 4	A - Reference	design values fo	or visually gra	ided dimensio	on lumber (2" - 4	' thick)
Species, grade and size classification	ation	Hem-Fir, no.	l & btr grade, 2	2" & wider		
Specific gravity		G = 0.43				
Tension parallel to grain		Ft = 725 lb/in	2			
Compression parallel to grain		F _c = 1350 lb/	n²			
Modulus of elasticity		E = 1500000	lb/in ²			
Minimum modulus of elasticity		E _{min} = 55000) lb/in²			
Sheathing details						
Sheathing material					strandboard she	eathing
Fastener type		8d common	nails at 6"ce	enters		
From SDPWS Table 4.3A Nomin	nal Unit Shear	r Capacities for V	/ood-Frame S	Shear Walls - V	Nood-based Par	nels
Nominal unit shear capacity fo	r seismic des	sign v _s = min(560) plf $ imes$ min[1 -	- (0.5 - G), 1],	1740 plf) = 520	.8 lb/ft
Nominal unit shear capacity fo	r wind desigr	$v_w = min(78)$	5 plf $ imes$ min[1 \cdot	- (0.5 - G), 1],	, 2435 plf) = 730	.1 lb/ft
Apparent shear wall shear stift	ness	G _a = 16 kips	/in			
Loading details						
Dead load acting on top of panel		D = 160 lb/ft				
Snow load acting on top of panel		S = 800 lb/ft				
Self weight of panel		S _{wt} = 10 lb/ft ²				
In plane wind load acting at head	of panel	W = 1800 lbs	i			
Wind load serviceability factor		f _{Wserv} = 1.00				
	load combina	itions from ASCE	7, section 2.4	4		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1	load combina	tions from ASCE D + 0.6W	7, section 2.4	4		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2	load combina	tions from ASCE D + 0.6W D + 0.7E				
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1	load combina	tions from ASCE D + 0.6W D + 0.7E D + 0.75L _f +	0.45W + 0.75(L _r or S or R)		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2	load combina	tions from ASCE D + 0.6W D + 0.7E D + 0.75L _f +		L _r or S or R)		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2 Load combination no.3	load combina	tions from ASCE D + 0.6W D + 0.7E D + 0.75L _f +	0.45W + 0.75(L _r or S or R)		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4	load combina	tions from ASCE D + 0.6W D + 0.7E D + 0.75Lf + D + 0.75Lf +	0.45W + 0.75(L _r or S or R)		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors		tions from ASCE D + 0.6W D + 0.7E $D + 0.75L_{f} + 0.75L_{f} + 0.6D + 0.6W$ 0.6D + 0.6W 0.6D + 0.7E	0.45W + 0.75(L _r or S or R)		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors Load duration factor – Table 2.3.2	2	tions from ASCE D + 0.6W D + 0.7E $D + 0.75L_f + 0.6D + 0.75L_f + 0.6D + 0.6W$ 0.6D + 0.6W 0.6D + 0.7E $C_D = 1.60$	0.45W + 0.75(L _r or S or R)		
Wind load serviceability factor From IBC 2021 cl.1605.1 Basic Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6 Adjustment factors	2	tions from ASCE D + 0.6W D + 0.7E $D + 0.75L_{f} + 0.75L_{f} + 0.6D + 0.6W$ 0.6D + 0.6W 0.6D + 0.7E	0.45W + 0.75(L _r or S or R)		

Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers	Section				Sheet no./rev.				
				3					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Wet service factor for tension – Ta	able 4A	C _{Mt} = 1.00			EAS	T, LEVEL			
Wet service factor for compression	on – Table 4A	C _{Mc} = 1.00							
Wet service factor for modulus of	elasticity – Ta	ble 4A							
		C _{ME} = 1.00							
Temperature factor for tension –		C _{tt} = 1.00							
Temperature factor for compressi	on – Table 2.3								
		C _{tc} = 1.00							
Temperature factor for modulus of	f elasticity – T								
		C _{tE} = 1.00							
Incising factor – cl.4.3.8		C _i = 1.00							
Buckling stiffness factor – cl.4.4.2		C⊤ = 1.00		~					
Adjusted modulus of elasticity				< Ст = 550000 р	SI				
Critical buckling design value		F_{cE} = 0.822 \times	$E_{min}' / (h / d)^2 =$	= 904 psi					
Reference compression design va	alue	$F_{c}^{*} = F_{c} \times C_{D}$	$\times C_{Mc} \times C_{tc} \times C_{tc}$	_{Fc} × Ci = 2376 p	si				
For sawn lumber		c = 0.8	c = 0.8						
Column stability factor - eqn.3	.7-1	$C_{P} = (1 + (F_{c}))$	$C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c)]^{2} - (F_{cE} / C_{cE})^{2}}$						
		F _c *) / c) = 0.3	34						
Perforated wall length		b ₁ = 13.67 ft							
Shear wall aspect ratio Perforated wall length		h / b ₁ = 0.75 b ₂ = 5.83 ft							
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758							
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length		h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft							
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929							
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact		h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929		<i>(</i>					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length	Iths	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + b_3$	- $b_3 imes 2 imes b_s$ / h						
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall	Iths	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + L_{tot} = b_1 + w_{o1}$	- b ₃ × 2 × b _s / h + b ₂ + w _{o2} + b ₃	a = 27 ft					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear wall	Iths	$h / b_{1} = 0.75$ $b_{2} = 5.83 \text{ ft}$ $h / b_{2} = 1.758$ $b_{3} = 3.5 \text{ ft}$ $h / b_{3} = 2.929$ $\Sigma L_{i} = b_{1} + b_{2} + L_{tot} = b_{1} + w_{o1}$ $A_{o} = w_{o1} \times h_{o1}$	$b_3 \times 2 \times b_s / h_1 + b_2 + w_{o2} + b_3 + w_{o2} \times h_{o2} = 2$	s = 27 ft 2 0 ft ²					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6)	iths /all	$h / b_{1} = 0.75$ $b_{2} = 5.83 \text{ ft}$ $h / b_{2} = 1.758$ $b_{3} = 3.5 \text{ ft}$ $h / b_{3} = 2.929$ $\Sigma L_{i} = b_{1} + b_{2} + 1$ $L_{tot} = b_{1} + w_{o1}$ $A_{o} = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_{o})$	- b ₃ × 2 × b _s / h + b ₂ + w _{o2} + b ₃	s = 27 ft 2 0 ft ²					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor	iths /all	$h / b_{1} = 0.75$ $b_{2} = 5.83 \text{ ft}$ $h / b_{2} = 1.758$ $b_{3} = 3.5 \text{ ft}$ $h / b_{3} = 2.929$ $\Sigma L_{i} = b_{1} + b_{2} + L_{tot} = b_{1} + w_{o1}$ $A_{o} = w_{o1} \times h_{o1}$	$b_3 \times 2 \times b_s / h_1 + b_2 + w_{o2} + b_3 + w_{o2} \times h_{o2} = 2$	s = 27 ft 2 0 ft ²					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	yths vall (eqn. 4.3-5)	$h / b_{1} = 0.75$ $b_{2} = 5.83 \text{ ft}$ $h / b_{2} = 1.758$ $b_{3} = 3.5 \text{ ft}$ $h / b_{3} = 2.929$ $\Sigma L_{i} = b_{1} + b_{2} + 1$ $L_{tot} = b_{1} + w_{o1}$ $A_{o} = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_{o})$ $C_{o} = 0.973$	$b_3 \times 2 \times b_s / h$ + b_2 + w_{o2} + b_3 + $w_{o2} \times h_{o2}$ = 2 /($h \times \Sigma L_i$)) = 0 .9	e = 27 ft 20 ft ² 918					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor	yths vall (eqn. 4.3-5)	$h / b_{1} = 0.75$ $b_{2} = 5.83 \text{ ft}$ $h / b_{2} = 1.758$ $b_{3} = 3.5 \text{ ft}$ $h / b_{3} = 2.929$ $\Sigma L_{i} = b_{1} + b_{2} + 1$ $L_{tot} = b_{1} + w_{o1}$ $A_{o} = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_{o})$ $C_{o} = 0.973$	$b_3 \times 2 \times b_s / h_1 + b_2 + w_{o2} + b_3 + w_{o2} \times h_{o2} = 2$	e = 27 ft 20 ft ² 918					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	iths /all (eqn. 4.3-5) ind loading	$h / b_{1} = 0.75$ $b_{2} = 5.83 \text{ ft}$ $h / b_{2} = 1.758$ $b_{3} = 3.5 \text{ ft}$ $h / b_{3} = 2.929$ $\Sigma L_{i} = b_{1} + b_{2} + b_{1}$ $L_{tot} = b_{1} + w_{01}$ $A_{o} = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_{o})$ $C_{o} = 0.973$ $V_{w_{max}} = 0.6$	$b_3 \times 2 \times b_s / h$ + b_2 + w_{o2} + b_3 + $w_{o2} \times h_{o2}$ = 2 /($h \times \Sigma L_i$)) = 0 .9	s = 27 ft 10 ft ² 918 ps					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	iths /all (eqn. 4.3-5) ind loading	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_1 + b_1 + b_2 + b_1 + b_$	$b_{3} \times 2 \times b_{s} / h$ $b_{2} + w_{o2} + b_{3}$ $+ w_{o2} \times h_{o2} = 2$ $/(h \times \Sigma L_{i})) = 0.4$ $\times W = 1.08 \text{ ki}$ $\times \Sigma L_{i} / 2 = 7.7$ 0.139	s = 27 ft 20 ft ² 918 ps 776 kips					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	iths /all (eqn. 4.3-5) ind loading	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_1 + b_1 + b_2 + b_1 + b_$	$b_{3} \times 2 \times b_{s} / h$ $b_{2} + w_{o2} + b_{3}$ $+ w_{o2} \times h_{o2} = 2$ $/(h \times \Sigma L_{i})) = 0.4$ $\times W = 1.08 \text{ ki}$ $\times \Sigma L_{i} / 2 = 7.7$ 0.139	s = 27 ft 20 ft ² 918 ps 776 kips	xceeds maximi	um shear fo			
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	iths /all (eqn. 4.3-5) ind loading	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_1 + b_1 + b_2 + b_1 + b_$	$b_{3} \times 2 \times b_{s} / h$ $b_{2} + w_{o2} + b_{3}$ $+ w_{o2} \times h_{o2} = 2$ $/(h \times \Sigma L_{i})) = 0.4$ $\times W = 1.08 \text{ ki}$ $\times \Sigma L_{i} / 2 = 7.7$ 0.139	s = 27 ft 20 ft ² 918 ps 776 kips	xceeds maxim	um shear fo			
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w Shear capacity for wind loading Chord capacity for chords 1 an	yths /all (eqn. 4.3-5) ind loading g	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_2 + b_1 + b_1 + b_1 + b_2 + b_1 + b_$	$b_{3} \times 2 \times b_{s} / h$ + $b_{2} + w_{o2} + b_{3}$ + $w_{o2} \times h_{o2} = 2$ /($h \times \Sigma L_{i}$)) = 0.4 × $W = 1.08$ kig × $\Sigma L_{i} / 2 = 7.7$ 0.139 lear capacity f	s = 27 ft 20 ft ² 918 ps 776 kips	xceeds maximi	um shear foi			
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear w Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under w Shear capacity for wind loading Chord capacity for chords 1 an Load combination 5	ths /all (eqn. 4.3-5) ind loading g	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + b_1 + b_2 + b_1 + b_0 + b_1 + b_0 + b_1 + b_0 + b_1 + b_0 + b_$	$b_{3} \times 2 \times b_{s} / h$ + $b_{2} + w_{o2} + b_{3}$ + $w_{o2} \times h_{o2} = 2$ /($h \times \Sigma L_{i}$)) = 0.4 × $W = 1.08 \text{ kig}$ × $\Sigma L_{i} / 2 = 7.7$ 0.139 ear capacity f	s = 27 ft 20 ft ² 918 ps 776 kips		um shear foi			
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wa Shear capacity for wind loading Chord capacity for chords 1 and Load combination 5 Shear force for maximum tension	ths /all (eqn. 4.3-5) ind loading g	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + 1$ $L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_o)$ $C_o = 0.973$ $V_{w_max} = 0.6$ $V_w = V_w \times C_o$ $V_{w_max} / V_w = 0$ PASS - Sh $V = 0.6 \times W =$ $P = (0.6 \times (D_{w_m}))$	$b_{3} \times 2 \times b_{s} / h$ + $b_{2} + w_{o2} + b_{3}$ + $w_{o2} \times h_{o2} = 2$ /($h \times \Sigma L_{i}$)) = 0.4 × $W = 1.08 \text{ kig}$ × $\Sigma L_{i} / 2 = 7.7$ 0.139 rear capacity f	e = 27 ft 10 ft ² 918 976 kips 776 kips 776 kips 776 kips					
Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall lengt Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall Shear capacity for wind loading Chord capacity for chords 1 and Load combination 5 Shear force for maximum tension Axial force for maximum tension	ths /all (eqn. 4.3-5) ind loading g	h / b ₁ = 0.75 b ₂ = 5.83 ft h / b ₂ = 1.758 b ₃ = 3.5 ft h / b ₃ = 2.929 $\Sigma L_i = b_1 + b_2 + 1$ $L_{tot} = b_1 + w_{o1}$ $A_o = w_{o1} \times h_{o1}$ $r = 1 / (1 + A_o)$ $C_o = 0.973$ $V_{w_max} = 0.6$ $V_w = V_w \times C_o$ $V_{w_max} / V_w = 0$ PASS - Sh $V = 0.6 \times W =$ $P = (0.6 \times (D_{w_m}))$	$b_{3} \times 2 \times b_{s} / h$ + $b_{2} + w_{o2} + b_{3}$ + $w_{o2} \times h_{o2} = 2$ /($h \times \Sigma L_{i}$)) = 0.4 × $W = 1.08 \text{ kig}$ × $\Sigma L_{i} / 2 = 7.7$ 0.139 ear capacity f = 1.08 kips () + S _{wt} × h)) × $\Sigma_{o} \times \Sigma L_{i}$)) - P = [e = 27 ft 10 ft ² 918 976 kips 776 kips 776 kips 776 kips	kips	10			

Anthem Structural Engineers	Project		Job Ref.	Job Ref.			
	Section				Sheet no./rev. 4		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date	

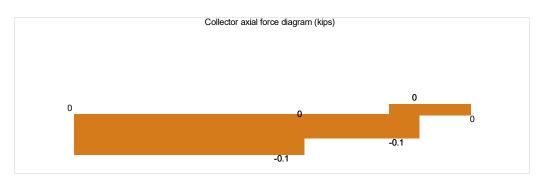
$f_t / F_t' = -0.158$

EAST, LEVEL 4

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression Axial force for maximum compression


Maximum compressive force in chord Maximum applied compressive stress

Design compressive stress

 $\begin{array}{l} \mathsf{V} = 0.6 \times \mathsf{W} = \textbf{1.08 kips} \\ \mathsf{P} = ((\mathsf{D} + \mathsf{S}_{wt} \times \mathsf{h})) \times \mathsf{s} \ / \ 2 = \textbf{0.175 kips} \\ \mathsf{C} = \mathsf{V} \times \mathsf{h} \ / \ ((\mathsf{C}_o \times \Sigma \mathsf{L}_i)) + \mathsf{P} = \boxed{\textbf{0.695 kips}} \\ \mathsf{f}_c = \mathsf{C} \ / \ \mathsf{A}_e = \textbf{84 lb} / \mathsf{in}^2 \\ \mathsf{F}_c' = \mathsf{F}_c \times \mathsf{C}_\mathsf{D} \times \mathsf{C}_\mathsf{Mc} \times \mathsf{C}_\mathsf{tc} \times \mathsf{C}_\mathsf{Fc} \times \mathsf{C}_\mathsf{i} \times \mathsf{C}_\mathsf{P} = \textbf{818 lb} / \mathsf{in}^2 \\ \mathsf{f}_c \ / \ \mathsf{F}_c' = \textbf{0.103} \end{array}$

