

Steamboat Basecamp Phase I 1901 Curve Plaza Steamboat Springs, CO 80487

Structural Calculations

Prepared by: Sina Erturk, PE Date: 11/15/2021

TABLE OF CONTENTS

- 100. BASIS OF DESIGN
- 200. INFILL ADDITION
- 300. EXISTING WOOD SHEAR/BEARING WALL REMOVAL
- 400. FOLDING DOOR ROUGH OPENING SUPPORT
- A-100. GEOTECHNICAL REPORT (FOR REFERENCE ONLY)

100. BASIS OF DESIGN

100 Basis of Design Calculation Index:

Narrative	100
Dead and Live Loads	101
Snow Loads	102
Wind Loads	103
Seismic Loads	104

100. NARRATIVE

The following sections provide detailed calculations and descriptions of the structural systems for this project.

This project was designed in accordance with the 2018 International Building Code and Routt County 2018 ICC Building Code Adoption and Policies. The following is an overview of the loading used in the design of the structure and the key parameters used to derive the loads.

A. Dead Loads

Detailed information regarding self-weight and superimposed dead load (e.g. MEP, Finishes, insulation, etc.) for each loading case can be found in Section 101. A graphical summary of the extents of applied dead loads can be found in the load keys in the drawing documents.

B. Live Loads

Detailed information regarding live loads for each loading case can be found in Section 101. A graphical summary of the extents of applied live loads can be found in the load keys in the drawing documents. The following typical live loads were used in the design of the structure.

Gymnasiums 100 psf Roof 20 psf

C. Snow Loads

Detailed information regarding snow loading, including flat roof snow loading, drifting, and sliding can be found in Section 102. All snow loads on the structure have been calculated in accordance with the 2018 International Building Code and ASCE7-16. The ground snow load value of 105psf used for design is in accordance with the Routt County Regional Building Department 2018 IBC Code Amendments. The loads keys in the drawing documents show a graphical summary of the design snow loading used for the project.

D. Wind Loads:

Detailed information regarding wind loading, including MWFRS loads as well as
Components and Cladding pressures can be found in Section 103. Ultimate level wind
speed for design is in accordance with the Routt County Regional Building Department
2018 IRC Code Adoption. Wind loads on the structure have been calculated in accordance
with the 2018 International Building Code and ASCE 7-16 based on the following criteria:

Enclosure classification

Enclosed Building

100-3

Risk category Ш Wind speed 115 mph Wind directionality factor, Kd 1.0 **Exposure category** C Topographic factor, Kzt 1 **Building flexibility** Flexible Gust effect factor, G 0.85 Internal pressure coefficient 0.18

Resulting wind loads:

Wind base shear for Infill:

East/West 14.7 kips
North/South 0 kips

- E. Seismic Loads:
- F. Detailed information regarding seismic loads can be found in Section 104. Seismic loads on the structure have been calculated based on the Routt County Building Department 2018 IBC Code Amendments. The Routt County Building Department has specified design parameters, Sds = 0.333 and Sd1 = 0.133, designating all of Routt County as Seismic Design Category C. The seismic loads have been determined based on following criteria:

S_S	0.333
S ₁	0.133
Site class	D

Period 0.274 seconds
Period determination Approx per ASCE 7

Long period, T_L 4 seconds

Seismic force resisting system

Light frame wood walls with

structural wood shear panels

 $\begin{array}{ll} \text{Response modification factor, R} & 6.5 \\ \text{Overstrength factor, } \Omega_o & 2.5 \\ \text{Deflection amplification factor} & 4 \\ \text{Importance factor, I}_e & 1.0 \\ \end{array}$

Resulting Seismic Base Shear:

East/West 7.8 kips North/South 7.8 kips

G. Soil Loads and Capacities

Geotechnical criteria for design is based on the report provided by Brian D. Len, PE (PE#25750) of NWCC, Inc, dated 03/15/2021. A complete copy of the geotechnical report can be found in appendix A-100 of this calculation package. Minimum frost depth per the

Routt County Building Department 2018 IBC Code Amendments is 48 inches. The following is a summary of the geotechnical design parameters:

Spread Footings:

Allowable bearing pressure

3 ksf

101. DEAD AND LIVE LOADS

Title	Basecamp Phase 1	Date	11/11/21	Job no.	21304
		•		•	
Subject	Load Keys	Ву	SYE	Sheet	of

Load Key

			Superimposed Loads				
						Live Load	
Load #	Description of Load	Self Weight	Dead Load	Live Load	Snow Load	Reduction?	Notes
1	Roof	10	15	20	75	No	
2	Mezzanine	11	30	100	0	No	
3	Roof w/RTU	10	55	20	75	No	

Title Basecamp Phase 1 Date 11/11/21 Job no. 21304 **Load Keys** SYE Subject Ву Sheet of

Roof

Total Superimposed Dead Load: 15 **Total Self Weight Dead Load:** 20 PSF Balanced Snow Load or Roof Live Load Do you want to use the snow load to calculate the seismic story weight? yes