PASS - Design compressive stress exceeds maximum applied compressive stress

Collector capacity

Maximum shear force on wall	V _{max} = V _{w_max} = 1.08 kips
Uniform shear applied to wall	$v_a = V_{max} / ((C_o \times \Sigma L_i)) = $ 50.7 plf
Shear resisted by wall segments	$v_b = v_a \times b / (b_1 + b_2 + b_3) = 59.5 \text{ plf}$
Maximum force in collector	P _{coll} = 0.121 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 7 \text{ lb/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1508 \text{ lb/in}^2$
	f _t / F _t ' = 0.005
	PASS - Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 7 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 2376 \text{ lb/in}^{2}$
	f _c / F _c ' = 0.003
PASS -	Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force

$$\begin{split} V_{\delta w} &= f_{Wserv} \times W = \textbf{1.8 kips} \\ \Delta_{w_allow} &= h \ / \ 500 = \textbf{0.246 in} \\ v_{\delta w_max} &= V_{\delta w} \ / \ (C_o \times \Sigma L_i) = \textbf{84.49 lb/ft} \\ T_\delta &= max(0 \ kips, v_{\delta w_max} \times h \ - \ 0.6 \times (D + S_{wt} \times h) \times b \ / \ 2) = \textbf{0.000 kips} \end{split}$$

Tekla Tedds Anthem Structural Engineers	Project				Job Ref.	
	Section				Sheet no./rev. 5	
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

Shear wall deflection – Eqn. 4.3-1

 $\delta_{sww} = 2 \times v_{\delta w_max} \times h^3 \ / \ (3 \times E \times A_e \times \Sigma L_i) + v_{\delta w_max} \times h \ F_{\bullet} \times F_{\bullet$

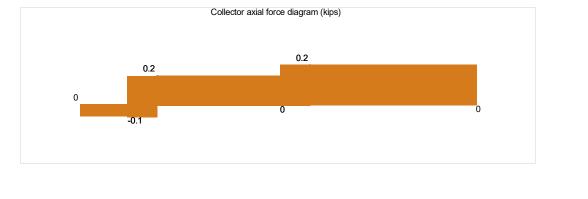
ΣL_i) = **0.057** in

 δ_{sww} / Δ_{w_allow} = 0.231

PASS - Shear wall deflection is less than deflection limit

Tekla , Tedds	Project				Job	Ref.	
Anthem Structural Engineers	Section				She 1	et no./rev.	
	Calc. by S	Date 8/1/2022	Chk'd by	Date		'd by	Date
WOOD SHEAR WALL DESIGN In accordance with NDS2018 a	<u> </u>	ss design and	I the perforate	ed shear wall			ST, LEVE
Design summary Description	Unit	Provided	Required	Utilization	Result		
Shear capacity	lbs	7770	2280	0.293	PASS		
Chord capacity	lb/in ²	709	229	0.323	PASS		
Collector capacity	lb/in ²	1092	13	0.012	PASS		
Deflection	in	0.246	0.121	0.492	PASS		
Structural I wood panel sheathin Panel height Panel length ↓↓↓↓↓↓↓	g on one side	h = 10.28 b = 27 ft	D+S	┟┼┿┽┿┿┿┿┿	┟┵┵┵┵┵┵		
w the second sec	↓		↓			, i ↓	
s1 			53 → → → → → → → → → → → → →				

->


Panel opening detailsWidth of opening $w_{o1} = 2 \text{ ft}$ Height of opening $h_{o1} = 5 \text{ ft}$ Height to underside of lintel over opening $l_{o1} = 8.75 \text{ ft}$ Position of opening $P_{o1} = 3.25 \text{ ft}$ Width of opening $w_{o2} = 2 \text{ ft}$ Height of opening $h_{o2} = 5 \text{ ft}$

Height of opening	h _{o2} = 5 ft
Height to underside of lintel over opening	l _{o2} = 8.75 ft
Position of opening	P _{o2} = 13.67 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ = 256.75 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"

			Project				Job Ref.			
Anth	nem Structural	Engineers	Section				Sheet no 2	Sheet no./rev. 2		
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Cros	s-sectional are	a of studs		A _s = 8.25 i	n ²		E	AST, LEVE		
Stud	l spacing			s = 16 in						
	ninal end post s	size		2" x 6"						
Dres	sed end post s	size		1.5" x 5.5"						
Cros	s-sectional are	a of end posts	6	A _e = 8.25 i	n²					
Hole	diameter			Dia = 1 in						
Net	cross-sectional	area of end p	osts	A _{en} = 6.75	in ²					
Nom	ninal collector s	ize		2 x 2" x 6"						
Dres	sed collector s	ize		2 x 1.5" x 5	5.5"					
Serv	vice condition			Dry						
Tem	perature			100 degF	or less					
Vert	ical anchor stiff	ness		k _a = 30000	lb/in					
Fror	n NDS Supple	ment Table 4	A - Reference	design values	for visually g	raded dimens	ion lumber (2'	" - 4" thick)		
Spe	cies, grade and	l size classifica	ation	Hem-Fir, n	o.2 grade, 2" &	k wider	-	-		
Spe	cific gravity			G = 0.43	-					
Tens	sion parallel to	grain		Ft = 525 lb	$F_{t} = 525 \text{ lb/in}^{2}$					
	pression paral	-		F _c = 1300	F _c = 1300 lb/in ²					
Mod	ulus of elasticit	y		E = 1300000 lb/in ²						
Mini	mum modulus	of elasticity		E _{min} = 470000 lb/in ²						
She	athing details									
She	athing materia	al		7/16'' woo	d panel struc	tural I oriente	d strandboard	d sheathing		
Fas	tener type			8d comm	8d common nails at 6"centers					
Fror	n SDPWS Tab	le 4.3A Nomii	nal Unit Shear	Capacities fo	r Wood-Frame	Shear Walls	- Wood-based	Panels		
	ninal unit shea			-						
	ninal unit shea					· · ·				
			-		v_w = min(785 plf × min[1 - (0.5 - G), 1], 2435 plf) = 730.1 lb/ft G _a = 16 kips/in					
	arent shear w	all snear stin	ness	Ga = 16 K	ps/in					
	ding details									
	d load acting o			D = 460 lb						
	w load acting o			S = 800 lb/						
	weight of pane		-f	S _{wt} = 10 lb						
-	ane wind load a	-	of panel	W = 3800						
	d load servicea	-		f _{Wserv} = 1.0	U					
	rd forces from		i				0 (11-2)			
nord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	DT_ch[i] (Ibs)	L _{f_ch[i]} (lbs)	Lr_ch[i] (Ibs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)		
h1	-697;	0;	0;	0;	0;	0;	0;	0;		
h2	697;	0;	0;	0;	0;	0;	0;	0;		
	n IBC 2021 cl.		load combinat		CE 7, section	2.4				
	d combination r			D + 0.6W						
	d combination r			D + 0.7E	o (=) · · ·					
Load combination no.3					+ 0.45W + 0.7	,				
	Load combination no.4				D + 0.75L _f + 0.525E + 0.75S					
Load	d combination r d combination r			D + 0.75Lf 0.6D + 0.6		55				

Tekla Tedds	Project				Job Ref.				
Anthem Structural Engineers	Section			Sheet no./rev. 3					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Adjustment factors					EAS	ST, LEVE			
Load duration factor – Table 2.3.2	2	C _D = 1.60							
Size factor for tension – Table 4A		C _{Ft} = 1.30							
Size factor for compression – Tak	ole 4A	C _{Fc} = 1.10							
Wet service factor for tension - T	able 4A	C _{Mt} = 1.00							
Wet service factor for compression	on – Table 4A	C _{Mc} = 1.00							
Wet service factor for modulus of	f elasticity – Tal	ble 4A							
		C _{ME} = 1.00							
Temperature factor for tension – Temperature factor for compress		C _{tt} = 1.00 .3							
		C _{tc} = 1.00							
Temperature factor for modulus of	of elasticity – Ta								
		C _{tE} = 1.00							
Incising factor – cl.4.3.8		C _i = 1.00							
Buckling stiffness factor – cl.4.4.2	2	C _T = 1.00							
Adjusted modulus of elasticity		$\begin{split} &E_{min}\texttt{'} = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = \textbf{470000} \; psi \\ &F_{cE} = 0.822 \times E_{min}\texttt{'} \; / \; (h \; / \; d)^2 = \textbf{772} \; psi \end{split}$							
Critical buckling design value									
Reference compression design v	alue	$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = \textbf{2288 psi}$							
For sawn lumber		c = 0.8							
Column stability factor - eqn.3	3.7-1	C _P = (1 + (F	C_{P} = (1 + (F _{cE} / F _c [*])) / (2 × c) - $\sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 × c)]^{2} - (F_{cE} / C_{CE})^{2})}$						
		F _c *) / c) = 0	.31						
From SDPWS Table 4.3.4 Maxii	mum Shear W	all Aspect Ratio	S						
Maximum shear wall aspect ratio		3.5							
Perforated wall length		b ₁ = 3.25 ft							
Shear wall aspect ratio		h / b₁ = 3.15	4						
Shear wall aspect ratio Perforated wall length		h / b ₁ = 3.15 b ₂ = 8.42 ft	4						
Perforated wall length		b ₂ = 8.42 ft	7						
Perforated wall length Shear wall aspect ratio		b ₂ = 8.42 ft h / b ₂ = 1.21	7						
Perforated wall length Shear wall aspect ratio Perforated wall length	or – cl.4.3.3.5	b ₂ = 8.42 ft h / b ₂ = 1.21 b ₃ = 11.33 ft h / b ₃ = 0.90	7						
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		b ₂ = 8.42 ft h / b ₂ = 1.21 b ₃ = 11.33 ft h / b ₃ = 0.90	7	₃ = 21.811 ft					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact	gths	$b_2 = 8.42$ ft h / $b_2 = 1.21$ $b_3 = 11.33$ ft h / $b_3 = 0.90$ $\Sigma L_i = b_1 \times 2$	7 5						
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length	gths	$b_2 = 8.42 \text{ ft}$ $h / b_2 = 1.21$ $b_3 = 11.33 \text{ ft}$ $h / b_3 = 0.90$ $\Sigma L_i = b_1 \times 2 \times 2$ $L_{tot} = b_1 + w_c$	7 5 < b _s / h + b ₂ + b	93 = 27 ft					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall	gths vall	$b_2 = 8.42 \text{ ft}$ $h / b_2 = 1.21$ $b_3 = 11.33 \text{ ft}$ $h / b_3 = 0.90$ $\Sigma L_i = b_1 \times 2 \times 2$ $L_{tot} = b_1 + w_{ct}$ $A_0 = w_{o1} \times h_{ct}$	7 5 × b _s / h + b ₂ + b 1 + b ₂ + w _{o2} + b	₂₃ = 27 ft 20 ft ²					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings	gths vall	$b_2 = 8.42 \text{ ft}$ $h / b_2 = 1.21$ $b_3 = 11.33 \text{ ft}$ $h / b_3 = 0.90$ $\Sigma L_i = b_1 \times 2 \times 2$ $L_{tot} = b_1 + w_{ct}$ $A_0 = w_{o1} \times h_{ct}$	7 5 $(x + b_s) / h + b_2 + b_1 + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$	₂₃ = 27 ft 20 ft ²					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor	gths wall ⁻ (eqn. 4.3-5)	$b_2 = 8.42$ ft $h / b_2 = 1.21$ $b_3 = 11.33$ ft $h / b_3 = 0.90$ $\Sigma L_i = b_1 \times 2 \times$ $L_{tot} = b_1 + w_{ct}$ $A_o = w_{o1} \times h_{ct}$ $r = 1 / (1 + A_{tot})$	7 5 $(x + b_s) / h + b_2 + b_1 + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$	₂₃ = 27 ft 20 ft ²					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	gths vall ⁻ (eqn. 4.3-5)	$b_{2} = 8.42 \text{ ft}$ $h / b_{2} = 1.21$ $b_{3} = 11.33 \text{ ft}$ $h / b_{3} = 0.90$ $\Sigma L_{i} = b_{1} \times 2 \times 2$ $L_{tot} = b_{1} + w_{c}$ $A_{o} = w_{o1} \times h_{c}$ $r = 1 / (1 + A)$ $C_{o} = 0.976$	7 5 $x b_s / h + b_2 + b_{11} + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$ $y_{00} / (h \times \Sigma L_i)) = 0$	¹³ = 27 ft 20 ft ² .918					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	gths wall ⁻ (eqn. 4.3-5) vind loading	$b_{2} = 8.42 \text{ ft}$ $h / b_{2} = 1.21$ $b_{3} = 11.33 \text{ ft}$ $h / b_{3} = 0.90$ $\Sigma L_{i} = b_{1} \times 2 \times 2$ $L_{tot} = b_{1} + w_{c}$ $A_{o} = w_{o1} \times h_{c}$ $r = 1 / (1 + A)$ $C_{o} = 0.976$ $V_{w_{max}} = 0.6$	7 5 $(b_s / h + b_2 + b_1 + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$ $(h \times \Sigma L_i) = 0$ $(b \times W = 2.28 \text{ k})$	n₃ = 27 ft 20 ft² .918 ips					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity	gths wall ⁻ (eqn. 4.3-5) vind loading	$b_{2} = 8.42 \text{ ft}$ $h / b_{2} = 1.21$ $b_{3} = 11.33 \text{ ft}$ $h / b_{3} = 0.90$ $\Sigma L_{i} = b_{1} \times 22$ $L_{tot} = b_{1} + w_{o}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A)$ $C_{o} = 0.976$ $V_{w} = v_{w} \times C$	7 5 $(x b_s / h + b_2 + b_1 + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$ $(y_{00} / (h \times \Sigma L_i)) = 0$ $(b \times W = 2.28 \text{ k})$ $(b \times \Sigma L_i / 2 = 7.28 \text{ k})$	n₃ = 27 ft 20 ft² .918 ips					
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	gths wall ⁻ (eqn. 4.3-5) vind loading	$b_{2} = 8.42 \text{ ft}$ $h / b_{2} = 1.21$ $b_{3} = 11.33 \text{ ft}$ $h / b_{3} = 0.90$ $\Sigma L_{i} = b_{1} \times 2 \times 2$ $L_{tot} = b_{1} + w_{o}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A)$ $C_{o} = 0.976$ $V_{w_{max}} = 0.6$ $V_{w_{max}} / V_{w} = 0.6$	7 5 $(x + b_s / h + b_2 + b_1 + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$ $(x + b_0 + w_{02} + b_{02} + b_{01} + w_{02} \times h_{02} = 3$ $(x + b_0 + w_{02} + b_{02} + b_$	n₃ = 27 ft 20 ft² .918 ips 77 kips	exceeds maxin	num shear fo			
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio Shear capacity adjustment fact Sum of perforated shear wall length Total length of perforated shear wall Total area of openings Sheathing area ratio (eqn. 4.3-6) Shear capacity adjustment factor Perforated shear wall capacity Maximum shear force under wall	gths wall ⁻ (eqn. 4.3-5) vind loading	$b_{2} = 8.42 \text{ ft}$ $h / b_{2} = 1.21$ $b_{3} = 11.33 \text{ ft}$ $h / b_{3} = 0.90$ $\Sigma L_{i} = b_{1} \times 2 \times 2$ $L_{tot} = b_{1} + w_{o}$ $A_{o} = w_{o1} \times h_{o}$ $r = 1 / (1 + A)$ $C_{o} = 0.976$ $V_{w_{max}} = 0.6$ $V_{w_{max}} / V_{w} = 0.6$	7 5 $(x + b_s / h + b_2 + b_1 + b_2 + w_{02} + b_{01} + w_{02} \times h_{02} = 3$ $(x + b_0 + w_{02} + b_{02} + b_{01} + w_{02} \times h_{02} = 3$ $(x + b_0 + w_{02} + b_{02} + b_$	n₃ = 27 ft 20 ft² .918 ips 77 kips	exceeds maxin	num shear fo			

Tekla Tedds	Project				Job Ref.			
Anthem Structural Engineers	Section				Sheet no./rev	Ι.		
					4			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Axial force for maximum tensi	on	P = (0.6 × (D + S _{wt} × h)) >	× b / 2 + 0.6 >	EA Wch1 = 4.138	ST, LEVE		
Maximum tensile force in chord		T = V × h / (($C_o \times \Sigma L_i)$ - P =	-3.040 kips		E. NO		
Maximum applied tensile stress		$f_t = T / A_{en} =$	-450 lb/in ²		OVERTUR	NING		
Design tensile stress		$F_t' = F_t \times C_D$	\times C _{Mt} \times C _{tt} \times C _F	t × Ci = 1092 II	b/in ²			
		f _t / F _t ' = -0.41	2					
		PASS - Des	ign tensile str	ess exceeds	maximum appli	ed tensile sti		
Load combination 1								
Shear force for maximum compre	ession	$V = 0.6 \times W$	= 2.28 kips					
Axial force for maximum comp	pression	P = ((D + S	_{wt} × h)) × s / 2	2 + -1 $ imes$ 0.6 $ imes$	W _{ch1} = 0.793 ki	ps		
Maximum compressive force in c	hord	$C = V \times h / (0$	$(C_o \times \Sigma L_i)) + P$	= 1.891 kips				
Maximum applied compressive s	tress	f _c = C / A _e = 229 lb/in ²						
Design compressive stress		$F_c' = F_c \times C_D$	imes C _{Mc} $ imes$ C _{tc} $ imes$ C	$C_{Fc} \times C_i \times C_P =$	709 lb/in ²			
		f _c / F _c ' = 0.323						
	PASS -	Design compres	sive stress ex	ceeds maxim	um applied cor	npressive sti		
Chord capacity for chord 2								
Load combination 5								
Shear force for maximum tensior	1	V = 0.6 × W = 2.28 kips						
Axial force for maximum tensi	on	P = $(0.6 \times (D + S_{wt} \times h)) \times b / 2 + -1 \times 0.6 \times W_{ch2}$ = 4.138 kips						
Maximum tensile force in chord		T = V × h / ((C _o × ΣL _i)) - P = -3.040 kips - NEGATIVE. NO						
Maximum applied tensile stress		$f_t = T / A_{en} = -450 \text{ lb/in}^2$ OVERTURNING						
Design tensile stress		$F_t' = F_t \times C_D$	$\times C_{Mt} \times C_{tt} \times C_{F}$	=t × Ci = 1092 Ⅱ	b/in ²			
		ft / Ft' = -0.41	2					
		PASS - Des	ign tensile str	ess exceeds	maximum appli	ed tensile sti		
Load combination 1								
Shear force for maximum compre	ession	V = 0.6 × W = 2.28 kips						
Axial force for maximum comp	pression	$P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} = 0.793 \text{ kips}$						
Maximum compressive force in c	hord	$C = V \times h / ((C_o \times \Sigma L_i)) + P = 1.891 kips$						
Maximum applied compressive s	tress	f _c = C / A _e = 229 lb/in ²						
		$F_c' = F_c \times C_D$	\times C _{Mc} \times C _{tc} \times C	$C_{Fc} \times C_i \times C_P =$	709 lb/in ²			
Design compressive stress								
Design compressive stress		f _c / F _c ' = 0.32 Design compres						

Tekla Tedds Anthem Structural Engineers	Project		Job Ref.			
	Section		Sheet no./rev. 5			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date

EAST, LEVEL 3

Maximum shear force on wall	V _{max} = V _{w_max} = 2.28 kips
Uniform shear applied to wall	$v_a = V_{max} / ((C_o \times \Sigma L_i)) = 107.1 \text{ plf}$
Shear resisted by wall segments	$v_b = v_a \times b / (b_1 + b_2 + b_3) = 125.7 \text{ plf}$
Maximum force in collector	P _{coll} = 0.211 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 13 \text{ lb/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1092} \text{ lb/in}^2$
	ft / Ft' = 0.012
	PASS - Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 13 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 2288 \text{ lb/in}^{2}$
	fc / Fc' = 0.006
PASS	S - Design compressive stress exceeds maximum applied compressive stress
Wind load deflection	
Design shear force	$V_{\delta w} = f_{Wserv} \times W = 3.8 \text{ kips}$
Deflection limit	$\Delta_{w_allow} = h / 500 = 0.246$ in
Induced unit shear	$v_{\delta w_max} = V_{\delta w} / (C_o \times \Sigma L_i) = 178.51 \text{ lb/ft}$
Anchor tension force	T_{δ} = max(0 kips,v_{\delta w_{max}} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 +
	max(abs(W _{ch1}),abs(W _{ch2}))) = 0.000 kips
Shear wall deflection – Eqn. 4.3-1	$\delta_{sww} = 2 \times v_{\delta w_max} \times h^3 \ / \ (3 \times E \times A_e \times \Sigma L_i) + v_{\delta w_max} \times h \ / \ (G_a) + h \times T_\delta \ / \ (k_a \times L_b) + k_b \times L_b $
	ΣL _i) = 0.121 in
	$\delta_{sww} / \Delta_{w_allow} = 0.492$
	PASS - Shear wall deflection is less than deflection limit

Ə Tekla Tedds	Project					Job Ref.	
Anthem Structural Engineers	Section		Sheet no./rev.				
	Calc. by S	Date 8/1/2022	Chk'd by	Date		App'd by	Date
WOOD SHEAR WALL DESIGN	<u> </u>	ess design and	the perforate	ed shear wall i	nethod	EAS	T, LEVEL 2
In accordance with NDS2018 a	<u> </u>	ess design and	the perforate	ed shear wall ı	nethod		T, LEVEL 2
	<u> </u>	ess design and	the perforate	ed shear wall ı Utilization	nethod	Tedds calc	

250

64

0.245

PASS

PASS

PASS

►

0.305

0.043

0.997

Collector capacity	
Deflection	

Panel details

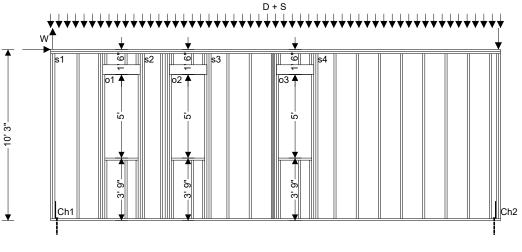
Chord capacity

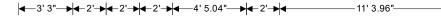
Structural I wood panel sheathing on one side

lb/in²

lb/in²

in


Panel height Panel length

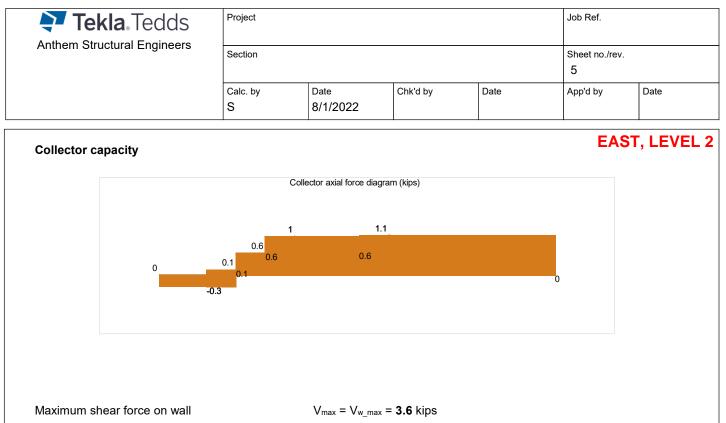


818

1508

0.246

Panel opening details	
Width of opening	w _{o1} = 2 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	l _{o1} = 8.75 ft
Position of opening	P _{o1} = 3.25 ft
Width of opening	w _{o2} = 2 ft
Height of opening	h _{o2} = 5 ft
Height to underside of lintel over opening	l _{o2} = 8.75 ft
Position of opening	P _{o2} = 7.25 ft
Width of opening	w _{o3} = 2 ft
Height of opening	h _{o3} = 5 ft
Height to underside of lintel over opening	l₀₃ = 8.75 ft
Position of opening	P _{o3} = 13.67 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ - $w_{o2} \times h_{o2}$ - $w_{o3} \times h_{o3}$ = 246.75 ft ²


	Tekla.		Project				Job Ref.			
Anti	hem Structural	Engineers	Section				Sheet no	o./rev.		
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Pan	el constructio	'n					E	EAST, LEVE		
	ninal stud size			2" x 6"						
	ssed stud size			1.5" x 5.5"						
	ss-sectional are	ea of studs		As = 8.25 i	1 ²					
Stuc	d spacing			s = 16 in						
	ninal end post s	size		2 x 2" x 6"						
	ssed end post s			2 x 1.5" x 5	5.5"					
	ss-sectional are		6	A₀ = 16.5 i	n²					
	e diameter	·		Dia = 1 in						
Net	cross-sectiona	l area of end p	osts	A _{en} = 13.5	in ²					
	ninal collector s	•		2 x 2" x 6"						
Dres	ssed collector s	size		2 x 1.5" x 5	5.5"					
Ser	vice condition			Dry						
Tem	nperature			100 degF o	or less					
Vert	tical anchor stif	fness		k _a = 69646	lb/in					
Fro	m NDS Supple	ement Table 4	A - Reference	design values	for visually g	raded dimens	ion lumber (2	" - 4" thick)		
	cies, grade and			-	o.1 & btr grade					
-	cific gravity			G = 0.43 Ft = 725 lb/in ²						
-	sion parallel to	grain								
	npression paral	-		F _c = 1350	b/in²					
Mod	lulus of elastici	ty		E = 15000	00 lb/in ²					
Mini	imum modulus	of elasticity		E _{min} = 550)00 lb/in²					
She	athing details									
	athing materi			7/16" woo	d panel struc	tural I oriente	d strandboard	d sheathing		
	tener type				on nails at 6"			L'enouting		
								Damala		
						e Shear Walls 1 - (0.5 - G), 1				
	ninal unit she		-			1 - (0.5 - G), 1	i j, 2435 plt) =	: 7 30.1 lb/ft		
Арр	parent shear w	vall shear stiff	ness	Ga = 16 ki	ps/in					
Loa	ding details									
Dea	d load acting o	n top of panel		D = 720 lb.	′ft					
Sno	w load acting o	on top of panel		S = 800 lb/	ft					
Self	weight of pane	el		S _{wt} = 10 lb,	′ft²					
In pl	lane wind load	acting at head	of panel	W = 6000	lbs					
Win	d load servicea	ability factor		f _{Wserv} = 1.0	0					
Cho	ord forces fron	n shear walls	above							
Chord	W _{ch[i]} (lbs)	Eq_ch[i] (Ibs)	Dc_ch[i] (Ibs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (Ibs)	Lr_ch[i] (Ibs)	S _{ch[i]} (Ibs)	R _{ch[i]} (Ibs)		
Ch1	-2152;	0;	0;	0;	0;	0;	0;	0;		
Ch2	2152;	0;	0;	0;	0;	0;	0;	0;		
Fro	m IBC 2021 cl.	1605 1 Basic	load combinat	ions from ΔS	CE 7. section	2.4	L			
	d combination			D + 0.6W	,					
	d combination			D + 0.7E						

 $D + 0.75L_f + 0.45W + 0.75(L_r \text{ or } S \text{ or } R)$

Load combination no.3

Tekla Tedds	Project		Job Ref.			
Anthem Structural Engineers	Section				Sheet no./rev 3	1.
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Load combination no.4			+ 0.525E + 0.75	S	EA	ST, LEVEI
Load combination no.5		0.6D + 0.6V				
Load combination no.6		0.6D + 0.7E	-			
Adjustment factors						
Load duration factor – Table 2.3.		C _D = 1.60				
Size factor for tension – Table 4A		C _{Ft} = 1.30				
Size factor for compression – Tal		$C_{Fc} = 1.10$				
Wet service factor for tension – 1		C _{Mt} = 1.00				
Wet service factor for compression		C _{Mc} = 1.00				
Wet service factor for modulus or	r elasticity – Ta					
Tanan analysis factor for torsian		C _{ME} = 1.00 C _{tt} = 1.00				
Temperature factor for tension – Temperature factor for compress						
remperature factor for compress		C _{tc} = 1.00				
Temperature factor for modulus of	of electicity _ T					
		CtE = 1.00				
Incising factor – cl.4.3.8		Ct⊧ = 1.00 Ci = 1.00				
Buckling stiffness factor – cl.4.4.2	2	C⊤ = 1.00				
Adjusted modulus of elasticity	-		\times Cme \times Cte \times Ci	× CT = 55000	0 nsi	
Critical buckling design value			$\times E_{min}' / (h / d)^2$		P	
	alua		. ,	-	3 poi	
Reference compression design v	alue	$r_{c} - r_{c} \times C$ $c = 0.8$	$_{\rm D} imes C_{\rm Mc} imes C_{\rm tc} imes C$	JFc X Ui - 23/0	b psi	
For sawn lumber						
Column stability factor – eqn.3	3.7-1		<i>,,</i> , , , , , , , , , , , , , , , , , ,	× c) – √([(1 +	(F _{cE} / F _c *)) / (2	× C)] ² - (F _{cE} /
		F _c *) / c) = ().34			
From SDPWS Table 4.3.4 Maxie	mum Shear W	all Aspect Ratio	os			
Maximum shear wall aspect ratio		3.5				
Perforated wall length		b₁ = 3.25 ft				
Shear wall aspect ratio		h / b1 = 3.1	54			
Perforated wall length		b ₂ = 2 ft				
Shear wall aspect ratio		h / b ₂ = 5.1 2	25			
Perforated wall length		b ₃ = 4.42 ft				
Shear wall aspect ratio		h / b ₃ = 2.3				
Perforated wall length		b ₄ = 11.33 t				
Shear wall aspect ratio		h / b ₄ = 0.9)5			
Shear capacity adjustment fact		5				
Sum of perforated shear wall length	-		imes b _s / h + b ₃ $ imes$ 2			
Total length of perforated shear v	wall	$L_{tot} = b_1 + w$	$v_{o1} + w_{o2} + b_3 + v_{o1}$	v _{o3} + b ₄ = 25 ft	t	
Total area of openings		$A_o = w_{o1} \times h$	h_{o1} + W_{o2} × h_{o2} +	$w_{03} \times h_{03} = 30$	ft²	
Sheathing area ratio (eqn. 4.3-6)		r = 1 / (1 + .	$A_o /(h \times \Sigma L_i)) = 0$.847		
Shear capacity adjustment factor	(eqn. 4.3-5)	C _o = 1				
Perforated shear wall capacity						
	بنام مالم ماليم م	V - 0	c = M - c c ki	06		
Maximum shear force under v	vind loading	V w_max - 0.	6 × W = 3.6 kip	P 3		

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section	Sheet no./rev.				
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	S	8/1/2022				
		V _{w_max} / V _w	= 0.609		EAS	ST, LEVE
		PASS -	Shear capacity	for wind load	exceeds maxim	um shear
Chord capacity for chord 1 Load combination 5						
Shear force for maximum tension		$V = 0.6 \times W$	/ = 3.6 kips			
Axial force for maximum tensior	1	P = (0.6×	$(D + S_{wt} \times h)) >$	< b / 2 + 0.6 ×	W _{ch1} = 5.371 ki	ps
Maximum tensile force in chord		$T = V \times h /$	((C _o × ΣL _i)) - P =	-3.092 kips ┥	— NEGATIVE. N	10
Maximum applied tensile stress		f _t = T / A _{en} =			OVERTURNI	
Design tensile stress		F_t = $F_t \times C_t$	$C \times C_{Mt} \times C_{tt} \times C_{F}$	_t × C _i = 1508 lb/	in²	
		f _t / F _t ' = -0.1				
		PASS - De	sign tensile stro	ess exceeds m	aximum applie	d tensile s
Load combination 1						
Shear force for maximum compress		$V = 0.6 \times W$	-			
Axial force for maximum compre			$S_{wt} \times h) \times s / 2$		V _{ch1} = 1.84 kips	
Maximum compressive force in cho			$((C_o \times \Sigma L_i)) + P =$	4.118 kips		
Maximum applied compressive stre	SS	f _c = C / A _e =				
Design compressive stress			$D \times C_{Mc} \times C_{tc} \times C$	$C_{Fc} \times C_i \times C_P = 8$	18 lb/in ²	
	DASS	f _c / F _c ' = 0.3 Design compre		coode maximu	m applied com	nroccivo c
	FA33 -	Design compre	331VE 311E33 EX		in applied com	pressive s
Chord capacity for chord 2 Load combination 5						
Shear force for maximum tension		V = 0.6 × V	/ = 3.6 kins			
Axial force for maximum tensior	1		$(D + S_{wt} \times h)) >$	 	6 × Waha = 5 3	71 kins
Maximum tensile force in chord	1	•	$(C_{o} \times \Sigma L_{i})) - P =$			•
Maximum applied tensile stress		f _t = T / A _{en} =		0.002 1105	OVERTURN	
Design tensile stress			$\times C_{Mt} \times C_{tt} \times C_{F}$	t × Ci = 1508 lb/	in ²	
5		f _t / F _t ' = -0.1				
		PASS - De	sign tensile stre	ess exceeds m	aximum applie	d tensile s
Load combination 1						
Shear force for maximum compress	sion	$V = 0.6 \times W$	/ = 3.6 kips			
Axial force for maximum compre	ession	P = ((D + 3	$S_{wt} \times h$)) \times s / 2	+ $0.6 \times W_{ch2}$ =	= 1.84 kips	
Maximum compressive force in cho	ord	$C = V \times h /$	$((C_o \times \Sigma L_i)) + P =$	4.118 kips		
Maximum applied compressive stre	SS	$f_c = C / A_e =$	250 lb/in ²			
Design compressive stress		$F_c' = F_c \times C$	$_{\text{D}} imes C_{\text{Mc}} imes C_{\text{tc}} imes C$	$C_{Fc} \times C_i \times C_P = 8$	18 lb/in ²	
		f _c / F _c ' = 0.3	05			

Maximum shear force on wall	$v_{max} - v_{w_max} - 3.6$ klps
Uniform shear applied to wall	$v_a = V_{max} / ((C_o \times \Sigma L_i)) = 222.3 \text{ plf}$
Shear resisted by wall segments	v _b = v _a × b / (b ₁ + b ₃ + b ₄) = 315.9 plf
Maximum force in collector	P _{coll} = 1.061 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 64 \text{ lb/in}^2$
Design tensile stress	$F_{t}' = F_{t} \times C_{D} \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_{i} = 1508 \text{ lb/in}^{2}$
	f _t / F _t ' = 0.043
	PASS - Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 64 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 2376 \text{ lb/in}^{2}$
	f _c / F _c ' = 0.027
PA	ASS - Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

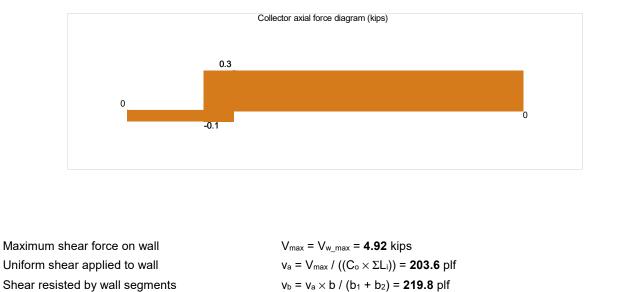
Design shear force Deflection limit Induced unit shear Anchor tension force

Shear wall deflection - Eqn. 4.3-1

$$\begin{split} &V_{\delta w} = f_{Wserv} \times W = 6 \text{ kips} \\ &\Delta_{w_allow} = h \ / \ 500 = 0.246 \text{ in} \\ &v_{\delta w_max} = V_{\delta w} \ / \ (C_o \times \Sigma L_i) = 370.51 \text{ lb/ft} \\ &T_\delta = max(0 \text{ kips}, v_{\delta w_max} \times h - 0.6 \times (D + S_{wt} \times h) \times b \ / \ 2 + \\ &max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips} \\ &\delta_{sww} = 2 \times v_{\delta w_max} \times h^3 \ / \ (3 \times E \times A_e \times \Sigma L_i) + v_{\delta w_max} \times h \ / \ (G_a) + h \times T_\delta \ / \ (k_a \times \Sigma L_i) = 0.245 \text{ in} \\ &\delta_{sww} \ / \ \Delta_{w_allow} = 0.997 \end{split}$$

PASS - Shear wall deflection is less than deflection limit

Tekla Tedds	Project				Job	Ref.	
Anthem Structural Engineers	Section				She	et no./rev.	
					1		
	Calc. by S	Date 8/1/2022	Chk'd by	Date	Арр	'd by	Date
WOOD SHEAR WALL DESIGN In accordance with NDS2018 a	<u> </u>	ess design and	I the perforate	ed shear wall r			T, LEVE
Design summary Description	Unit	Provided	Required	Utilization	Result		
Shear capacity	lbs	8823	4920	0.558	PASS		
Chord capacity	lb/in ²	818	331	0.404	PASS		
Collector capacity	lb/in ²	1508	19	0.013	PASS		
Deflection	in	0.246	0.222	0.903	PASS		
Structural I wood panel sheathin Panel height Panel length ↓↓↓↓↓↓		h = 10.2 b = 27 ft	D + S	++++++++++	┟┿┿┿┿┿┿┿	·↓↓↓	
	_						
ν 		s2					


Panel opening details	
Width of opening	w _{o1} = 2 ft
Height of opening	h _{o1} = 5 ft
Height to underside of lintel over opening	I _{o1} = 7.5 ft
Position of opening	P _{o1} = 5.25 ft
Total area of wall	A = $h \times b$ - $w_{o1} \times h_{o1}$ = 266.75 ft ²
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"
Cross-sectional area of studs	A _s = 8.25 in ²
Stud spacing	s = 16 in
Nominal end post size	2 x 2" x 6"
Dressed end post size	2 x 1.5" x 5.5"

구 Te	kla _® T	edds	Project				Job Ref.		
Anthem Str	ructural E	Engineers	Section				Sheet no 2	o./rev.	
			Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date	
Cross-section	onal are	a of end posts	3	A _e = 16.5 i	n ²		E	EAST, LEV	ΈL
Hole diamet	ter			Dia = 1 in					
Net cross-se	ectional	area of end p	osts	A _{en} = 13.5	in²				
Nominal col	llector si	ze		2 x 2" x 6"					
Dressed col	llector si	ze		2 x 1.5" x 5	5.5"				
Service con	ndition			Dry					
Temperatur	e			100 degF o	or less				
Vertical anc	chor stiff	ness		k _a = 30000	lb/in				
From NDS	Suppler	ment Table 4	A - Reference	design values	for visually o	raded dimens	ion lumber (2'	" - 4" thick)	
		size classifica		-	o.1 & btr grade			,	
Specific gra				G = 0.43	0				
Tension par	-	grain		Ft = 725 lb	/in²				
Compressio	-	-		F _c = 1350	b/in ²				
Modulus of	-	-		E = 15000					
Minimum m	-			E _{min} = 550 (
Sheathing									
Sheathing		al		7/16" woo	d nanel struc	tural I oriente	d strandboard	d sheathing	
-	materia	11					u stranubuart	a sheathing	
Eastonar t	VIDO			Od comm	on naile at 6"/	ontoro			
Fastener ty					on nails at 6"				
-		e 4.3A Nomir	nal Unit Shear	8d commo			- Wood-based	l Panels	
From SDPV	WS Tabl				r Wood-Frame	Shear Walls			
From SDPV Nominal ur	WS Tabl nit shea	r capacity fo		Capacities fo ign v _s = min(5	r Wood-Frame 660 plf × min[*	Shear Walls], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur	WS Tabl nit shea nit shea	r capacity fo r capacity fo	r seismic desi r wind design	Capacities fo ign v _s = min(5	r Wood-Frame 560 plf × min[[:] 785 plf × min[• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s	WS Tabl nit shea nit shea shear wa	r capacity fo	r seismic desi r wind design	Capacities fo ign v _s = min(5 v _w = min(7	r Wood-Frame 560 plf × min[[:] 785 plf × min[• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s Loading de	WS Tabl nit shea nit shea shear wa etails	r capacity fo r capacity fo all shear stiff	r seismic desi r wind design	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki	r Wood-Frame 560 plf × min[⁻ 785 plf × min[ps/in	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a	WS Tabl nit shea nit shea shear wa etails acting or	r capacity fo r capacity fo all shear stiff top of panel	r seismic desi r wind design	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16$ ki D = 980 lb/	r Wood-Frame 560 plf × min[[*] 785 plf × min[ps/in ⁄ft	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a	WS Tabl nit shea nit shea shear wa shear wa stails acting or acting or	r capacity fo r capacity fo all shear stiff n top of panel n top of panel	r seismic desi r wind design	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/	r Wood-Frame 560 plf × min[785 plf × min[785/in /ft	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal un Nominal un Apparent s Loading de Dead load a Snow load a Self weight	WS Tabl nit shea nit shea shear wa etails acting or of panel	r capacity fo r capacity fo all shear stiff n top of panel n top of panel	r seismic desi r wind design ness	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S _{wt} = 10 lb/	r Wood-Frame 560 plf × min[785 plf × min[785 in /ft /ft	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a	ar capacity fo ar capacity fo all shear stiff a top of panel a top of panel acting at head	r seismic desi r wind design ness	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/	r Wood-Frame 560 plf × min[785 plf × min[785 nl 785 plf × min[785 ml 785 ml	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal un Nominal un Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal	ar capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head pility factor	r seismic desi r wind design ness of panel	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S _{wt} = 10 lb/	r Wood-Frame 560 plf × min[785 plf × min[785 nl 785 plf × min[785 ml 785 ml	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (lbs)	ar capacity fo ar capacity fo all shear stiff a top of panel a top of panel acting at head	r seismic desi r wind design ness of panel	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/	r Wood-Frame 560 plf × min[785 plf × min[785 nl 785 plf × min[785 ml 785 ml	• Shear Walls • 1 - (0.5 - G), 1], 1740 plf) =	520.8 lb/ft	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtij Ch1 -44	WS Tabl nit shea nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (lbs)	ar capacity for all shear stiff a top of panel a top of panel acting at head pility factor shear walls $E_{q_ch[i]}$ (lbs) 0;	r seismic desi r wind design ness of panel above D c_ch[i] (Ibs) 0;	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 8200 l f _{Wserv} = 1.0	r Wood-Frame 560 plf × min[785 plf × min[785 nf 785 nf 77 77 77 77 77 77 77 77 77 77 77 77 77	e Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 <u>Lr_ch[i]</u> (Ibs) 0;], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtij Ch1 -44	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (lbs)	r capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head pility factor shear walls E q_ch(i) (Ibs)	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs)	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 8200 l f _{Wserv} = 1.0	r Wood-Frame 560 plf × min[785 plf × min[785 n 785 plf × min[ps/in 785 785 785 785 785 785 785 785 785 785	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 Lr_ch[i] (Ibs)], 1740 plf) =], 2435 plf) = 	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs)	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtt Ch1 -44 Ch2 44	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal es from (lbs) -18; -18; -18;	ar capacity for ar capacity for all shear stiff a top of panel acting at head pility factor shear walls $E_{q_ch[1]}(lbs)$ 0; 0;	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 8200 l f _{Wserv} = 1.0	r Wood-Frame 560 plf \times min[785 plf \times min[ps/in /ft /ft /ft ft ft ft^2 lbs 0 L _{f_ch[i]} (lbs) 0; 0;	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtt Ch1 -44 Ch2 44	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 18; 2021 cl.1	ar capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head bility factor shear walls C c c c c c f g c h i i i i i i i i i i	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ $f_{Wserv} = 1.0$ $D_{T_ch[i]}(lbs)$ 0; 0;	r Wood-Frame 560 plf \times min[785 plf \times min[ps/in /ft /ft /ft ft ft ft^2 lbs 0 L _{f_ch[i]} (lbs) 0; 0;	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchttl Ch1 -44 Ch2 442	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 18; 2021 cl.1	ar capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head pility factor shear walls Eq_ch[] (Ibs) 0; 0; 0; 1605.1 Basic	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S _{wt} = 10 lb/ W = 8200 l f _{Wserv} = 1.0 DT_ch[1] (lbs) 0; 0; tions from AS	r Wood-Frame 560 plf \times min[785 plf \times min[ps/in /ft /ft /ft ft ft ft^2 lbs 0 L _{f_ch[i]} (lbs) 0; 0;	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0;], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wcht Ch1 -44 Ch2 44 From IBC 2 Load combi	WS Tabl nit shea nit shea nit shea shear wa etails acting or of panel nd load a serviceal ces from (lbs) 18; 18; 2021 cl.1 ination n ination n	ar capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head pility factor shear walls E q_ch[] (lbs) 0; 0; 0; 0; 1605.1 Basic 0.1 0.2	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign v _s = min(5 v _w = min(7 G _a = 16 ki D = 980 lb/ S = 800 lb/ S = 800 lb/ S = 800 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ O; DT_ch[i] (lbs) O; tions from ASC D + 0.6W D + 0.7E	r Wood-Frame 560 plf \times min[785 plf \times min[ps/in /ft /ft /ft ft ft ft^2 lbs 0 L _{f_ch[i]} (lbs) 0; 0;	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtt Ch1 -44 Ch2 442 From IBC 2 Load combi	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 18; 2021 cl.1 ination n ination n	ar capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head pility factor shear walls E q_ch[] (Ibs) 0; 0; I605.1 Basic 0.1 0.2 0.3	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ W = 8200 lb/ $U = 0.75 L_f$	r Wood-Frame 560 plf × min[785 plf × min[785 plf × min[ps/in /ft /ft /ft /ft /ft 2 lbs 0 L _{f_ch[i]} (lbs) 0; 0; 0; CE 7, section	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtti Ch1 -44 Ch2 442 From IBC 2 Load combi Load combi	WS Tabl nit shea nit shea nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 18; 2021 cl.1 ination n ination n ination n	ar capacity fo ar capacity fo all shear stiff top of panel top of panel acting at head pility factor shear walls E q_ch[] (lbs) 0; 0; 0; 0; 1605.1 Basic 0.1 0.2 0.3 0.4	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ W = 8200 lb/ $U = 0.75 L_f$	r Wood-Frame 560 plf × min[785 plf × min[785 plf × min[ps/in /ft /ft /ft /ft 2 lbs 0 Lf_ch[i] (lbs) 0; CE 7, section + 0.45W + 0.7 + 0.525E + 0.7	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtil Ch1 -44 Ch2 44 ² From IBC 2 Load combi Load combi Load combi	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 18; 2021 cl.1 ination n ination n ination n ination n	ar capacity for an capacity for all shear stiff a top of panel acting at head pility factor shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 0; 1605.1 Basic 0.1 0.2 0.3 0.4 0.5	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ $G_{wserv} = 1.0$ $D_{T_cch[i]}$ (lbs) 0; 0; tions from ASC D + 0.6W $D + 0.75L_f$ $D + 0.75L_f$	r Wood-Frame 560 plf × min[785 plf × min[ps/in /ft (ft (ft (ft (ft 2 lbs 0 Lf_ch[i] (lbs) 0; 0; CE 7, section + 0.45W + 0.7 + 0.525E + 0.7 W	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wcht Ch1 -44 Ch2 44 ⁻ From IBC 2 Load combi Load combi Load combi Load combi	WS Tabl nit shea nit shea nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (lbs) 18; 2021 cl.1 ination n ination n ination n ination n ination n	ar capacity for all shear stiff at top of panel top of panel acting at head polity factor shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 0; 0; 1605.1 Basic 0.1 0.2 0.3 0.4 0.5 0.6	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0;	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ $G_{wserv} = 1.0$ $D_{T_ch[1]}(lbs)$ 0; 0; tions from ASC D + 0.6W $D + 0.75L_f$ $D + 0.75L_f$ 0.6D + 0.6	r Wood-Frame 560 plf × min[785 plf × min[ps/in /ft (ft (ft (ft (ft 2 lbs 0 Lf_ch[i] (lbs) 0; 0; CE 7, section + 0.45W + 0.7 + 0.525E + 0.7 W	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force hord Wchtt Ch1 -44 Ch2 442 From IBC 2 Load combi Load combi Load combi Load combi Load combi	WS Tabl nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 18; 2021 cl.1 ination n ination n ination n ination n ination n ination n	ar capacity for all shear stiff at top of panel top of panel acting at head polity factor shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 0; 0; 1605.1 Basic 0.1 0.2 0.3 0.4 0.5 0.6	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0; load combinat	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ W = 8200 lb/ $w_{serv} = 1.0$ $D_{T_ch[1]}(lbs)$ 0; 0; tions from ASC D + 0.6W D + 0.7E $D + 0.75L_f$ 0.6D + 0.6' 0.6D + 0.7'	r Wood-Frame 560 plf × min[785 plf × min[ps/in /ft (ft (ft (ft (ft 2 lbs 0 Lf_ch[i] (lbs) 0; 0; CE 7, section + 0.45W + 0.7 + 0.525E + 0.7 W	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	
From SDPV Nominal ur Nominal ur Apparent s Loading de Dead load a Snow load a Self weight In plane win Wind load s Chord force Mord Wch(1) Ch1 -44 Ch2 44 ² From IBC 2 Load combi Load combi Load combi Load combi Load combi Load combi	WS Tabl nit shea nit shea nit shea shear wa etails acting or acting or of panel nd load a serviceal ces from (Ibs) 18; 2021 cl.1 ination n ination n ination n ination n ination n ination n ination n on factors	ar capacity for all shear stiff a top of panel b top of panel acting at head bility factor shear walls $E_{q_ch[1]}(lbs)$ 0; 0; 0; 0; 1605.1 Basic 0.1 0.2 0.3 0.4 0.5 0.6 s	r seismic desi r wind design ness of panel above Dc_ch[i] (Ibs) 0; 0; Ioad combinat	Capacities for ign $v_s = min(5)$ $v_w = min(7)$ $G_a = 16 ki$ D = 980 lb/ S = 800 lb/ S = 800 lb/ $S_{wt} = 10 lb/$ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ W = 8200 lb/ $G_{wserv} = 1.0$ $D_{T_ch[1]}(lbs)$ 0; 0; tions from ASC D + 0.6W $D + 0.75L_f$ $D + 0.75L_f$ 0.6D + 0.6	r Wood-Frame 560 plf × min[785 plf × min[ps/in /ft (ft (ft (ft (ft 2 lbs 0 Lf_ch[i] (lbs) 0; 0; CE 7, section + 0.45W + 0.7 + 0.525E + 0.7 W	Shear Walls 1 - (0.5 - G), 1 1 - (0.5 - G), 1 1 - (0.5 - G), 1 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2.4], 1740 plf) =], 2435 plf) =], 2635 plf) = , 2435 plf) =	520.8 lb/ft 730.1 lb/ft Rch[i] (lbs) 0;	

Tekla Tedds	Project				Job Ref.	
Anthem Structural Engineers	Section		Sheet no./rev			
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date
Wet service factor for tension – T	able 4A	C _{Mt} = 1.00			EA	ST, LEVEL
Wet service factor for compression						
Wet service factor for modulus of	f elasticity – Ta					
Taura anatura faatan fan tanaian		Сме = 1.00				
Temperature factor for tension – Temperature factor for compress		Ctt = 1.00				
		C _{tc} = 1.00				
Temperature factor for modulus of	of elasticity –					
·	,	C _{tE} = 1.00				
Incising factor – cl.4.3.8		C _i = 1.00				
Buckling stiffness factor - cl.4.4.2	2	C⊤ = 1.00				
Adjusted modulus of elasticity		Emin' = Emin >	$\langle C_{ME} \times C_{tE} \times C_{i} \rangle$	× C _T = 550000) psi	
Critical buckling design value		$F_{cE} = 0.822$	imes E _{min} ' / (h / d) ²	= 904 psi		
Reference compression design v	alue	$F_{c}^{*} = F_{c} \times C$	$C \times C_{Mc} \times C_{tc} \times C_{tc}$	C _{Fc} × C _i = 2376	psi	
For sawn lumber		c = 0.8				
Column stability factor - eqn.3	3.7-1	C _P = (1 + (F _{cE} / F _c *)) / (2 >	≺ c) – √([(1 +	(F _{cE} / F _c *)) / (2	\times c)] ² - (F _{cE} /
		F _c *) / c) = (.34			
Perforated wall length Shear wall aspect ratio Perforated wall length Shear wall aspect ratio		b ₁ = 5.25 ft h / b ₁ = 1.95 b ₂ = 19.75 f h / b ₂ = 0.5 1	t			
Shear capacity adjustment fact			0 T (
Sum of perforated shear wall leng	-	$\Sigma L_i = b_1 + b_2$				
Total length of perforated shear v Total area of openings	vali	$L_{tot} = D_1 + W$ $A_o = W_{o1} \times h$	_{b1} + b ₂ = 27 ft			
Sheathing area ratio (eqn. 4.3-6)			$\Lambda_0 / (h \times \Sigma L_i)) = 0$	962		
Shear capacity adjustment factor		C₀ = 0.967	(11 × 2L)) - U	.502		
Perforated shear wall capacity	(
Maximum shear force under v	ind loading	V = 0	6 × W = 4.92 k	ins		
Shear capacity for wind loadin	Ũ	-	$S_{o} \times \Sigma L_{i} / 2 = 8.$			
Shear capacity for wind loadin	y	$V_{W} - V_{W} \times C$ $V_{w max} / V_{w} =$		023 KIPS		
		-		for wind load	exceeds maxin	num shear foi
Chord capacity for chord 1			······			
Load combination 5						
Shear force for maximum tensior	1	$V = 0.6 \times W$	= 4.92 kips			
Axial force for maximum tensi			-	< b / 2 + 0.6 ×	≪W _{ch1} = 6.117 k	ips
Maximum tensile force in chord			. ,,		← NEGATIVE.	-
Maximum applied tensile stress		ft = T / A _{en} =	-299 lb/in ²		OVERTURN	
			~ ~ ~	V C - 4500 H	/in ²	
Design tensile stress		Ft' = Ft × CD ft / Ft' = -0.1	$\times C_{Mt} \times C_{tt} \times C_{Ft}$	t X Gi – 1500 II.	,,,,,	

Tekla Tedds	Project		Job Ref.					
Anthem Structural Engineers	Section		Sheet no./rev. 4					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date		
Load combination 1					EAS	ST, LEVE		
Shear force for maximum compre	ssion	V = 0.6 × W	= 4.92 kips					
Axial force for maximum comp	ression	P = ((D + S	5wt×h))×s / 2	+ -1 × 0.6 ×	W _{ch1} = 3.372 kip	s		
Maximum compressive force in ch	ord	$C = V \times h / ($	$(C_o \times \Sigma L_i)) + P =$	5.459 kips				
Maximum applied compressive st	ress	$f_c = C / A_e =$						
Design compressive stress		F_{c} ' = $F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P}$ = 818 lb/in ²						
		fc / Fc' = 0.4)4					
	PASS -	Design compres	sive stress ex	ceeds maxim	um applied com	pressive str		
Chord capacity for chord 2 Load combination 5								
Shear force for maximum tension		$V = 0.6 \times W$	= 4.92 kips					
Axial force for maximum tension	on	P = (0.6 ×	(D + S _{wt} × h)) >	× b / 2 + -1 ×	$0.6 \times W_{ch2} = 6.1$	17 kips		
Maximum tensile force in chord		$T = V \times h / ((C_o \times \Sigma L_i)) - P = 4.031 \text{ kips} - \text{NEGATIVE. NO}$						
Maximum applied tensile stress		f _t = T / A _{en} = -299 lb/in ² OVERTURNING						
Design tensile stress		F_t = $F_t \times C_D$	imes C _{Mt} $ imes$ C _{tt} $ imes$ C _F	$t_t imes C_i = 1508$ lk	o/in²			
		ft / Ft' = -0.1 9	98					
		PASS - Des	ign tensile str	ess exceeds l	maximum applie	d tensile str		
Load combination 1								
Shear force for maximum compre		$V = 0.6 \times W$	•					
Axial force for maximum comp			$S_{wt} \times h)) \times s / 2$		= 3.372 kips			
Maximum compressive force in ch			$(C_o \times \Sigma L_i)) + P =$	5.459 kips				
Maximum applied compressive st	ress	$f_c = C / A_e =$						
Design compressive stress			$0 \times C_{Mc} \times C_{tc} \times C_{tc}$	$C_{Fc} \times C_i \times C_P =$	818 lb/in ²			
		f _c / F _c ' = 0.4)4					

Maximum force in collector

 $v_b = v_a \times b / (b_1 + b_2) = 219.8 \text{ plf}$ P_{coll} = **0.322** kips

Tekla Tedds Anthem Structural Engineers	Project		Job Ref.	Job Ref.					
	Section		Sheet no./rev 5	Sheet no./rev. 5					
	Calc. by S	Date 8/1/2022	Chk'd by	Date	App'd by	Date			
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 19 \text{ lb/in}^2$ EAST, LEVEL								
Design tensile stress		$F_{t}' = F_{t} \times C_{D} \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_{i} = 1508 \text{ lb/in}^{2}$							
		f _t / F _t ' = 0.013							
		PASS - Design tensile stress exceeds maximum applied tensile stre							
Maximum applied compressive s	stress	$f_{c} = P_{coll} / (2 \times A_{s}) = 19 \text{ lb/in}^{2}$ $C_{P} = 1.00$							
Column stability factor									
Design compressive stress		$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 2376 \text{ lb/in}^{2}$							
		f _c / F _c ' = 0.008							
	PASS -	Design compres	ssive stress ex	ceeds maxim	um applied con	pressive stre			
Wind load deflection									
Design shear force		$V_{\delta w} = f_{Wserv} \times W = 8.2 \text{ kips}$							
Deflection limit		$\Delta_{w_{allow}} = h / 500 = 0.246$ in							
Induced unit shear		$v_{\delta w_{max}} = V_{\delta w} / (C_o \times \Sigma L_i) = 339.26 \text{ Ib/ft}$							
Anchor tension force		T_{δ} = max(0 kips, v_{\delta w_max} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 + 0.6 \times (D + S_{wt} \times h) \times							
	max(abs(W _{ch1}),abs(W _{ch2}))) = 0.000 kips								
Shear wall deflection - Eqn. 4.3-	-1 $\delta_{sww} = 2 \times v_{\delta w_max} \times h^3 / (3 \times E \times A_e \times \Sigma L_i) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (G_a) + h \times T_\delta / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times H / (K_a \times E_b) + v_{\delta w_max} \times h / (K_a \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_max} \times h / (K_b \times E_b) + v_{\delta w_ma$								
		ΣL _i) = 0.222 in							
		$\delta_{ m sww}$ / $\Delta_{ m w}$ allov	v = 0.903						
		PASS - Shear wall deflection is less than deflection lin							

PASS - Shear wall deflection is less than deflection limit

REFERENCES

HDU/DTT

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

SS For stainless-steel fasteners, see p.21.

SD

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348-352 for more information.

	Model			Di	mensio (in.)	ns			Fasteners (in.)	Minimum Wood	All	Code												
	No.	Ga.	w	H	в	CL	S0	Anchor Bolt Dia. (in.)	It Dia. Eastoners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.										
									(6) #9 x 1 ½" SD		840	840	0.17											
	DTT1Z	14	1½	71⁄8	17/16	3⁄4	3∕16	3⁄8	(6) 0.148 x 1 ½	1½x5½	910	640	0.167											
									(8) 0.148 x 1 ½		910	850	0.167											
SS	DTT2Z		31⁄4	6 ¹⁵ /16			3∕16		(8) ¼ x 1½ SDS	1½x3½	1,825	1,800	0.105											
	DITZZ	14			1%	13/16		3∕16	1/2	(8) ¼ x 1½ SDS	3 x 31⁄2	2,145	1,835	0.128										
SS	DTT2Z-SDS2.5																		(8) ¼ x 2½ SDS	3 x 3½	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	811/16	3¼	15⁄16	1%	5%8	(6) ¼ x 2½ SDS	3 x 31⁄2	3,075	2,215	0.088	IBC,										
	HDU4-SDS2.5	14	3	10 ¹⁵ /16	3¼	1 <i>⁵</i> ⁄i6	1%	5⁄8	(10) ¼ x 2 ½ SDS	3 x 31⁄2	4,565	3,285	0.114	FL, LA										
	HDU5-SDS2.5	14	3	13¾6	3¼	15⁄16	1%	5∕8	(14) ¼ x 2½ SDS	3 x 31⁄2	5,645	4,340	0.115											
										3 x 3½	6,765	5,820	0.11											
	HDU8-SDS2.5 10	10	3	16%	3½	1%	1½	7∕8	(20) ¼ x 2½ SDS	31⁄2 x 31⁄2	6,970	5,995	0.116											
										31⁄2 x 41⁄2	7,870	6,580	0.113											
	HDU11-SDS2.5	10	3	221/4	31/2	13%	1½	1	(20) 16 × 216 CDC	31⁄2 x 51⁄2	9,535	8,030	0.137											
	NUTI-3032.3	10	3	22.74	372	178	1 72	' I	(30) ¼ x 2½ SDS	31⁄2 x 71⁄4	11,175	9,610	0.137											
										3½ x 5½	10,770	9,260	0.122	—										
	HDU14-SDS2.5	7	3	25 ¹ %6	3½	1%6	1%6	1	(36) ¼ x 2½ SDS	3½x7¼	14,390	12,375	0.177	IBC,										
										51⁄2 x 51⁄2	14,445	12,425	0.172	FL, LA										

1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).

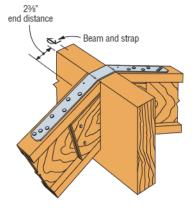
2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.

Fasteners: Nail dimensions are listed diameter by length. SD and SDS screws are Simpson Strong-Tie[®] Strong-Drive SD Connector and SDS Heavy-Duty Connector screws. See pp. 21–22 for fastener information.

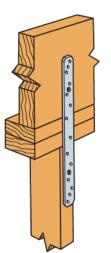
HRS/ST/HTP/LSTA/LSTI/MST/MSTA/MSTC/MSTI

SIMPSON Strong-Tie

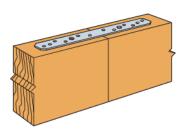
Strap Ties (cont.)


Codes: See p. 11 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 14.

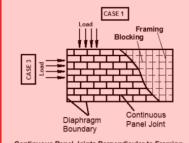

SS For stainless-steel fasteners, see p.21.

Many of these products are approved for installation SD with Strong-Drive[®] SD Connector screws. See pp. 348–352 for more information.


Model No.		Ga.		nsions n.)	Fasteners (Total) (in.)	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)	Code Ref.		
			W	L		(160)	(160)			
ľ	ST2115		3⁄4	16%	(10) 0.162 x 21⁄2	660	660			
	LSTA9		11⁄4	9	(8) 0.148 x 21⁄2	740	635			
	LSTA12	1	11⁄4	12	(10) 0.148 x 21⁄2	925	795			
	LSTA15	20	11⁄4	15	(12) 0.148 x 21⁄2	1,110	955			
	LSTA18	1	11⁄4	18	(14) 0.148 x 21⁄2	1,235	1,115			
[LSTA21		1 1⁄4	21	(16) 0.148 x 21⁄2	1,235	1,235			
[LSTA24		11⁄4	24	(18) 0.148 x 21⁄2	1,235	1,235			
	LSTA30		11⁄4	30	(22) 0.148 x 21⁄2	1,640	1,640			
	LSTA36		11⁄4	36	(24) 0.148 x 21⁄2	1,640	1,640			
	MSTA9		11⁄4	9	(8) 0.148 x 21⁄2	750	650			
3 [MSTA12	18	11⁄4	12	(10) 0.148 x 21⁄2	940	810			
	MSTA15	10	11⁄4	15	(12) 0.148 x 21⁄2	1,130	970			
9 [MSTA18		11⁄4	18	(14) 0.148 x 21⁄2	1,315	1,135			
	MSTA21		11⁄4	21	(16) 0.148 x 21⁄2	1,505	1,295			
3 [MSTA24		11⁄4	24	(18) 0.148 x 21⁄2	1,640	1,460			
	MSTA30		11⁄4	30	(22) 0.148 x 21⁄2	2,050	1,825			
s [MSTA36		11⁄4	36	(26) 0.148 x 21⁄2	2,050	2,050			
[MSTA49		11⁄4	49	(26) 0.148 x 21⁄2	2,020	2,020			
[ST9	16	11⁄4	9	(8) 0.162 x 21⁄2	885	765			
[ST12		11⁄4	11%	(10) 0.162 x 21⁄2	1,105	955			
[ST18		11⁄4	173⁄4	(14) 0.162 x 21⁄2	1,420	1,335	IBC,		
[ST22		11⁄4	21%	(18) 0.162 x 21⁄2	1,420	1,420	FL, LA		
	HRS6		1%	6	(6) 0.148 x 21⁄2	605	530			
	HRS8	12	1%	8	(10) 0.148 x 21⁄2	1,010	880			
	HRS12		1%	12	(14) 0.148 x 21⁄2	1,415	1,230			
[ST292		21/16	95/16	(12) 0.162 x 21⁄2	1,260	1,120			
[ST2122	20	21/16	12 13/16	(16) 0.162 x 21⁄2	1,530	1,510			
	ST2215		21⁄16	16%	(20) 0.162 x 21⁄2	1,875	1,875			
[ST6215	16	21/16	16%	(20) 0.162 x 21⁄2	2,090	1,910			
[ST6224	10	21⁄16	235/16	(28) 0.162 x 21⁄2	2,535	2,535			
[ST6236	14	21⁄16	3313/16	(40) 0.162 x 21⁄2	3,845	3,845			
• [MSTI26		21⁄16	26	(26) 0.148 x 11⁄2	2,745	2,380			
	MSTI36		21⁄16	36	(36) 0.148 x 11⁄2	3,800	3,295			
	MSTI48	12	21⁄16	48	(48) 0.148 x 11⁄2	5,070	4,390			
	MSTI60		21⁄16	60	(60) 0.148 x 11⁄2	5,070	5,070			
	MSTI72		21⁄16	72	(72) 0.148 x 11⁄2	5,070	5,070			
	HTP37Z		3	7	(20) 0.148 x 11⁄2	900	690			
[MSTC28	16	3	281⁄4	(36) 0.148 x 31⁄4	3,460	2,990			
[MSTC40	10	3	401⁄4	(52) 0.148 x 31⁄4	4,735	4,315			
Ì	MSTC52		3	521⁄4	(62) 0.148 x 31⁄4	4,735	4,735			
Ĩ	MSTC66	14	3	65¾	(76) 0.148 x 31⁄4	5,850	5,850			
Ì	MSTC78	14	3	77¾	(76) 0.148 x 31⁄4	5,850	5,850			
	HRS416Z	12	31⁄4	16	(16) 1/4 x 1 1/2 SDS	2,835	2,305			
	LSTI49	40	3¾	49	(32) 0.148 x 11/2	2,970	2,560	IBC,		
Ì	LSTI73	18	3¾	73	(48) 0.148 x 11/2	4,205	3,840	FL, LA		

Typical LSTA Installation (hanger not shown) Bend strap one time only, max. 12/12 joist pitch.

Typical LSTA18 Installation


Typical MSTA15 Installation

1. See pp. 266-267 for Straps and Ties General Notes.

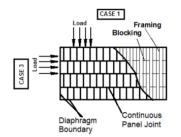
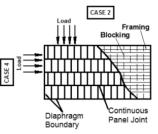
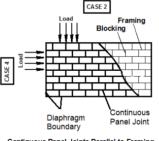
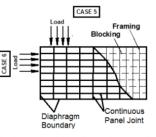

Fasteners: Nail dimensions are listed diameter by length. SDS screws are Simpson Strong-Tie[®] Strong-Drive SDS Heavy-Duty Connector screws. See pp. 21–22 for fastener information.

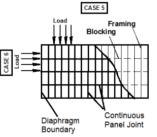
TABLE 6—ALLOWABLE SHEAR FOR WIND OR SEISMIC LOADING FOR WOOD STRUCTURAL PANEL HORIZONTAL DIAPHRAGMS WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE AND RATED SHEATHING (pif)^{12,3,4,5,6,7,8,9}


NOMINAL NAIL			BLOCKED DIAPHRAGMS								UNBLOCKED DIAPHRAGMS					
DIAMETER (inch) or	MINIMUM	MINIMUM WIDTH OF	FASTENER SPACING (inch) AT DIAPHRAGM BOUNDARIES (ALL CASES), AT CONTINUOUS PANEL EDGES PARALLEL TO LOAD (CASES 3, 4), AND AT ALL PANEL EDGES (CASES 5 & 6)									FASTENERS SPACED 6" MAX. AT SUPPORTED EDGES				
STAPLE GAGE	FASTENER	FRAMING		6	4	l I	2	1/2	:	2		1 (No d edges or		other		
Nails must be smooth or deformed and must be carbon	LENGTH	MEMBER		Nail spacing at other panel edge					edges (Cases 1, 2, 3 & 4)				configurations (Cases 2, 3, 4,			
steel (bright or galvanized).	(inches)	(inches)		6	6	5	4		3		continuous joints parallel to load)		5 & 6)			
			Seismic	Wind	Seismic	Wind	Seismic	Wind	Seismic	Wind	Seismic	Wind	Seismic	Wind		
				³ /8-i	inch Nominal	Panel Thick	iness									
0.131	13/4	2 3	240 270	335 375	320 360	445 505	480 540	670 755	545 610	760 855	215 240	300 335	160 180	225 250		
0.120	13/4	2 3	205 230	285 315	270 305	375 425	405 455	565 640	460 515	640 720	180 205	255 285	135 150	190 210		
0.113	1 ³ /4	2 3	180 205	255 285	240 270	335 380	360 405	505 570	410 460	575 645	160 180	225 255	120 135	170 190		
14, 15,16 Gage	1 ¹ / ₂ Leg Length	2 3	160 180	225 250	210 235	295 330	315 355	440 495	360 400	505 560	140 160	195 225	105 120	145 170		
	•			7/16-	inch Nomina	Panel Thic	kness									
0.131	2	23	255 285	360 400	340 380	475 530	505 570	705 800	575 645	805 900	230 255	320 355	170 190	235 265		
0.120	2	23	215 240	305 340	290 325	405 450	430 485	600 680	490 550	685 765	190 215	270 300	145 160	200 225		
0.113	2	2 3	195 215	275 305	260 290	360 405	385 435	540 610	440 490	615 685	175 195	245 270	130 145	180 200		
14, 15, 16 Gage	1 ¹ / ₂ Leg Length	2 3	165 190	230 265	225 250	315 350	335 375	470 525	380 425	530 595	150 165	210 230	110 125	155 175		
				¹⁵ / ₃₂	inch Nomina	I Panel Thic	kness									
0.148	2	2 3	290 325	405 455	385 430	540 605	575 650	805 910	655 735	920 1030	255 290	360 405	190 215	265 300		
0.135	2	2 3	255 285	355 400	340 380	475 530	505 575	710 800	580 650	810 910	225 255	315 355	170 190	235 265		
0.131	2	2 3	270 300	380 420	360 400	505 560	530 600	740 840	600 675	840 945	240 265	335 370	180 200	255 280		
0.120	2	2 3	230 255	325 360	305 340	430 480	450510	630 715	510 575	715 805	205 225	285 315	155 170	220 240		
0.113 8d	2	2 3	205 230	290 320	275 305	385 430	405 460	570 645	460 520	645 725	185 205	255 285	140 155	195 215		
14, 15, 16 Gage	11/2 Leg Length	2 3	160 180	225 250	210 235	295 330	315 355	440 495	360 405	505 565	140 160	195 225	105 120	145 170		
				¹⁹ / ₃₂ -i	inch Nominal	Panel Thick	ness ¹⁰									
0.148	21/4	2	320 360	445 505	425 480	595 675	640 720	895 1010	730 820	1025 1150	285 320	400 445	215 240	300 335		
0.135	21/4	2 3	285 320	395 450	375 425	525 595		STANDARD ALLOWABLE DIAPHRAGM VALUE (84 GUN NAILS) REDUCE BY SPECIFIC GRAVITY FACTOR FOR HEM FIR 395 215						265 295		
0.131	21/4	23	270 305	375 425	360 405	500 565	(PER TA HEM FIF	(PER TABLE 6, FOOTNOTE 4) HEM FIR, G = 0.43 100 255								
0.120	21/4	23	235 260	325 365	310 350	435 490		(1-(0.5-0.43)) = 0.93 255 PLF (0.93) = 237.2 PLF 5 322 175 5 322 175						220 245		
0.113	21/4	23	210 240	295 335	280 315	395 445	42.0	000	400			265 295	140 160	200 220		
14, 15, 16 Gage	1 ¹ / ₂ Leg Length	2	175 200	245 280	235 265	330 370	REDUCE	STANDARD ALLOWABLE DIAPHRAGM VALUE (8d GUN NAILS) 235 100 220 REDUCE BY SPECIFIC GRAVITY FACTOR FOR HEM FIR 5 215 115 160 (PER TABLE 6, FOOTNOTE 4) 5 245 130 180								


Continuous Panel Joints Perpendicular to Framing Long Panel Direction Perpendicular to Support

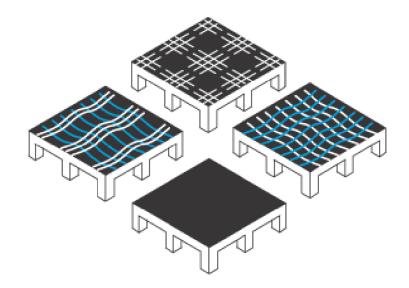

Continuous Panel Joints Perpendicular to Framing Long Panel Direction Parallel to Supports

Continuous Panel Joints Parallel to Framing Long Panel Direction Perpendicular to Supports



Continuous Panel Joints Parallel to Framing Long Panel Direction Parallel to Supports

195 PLF (0.93) = 181.4 PLF


Continuous Panel Joints Perpendicular and Parallel To Framing Long Panel Direction Perpendicular to Supports

Continuous Panel Joints Perpendicular and Parallel To Framing Long Panel Direction Parallel to Supports

FOUNDATION DESIGN

STRUCTURAL SLAB

Basecamp TH1 Slab and Foundation.cpt 9/6/2022

RAM Concept © 2022 Bentley Systems, Inc. RAM Concept[™] is a trademark of Bentley Systems 8.3.1

Table of Contents

Materials	3
Loadings	5
Load Combinations	6
Mesh Input: Standard Plan	12
Element: Standard Plan	13
Element: Slab Summary Plan	14
Other Dead Loading: All Loads Plan	15
Live (Unreducible) Loading: All Loads Plan	16
Snow Loading: All Loads Plan	17
Design Strip: Latitude Design Spans Plan	18
Design Strip: Longitude Design Spans Plan	19
Reinforcement: Bottom Bars Plan	21
Reinforcement: Top Bars Plan	22
Reinforcement: Shear Bars Plan	23
Design Status: Status Plan	24

Materials

Concrete Mix

<i>Mix Name</i>	Density	Density For	f'ci (nci)	f'c (nci)	fcui (nci)	fcu (nci)	Poissons	Thermal Ex Coeff	r	User Eci	User Ec
Name	(pcf)	Loads (pcf)	(psi)	(psi)	(psi)	(psi)	Ratio	COEII	Ec Calc	(psi)	(psi)
3000 psi	150	150	3000	3000	3725	3725	0.2	5.556e-6	Code	2500000	3000000
4000 psi	150	150	3000	4000	3725	4975	0.2	5.556e-6	Code	2500000	3000000
5000 psi	150	150	3000	5000	3725	6399	0.2	5.556e-6	Code	2500000	3000000
6000 psi	150	150	3000	6000	3725	7450	0.2	5.556e-6	Code	2500000	3000000

PT Systems

System Name	Туре	Aps (in²)	Eps (ksi)	fse (ksi)	fpy (ksi)	fpu (ksi)	Duct Width (inches)	Strands Per Duct	Min Radius (feet)
1/2" Unbonded	unbonded	0.153	28000	175	243	270	0.5	1	6
1/2" Bonded	bonded	0.153	28000	160	243	270	3	4	6
0.6" Unbonded	unbonded	0.217	28000	175	243	270	0.6	1	8
0.6" Bonded	bonded	0.217	28000	160	243	270	4	4	8

PT Stressing Parameters

System Name	Jacking Stress (ksi)	Seating Loss (inches)	Anchor Friction	Wobble Friction (1/feet)	Angular Friction (1/radians)	Long-Term Losses (ksi)
1/2" Unbonded	216	0.25	0	0.0014	0.07	22
1/2" Bonded	216	0.25	0.02	0.001	0.2	22
0.6" Unbonded	216	0.25	0	0.0014	0.07	22
0.6" Bonded	216	0.25	0.02	0.001	0.2	22

Materials (2)

Reinforcing Bars

		-	-		<i>c</i>	0011	100 11 1
<i>Bar Name</i>	As (in²)	Es (ksi)	Fy (ksi)	Coating	<i>Straight Ld/Db</i>	90 Hook Ld/Db	180 Hook Ld/Db
#3	0.11	29000	60	None	Code	Code	Code
#4	0.2	29000	60	None	Code	Code	Code
#5	0.31	29000	60	None	Code	Code	Code
#6	0.44	29000	60	None	Code	Code	Code
#7	0.6	29000	60	None	Code	Code	Code
#8	0.79	29000	60	None	Code	Code	Code
#9	1	29000	60	None	Code	Code	Code
#10	1.27	29000	60	None	Code	Code	Code
#11	1.56	29000	60	None	Code	Code	Code

SSR Systems

SSR System Name	Stud Area (in²)	Head Area (in²)	Min Clear Head Spacing (inches)	Specified Stud Spacing (inches)	Fy (ksi)	Stud Spacing Rounding Increment (inches)	Min Studs Per Rail	System Type
3/8" SSR	0.11	1.11	0.5	None	50	0.25	2	Rail
1/2" SSR	0.196	1.96	0.5	None	50	0.25	2	Rail
5/8" SSR	0.307	3.07	0.5	None	50	0.25	2	Rail
3/4" SSR	0.442	4.42	0.5	None	50	0.25	2	Rail
Ancon Shearfix Auto	o-S0ze217	1.096	0.5906	None	72.52	0.03937	2	Rail
Ancon Shearfix 10 r	nn0.1217	1.096	0.5906	None	72.52	0.03937	2	Rail
Ancon Shearfix 12 r	mm0.1753	1.578	0.5906	None	72.52	0.03937	2	Rail
Ancon Shearfix 14 r	nn0.2386	2.147	0.5906	None	72.52	0.03937	2	Rail
Ancon Shearfix 16 r	nn0.3116	2.805	0.5906	None	72.52	0.03937	2	Rail
Ancon Shearfix 20 r	nn 0. 4869	4.383	0.5906	None	72.52	0.03937	2	Rail
Ancon Shearfix 24 r	mm0.7012	6.311	0.5906	None	72.52	0.03937	2	Rail

Basecamp TH1 Slab and Foundation.cpt - 9/6/2022

Loadings

Loading Name	Туре	Analysis	On-Pattern Factor	Off-Pattern Factor
Self-Dead Loading	Self-Weight	Normal	1	1
Balance Loading	Balance	Normal	1	1
Hyperstatic Loading	Hyperstatic	Hyperstatic	1	1
Temporary Construction (At Stressing) Loading	Stressing Dead	Normal	1	1
Other Dead Loading	Dead	Normal	1	1
Live (Reducible) Loading	Live (Reducible)	Normal	1	0
Live (Unreducible) Loading	Live (Unreducible)	Normal	1	0
Live (Storage) Loading	Live (Storage)	Normal	1	0
Live (Parking) Loading	Live (Parking)	Normal	1	0
Live (Roof) Loading	Live (Roof)	Normal	1	0
Snow Loading	Snow	Normal	1	1

Load Combinations

All Dead LC

Active Design Criteria: <none>

Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Other Dead Loading	1	1

Dead + Balance LC

Active Design Criteria: <none> Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1

Initial Service LC

Active Design Criteria: Initial Service Desig Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1.13	1.13
Temporary Construction (At Stressing) Loading	1	1

Load Combinations (2)

Service LC: D + L

Active Design Criteria: User Minimum Design, Code Minimum Design, Service Designal Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1
Live (Reducible) Loading	1	0
Live (Unreducible) Loading	1	0
Live (Storage) Loading	1	0
Live (Parking) Loading	1	0

Service LC: D + Lr

Active Design Criteria: User Minimum Design, Code Minimum Design, Service Designation Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1
Live (Roof) Loading	1	0

Service LC: D + S

Active Design Criteria: User Minimum Design, Code Minimum Design, Service Design Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1
Snow Loading	1	0

Load Combinations (3)

Service LC: D + 0.75L + 0.75Lr

Active Design Criteria: User Minimum Design, Code Minimum Design, Service Designal Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1
Live (Reducible) Loading	0.75	0
Live (Unreducible) Loading	0.75	0
Live (Storage) Loading	0.75	0
Live (Parking) Loading	0.75	0
Live (Roof) Loading	0.75	0

Service LC: D + 0.75L + 0.75S

Active Design Criteria: User Minimum Design, Code Minimum Design, Service Desig Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1
Live (Reducible) Loading	0.75	0
Live (Unreducible) Loading	0.75	0
Live (Storage) Loading	0.75	0
Live (Parking) Loading	0.75	0
Snow Loading	0.75	0

Load Combinations (4)

Sustained Service LC

Active Design Criteria: Sustained Service Design

Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1	1
Balance Loading	1	1
Other Dead Loading	1	1
Live (Reducible) Loading	0.5	0.5
Live (Unreducible) Loading	0.5	0.5
Live (Storage) Loading	1	1
Live (Parking) Loading	0.5	0.5
Live (Roof) Loading	0.5	0.5

Factored LC: 1.4D

Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Des Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1.4	0.9
Hyperstatic Loading	1	1
Other Dead Loading	1.4	0.9

Factored LC: 1.2D + 1.6L + 0.5Lr

Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Des Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1.2	0.9
Hyperstatic Loading	1	1
Other Dead Loading	1.2	0.9
Live (Reducible) Loading	1.6	0
Live (Unreducible) Loading	1.6	0
Live (Storage) Loading	1.6	0
Live (Parking) Loading	1.6	0
Live (Roof) Loading	0.5	0

Load Combinations (5)

Factored LC: 1.2D + f1L + 1.6Lr

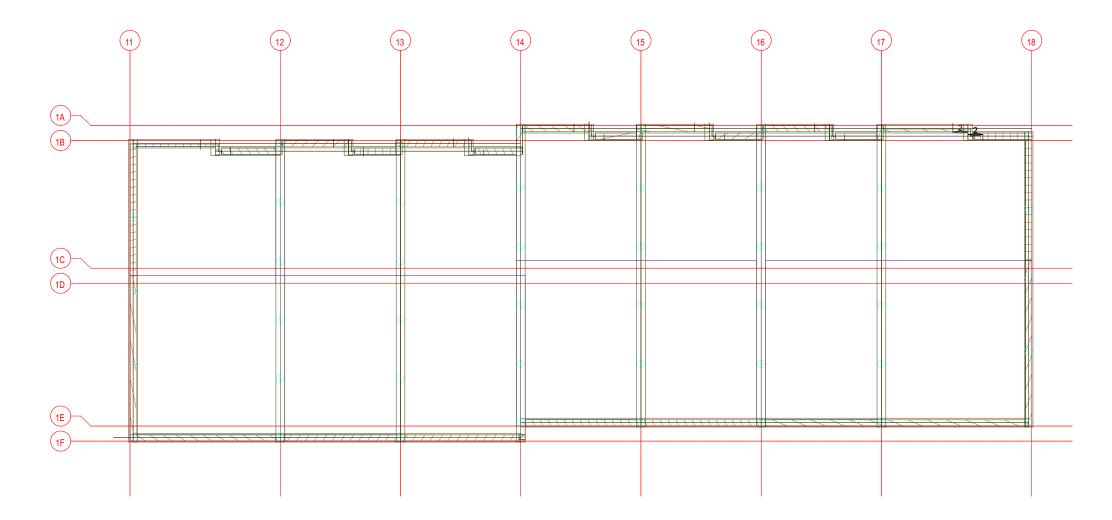
Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Des Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1.2	0.9
Hyperstatic Loading	1	1
Other Dead Loading	1.2	0.9
Live (Reducible) Loading	0.5	0
Live (Unreducible) Loading	1	0
Live (Storage) Loading	1	0
Live (Parking) Loading	1	0
Live (Roof) Loading	1.6	0

Factored LC: 1.2D + 1.6L + 0.5S

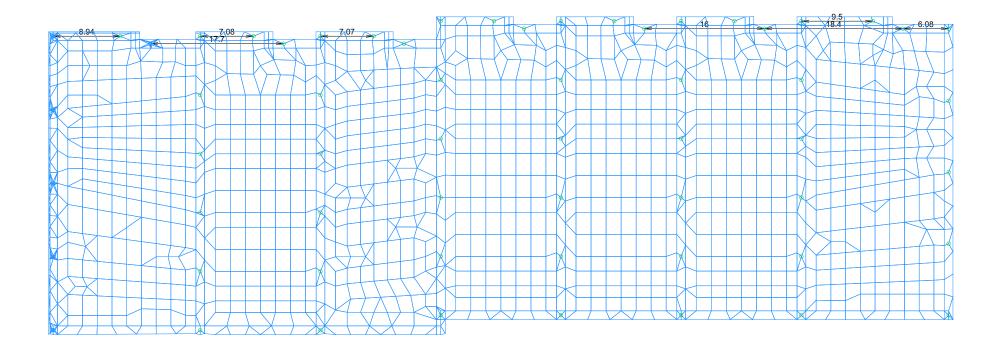
Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Des Analysis: Linear

Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1.2	0.9
Hyperstatic Loading	1	1
Other Dead Loading	1.2	0.9
Live (Reducible) Loading	1.6	0
Live (Unreducible) Loading	1.6	0
Live (Storage) Loading	1.6	0
Live (Parking) Loading	1.6	0
Snow Loading	0.5	0

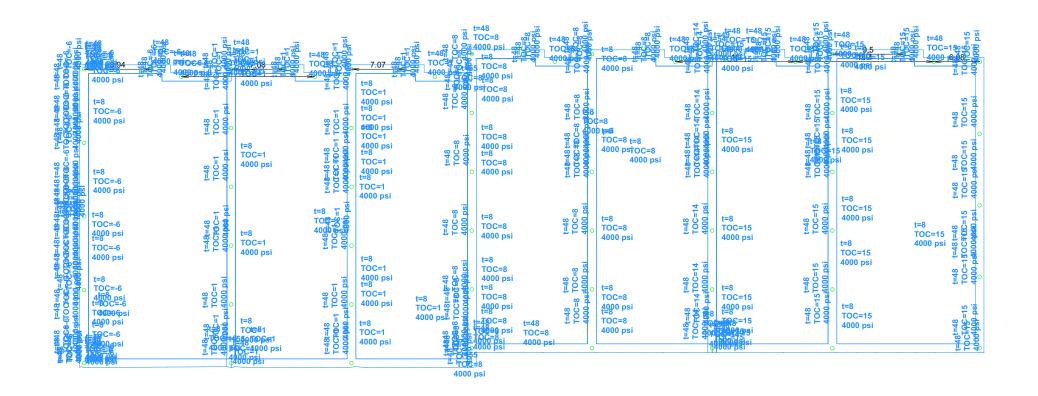

Load Combinations (6)

Factored LC: 1.2D + f1L + 1.6S

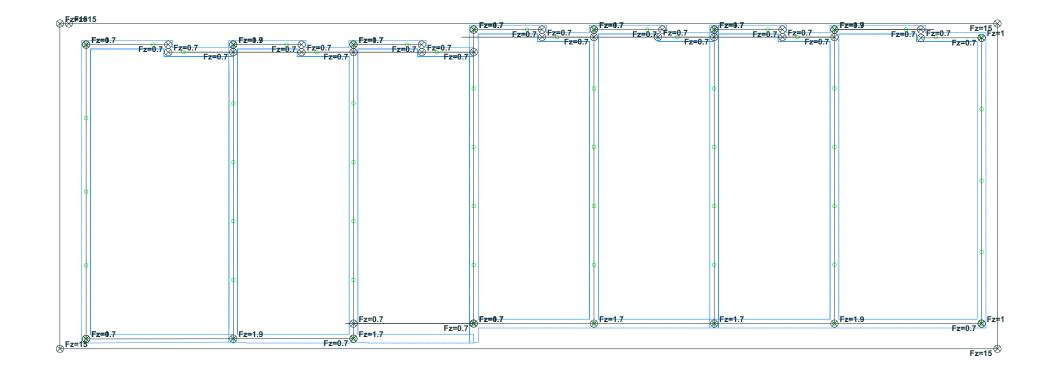
Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Des Analysis: Linear


Loading	Standard Factor	Alt. Envelope Factor
Self-Dead Loading	1.2	0.9
Hyperstatic Loading	1	1
Other Dead Loading	1.2	0.9
Live (Reducible) Loading	0.5	0
Live (Unreducible) Loading	1	0
Live (Storage) Loading	1	0
Live (Parking) Loading	1	0
Snow Loading	1.6	0

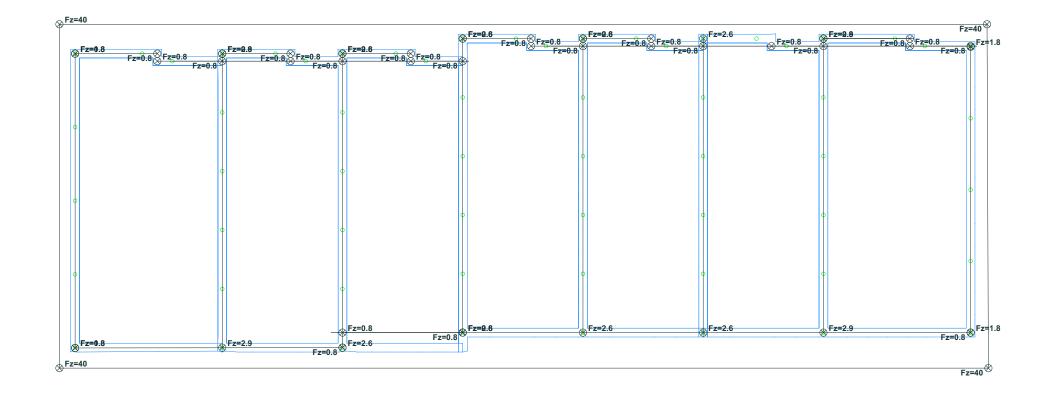
Mesh Input: Standard Plan Mesh Input: Beams; Slab Area Hatching; Walls Below; User Lines; User Dimensions; Drawing Import: A-DETL; A-FLOR; A-ANNO-NOTE; S-FNDN; S-GRID-IDEN; S-GRID; Scale = 1:153


Element: Standard Plan

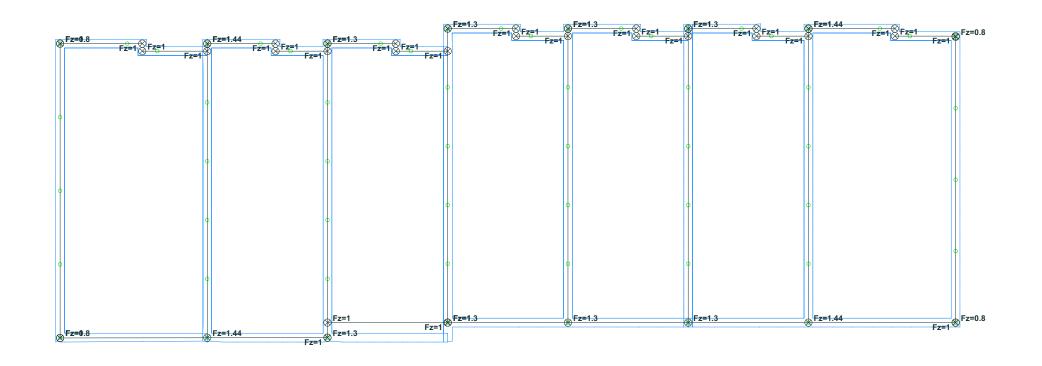
Element: User Lines; User Notes; User Dimensions; Wall Elements Below; Wall Elements Above; Wall Element Groups Above; Wall Element Group Axes; Column Elements Below; Column Elements Above; Slab Elements; Point Springs; Point Spring Icons; Line Spring Icons; Area Spring Scale = 1:153


Element: Slab Summary Plan

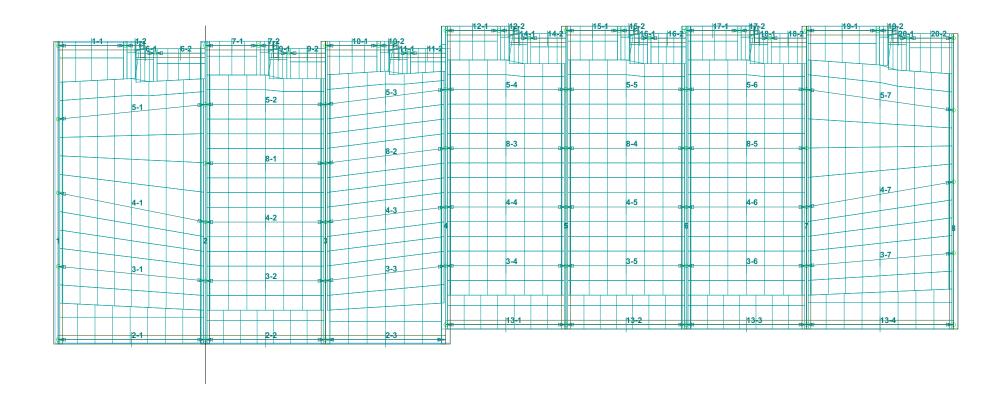
Element: User Lines; User Notes; User Dimensions; Wall Elements Below; Wall Elements Above; Column Elements Above; Point Springs; Point Springs; Line Springs; Line Springs; Slab Elements; Slab Element Outline Only; Slab Element Thicknesses; Slab Element Elevations; Slab Element Constructions; Slab Elements; Slab Element State Element State Element Elevations; Slab Element State Elements; Slab Elements; Slab Element State Element State Element Elevations; Slab Element State Elements; Slab Element State Elements; Slab Element State Element Stat


Other Dead Loading: All Loads Plan

Other Dead Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Values; Line Load Icons; Line Load Icons; Line Load Values; Area Load Icons; Area Load Icons; Area Load Values; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Element; Slab Element Outline Only; Scale = 1:153

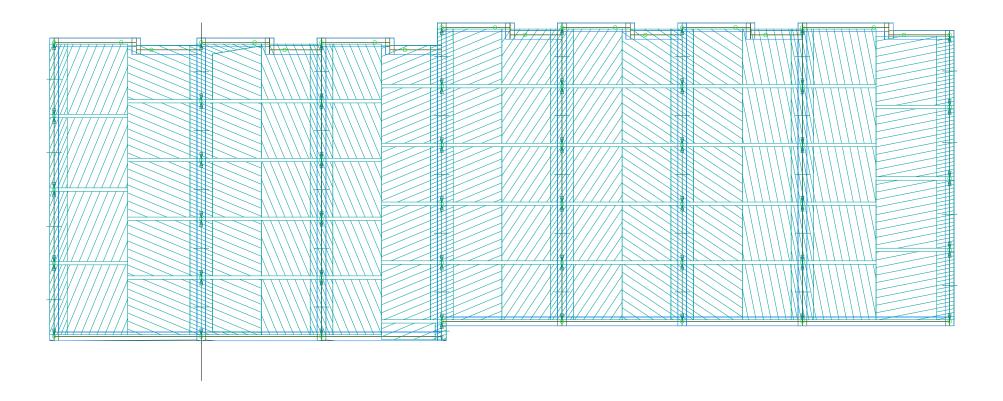

Live (Unreducible) Loading: All Loads Plan

Live (Unreducible) Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Values; Line Load S; Line Load Icons; Line Load Values; Area Load S; Area Load Icons; Area Load Icons; Area Load Values; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:153

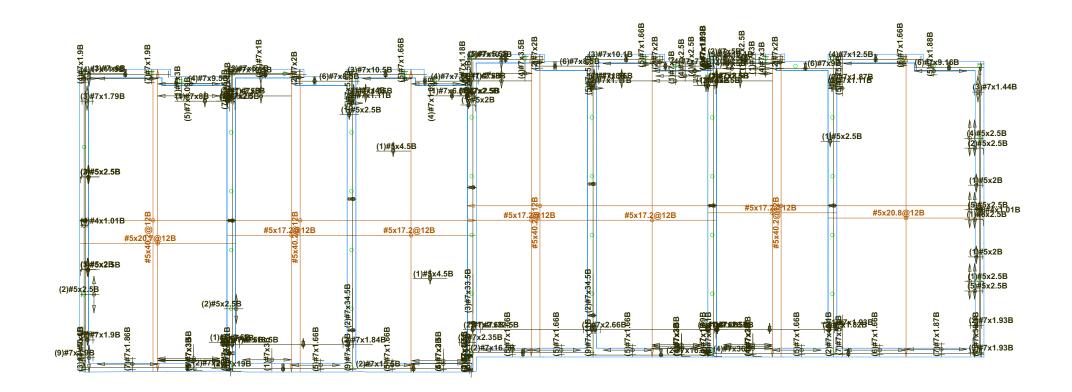


Snow Loading: All Loads Plan

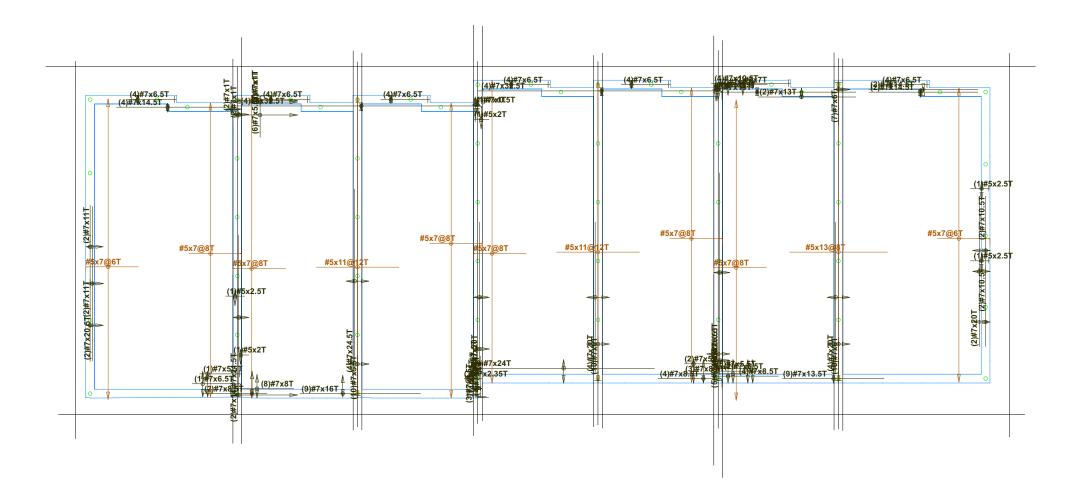
Snow Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Values; Line Loads; Line Load Icons; Line Load Values; Area Loads; Area Load Icons; Area Load Icons; Area Load Values; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:153



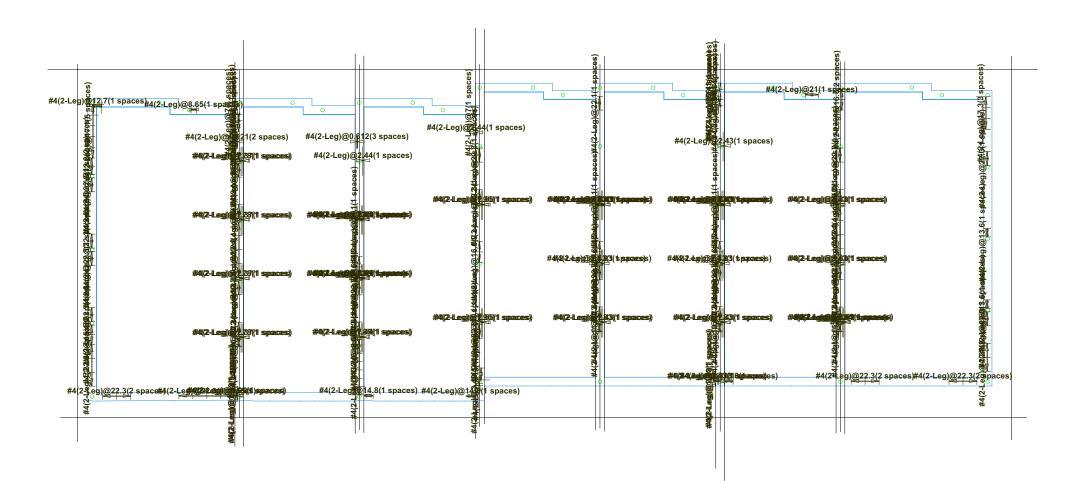
Design Strip: Latitude Span Boundaries; Latitude SSS; SS Numbers; Latitude DSS; DS Numbers; Latitude Strip Boundaries; Latitude SSSS; SSS Internal Sections; User Notes; User Lines; User Dimensions; Mesh Input: Beams; Slab Areas; Columns Below; Scale = 1:153


Design Strip: Longitude Design Spans Plan Design Strip: Longitude Span Boundaries; Longitude SS; Longitude DS; Longitude Strip Boundaries; Longitude SSS; SSS Hatching; User Notes; User Lines; User Dimensions;

Mesh Input: Beams; Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Reinforcement: Longitude User Concentrated Reinf.; Longitude User Distributed Reinf.; Longitude User Individual Bars; Longitude User Transverse Reinf.; Longitude User Individual Transverse Bars; Scale = 1:153


Reinforcement: Bottom Bars Plan

Reinforcement: Latitude User Concentrated Reinf.; Longitude User Concentrated Reinf.; Latitude Program Concentrated Reinf.; Bottom Face Concentrated Reinf.; Latitude User Distributed Reinf.; Longitude User Distributed Reinf.; Concentrated R


Reinforcement: Top Bars Plan

Reinforcement: Latitude User Concentrated Reinf.; Longitude User Concentrated Reinf.; Latitude Program Concentrated Reinf.; Top Face Concentrated Reinf.; Concentrated Reinf.; Longitude User Distributed Reinf.; Longitude User Distributed Reinf.; Longitude User Distributed Reinf.; Concentrated Reinf.; Concentrated Reinf.; Concentrated Reinf.; Concentrated Reinf. Descriptions; Concentrated Reinf. Extent; Latitude User Distributed Reinf.; Longitude User Distributed Reinf.; Longitude User Distributed Reinf.; Concentrated Reinf.; Longitude User Distributed Reinf.; Concentrated Reinf.; Concentrate

Reinforcement: Shear Bars Plan

Reinforcement: User Lines; User Notes; User Dimensions; Latitude User Transverse Reinf.; Latitude Program Transverse Reinf.; Latitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Longitude User Transverse Reinf.; Longitude Program Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Longitude User Transverse Reinf.; Longitude Program Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Longitude User Transverse Reinf.; Longitude Program Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Longitude User Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Latitude Program Individual Transverse Bars; Longitude User Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Latitude Program Individual Transverse Bars; Latitude Program Individual Transverse Bars; Latitude User Transverse Reinf.; Longitude User Individual Transverse Bars; Latitude Program Individual Transverse Bars; Latitude Prog

Design Status: Status Plan

Design Status: Latitude Span Designs; Longitude Span Design Numbers; Span Design Numbers; Span Design Status; Latitude DS Designs; Longitude DS Designs; DS Design Numbers; DS Design Status; PC Design Numbers; PC Design Status; User Notes; User Lines; User Dimensions; Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Design Strip: Latitude SSS; SSS Internal Sections;

Scale = 1:153

21C-4 0K	1C-1 0K 1R-1 0K 7 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1		6C-2 OK SK -2 SK -2 S	7C-1 OK 7R-1 0K % V 0 N	0K 50-2	9C-2 OK 0R-2 OK US 0K S 0K S 0K S 0K S 0 S 0 S 0 S 0 S 0		10C-2 OK-1 105/47 5L-357 OR 5C-3 OK	11L-2 OK 11C-2 11 0 2 0 2	12C-1 OK 12R-1 OK		14C-2 OK 14R-2 OK 20 X 20 X	15C-1 OK 15R-1 OK 22 × 25 O 21	15C-2 016C-1 15D 0K 5L 51 K 0K 5G-5 0K	16L-2 16X52 0K 16R-2 0K 22 0K 23 0K 23 0K 23 0K 24 0K 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17C-1 0K 17R-1 0K 200 0 0	5C-6 OK	18C-2 OK-2 18R-2 OK9 20 7	19C-1 OK 19R-1 40K 70K	19C-2 044C-1 946 94 044 51-7 04 52-7 04 55 55 57 04 55 55 75 75 75 75 75 75 75 75	20C-2 OK 20R-2 OK 4 X 8 0
21C-3 OK 0	21R.3 0K	5E-1 5E-1 0K 5E-1 0K 0K 0K 1 -1	22C-4 OK	22 <u>8 4</u> 0K	OK 5R-2 8L-1 1 OK 8 8C-1 OK	23C-4	238 4 OK	5R-3 8L-2-1-20 OK 8C-2 OK 8R-2 0K 8R-2	24C-5	248-5 0K-5	5R-4 8L-37 OK 50 8C-3 OK 8R-3	25C-4 0K	25R4 0K	5R-5 0K-4 8L-4-1 7 0 80-4 0 0 K 8R-4 8R-4	26C-4	26R 4 0K	5R-6 0K 8L-57 0K K 0K 0K 8R-5	27C-4	27R-4	-5 R-7 OK 41 <u>-7 ° ×</u> OK [®] 0 OK [®] 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21C-2 2	0K-2	OK 4C-1 127 OK 4R-1 OK	22 6 -3 0K	22 8-3 0K	8R-1 0K 4L-27 0K 7 0K 0K 4C-2 0K 4R-2	• • •	238-3 OK	4L-3 0K 4R-3	3 24C-4		OK 47 OK 57 OK 57 OK 4C-4 OK 4R-4 OK 4R-4	25C-3	258.3 0K	QLK357 0K37 4C-5 0K 4R-5 3L-57	26C-3	26R-3 0K		2 27C-3	2 27R-3	4C-7 OK 4R-7 OK 7 × 3L-7 80 OK	28C-2
ok c	N	3L-1 OK 4 2 3C-1 OK 3R-1	22G-2	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4R-2 OK 3L-2N X OK 0K 0K 3C-2 OK 3R-2	23C-2	238-2 OK	36-3 OK 3R-3 N	-2 24C-3	4 4 5	OK ⊡ O 3C-4 OK 3R-4 19K-1		258 0K	OK 🤯 Ö 36-5 OK 3R-5 19K2		260 0 0 0 0 0 0 0 0 0 0	3C-6 OK 3R-6 19 ^K 3-	1	278	0K 3C-7 0K 3R-7 13K4 + 13K4 + 2K = 0 0K = 0	<u>.</u>
21C-1	21R-1	£ <u>K</u> → K 2¢-1 → K	22¢-1	0 X 1 7 7 7 7 7	22 ¹⁶ 2	530 0 0 0 0 0	238-1 OK	OK-140 2L-370 OK 2C-31- OK 470 OK 470	24C-1 24C-: OK OK		ок , 5 13С-1 ОК	25C-1		ок 13С-2 ОК			ОК 5 13С-3 ОК		27R	13C-4	0 3