Special Load:

Live Load:

Snow Load:

Note - this does not appear on the Load Key Summary

Superimposed Dead Load:

Roof

Seismic Snow

Categor	у	Material	Thickness (in)	PSF
Ceiling Fini	shes	Typical Mechanical Duct Allowance		4.0
				0.0
				0.0
				0.0
				0.0
Misc				11.0

Deck/Slab Self Weight:

User Input Load User Input Load

Category	Туре	Thickness (in)	PSF
Wood	Plywood Floor Sheathing	0.625	1.9
			0.0

Framing Self Weight:

User Input Load

Category	Member	Spacing (in)	PSF
Open Web Truss	TJM Open Web Truss	12	8.5
			0.0

User Input Load **Custom Self Weight:**

Description

TitleBasecamp Phase 1Date11/11/21 Job no.21304SubjectLoad KeysBySYESheet of

Mezzanine

	The state of the s	PSF PSF
Live Load:	Gymnazium = 100	PSF
Snow Load:	Balanced Snow Load or Roof Live Load Do you want to use the snow load to calculate the seismic story weight? Seismic Snow 0	PSF
Special Load:	Note - this does not appear on the Load Key Summary	PSF

Superimposed Dead Load:

••			
Category	Material	Thickness (in)	PSF
Floor Finishes	Typical Mechanical Duct Allowance		4.0
Topping Slabs	rete (was 104 pcf-> 120 pcf in recent submit	1.5	15.0
			0.0
			0.0
			0.0
Misc			11.0

Deck/Slab Self Weight:

User Input Load User Input Load

User Input Load

Category	Туре	Thickness (in)	PSF
Wood	Plywood Floor Sheathing	0.75	2.3
			0.0

Framing Self Weight:

Category	Member	Spacing (in)	PSF
Open Web Truss	TJM Open Web Truss	12	8.5
			0.0

User Input Load

Custom Self Weight:		
	Description	PSF

Title Basecamp Phase 1 Date 11/11/21 Job no. 21304

Subject Load Keys By SYE Sheet of

Roof w/RTU

Total Superimposed Dead Load: 55 PSF Total Self Weight Dead Load: 10 PSF Live Load: Roof = 20 PSF Snow Load: Balanced Snow Load or Roof Live Load Do you want to use the snow load to calculate the seismic story weight? Yes Seismic Snow 15

Special Load: Note - this does not appear on the Load Key Summary

Superimposed Dead Load:

••				
	Category	Material	Thickness (in)	PSF
	Ceiling Finishes	Typical Mechanical Duct Allowance		4.0
				0.0
				0.0
				0.0
				0.0
	Misc			11.0
	RTU			40.0

Deck/Slab Self Weight:

User Input Load User Input Load

Category	Туре	Thickness (in)	PSF
Wood	Plywood Floor Sheathing	0.625	1.9
			0.0

Framing Self Weight:

User Input Load

JM Open Web Truss	12	8.5
		0.0
	Jivi Open Web 11 ass	JVI Open web ITuss 12

User Input Load

Custom Self Weight:

Description	PSF

	Title	Basecamp Phase 1	Date	11/11/2	1 Job no.		21304
•	Subject	Load Keys	Ву	SYE	Sheet	of	

Wall Summary

			Superimposed Dead Load	
Load #	Description of Load	Self Weight (psf)	(psf)	Notes
1	2x6 Wall	3	8	

Title	Basecamp Phase 1	Date	11/11/21	Job no.	21304
Subject	Load Keys	Ву	SYE	Sheet	of

2x6 Wall

Total Superimposed Dead Load: 8
Total Self Weight Dead Load: 3

Superimposed Dead Load:

Category	Material	Thickness (in)	PSF
Covered Finishes	Rigid Insulation	2	3.0
Covered Finishes	Gypsum Board	0.625	2.8
			0.0
			0.0
			0.0
Misc			2.2

User Input Load
Framing Self Weight:

User Input Load

User Input Loads

Category	Member	Spacing (in)	PSF
DFL	2x6	16	1.7
			0.0

Solid Wall/Sheathing Self Weight:

Category		Туре	Thickness (in)	PSF	
Wood Sheathing	Wood Sheathing		0.5	1.5	
CMII	Туре	Grout Spacing	Block Size	PSF	
CMU			0.0		
	_				
Category		Туре	Thickness (in)	PSF	
	Category Wood Sheathing CMU	Category Wood Sheathing CMU Type	Category Type Wood Sheathing Wood Sheathing CMU Type Grout Spacing	Category Type Thickness (in) Wood Sheathing Wood Sheathing 0.5 CMU Type Grout Spacing Block Size	

Custom Self Weight:

User Input Loads

Description	PSF

102. SNOW LOADS

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910

JOB TITLE Basecamp Phase 1

ЈОВ NO . 21304	SHEET NO.	
CALCULATED BY Sina Erturk	DATE	6/18/21
снескев ву Jake Sujansky	DATE	

Snow Loads: ASCE 7-16

Roof slope 14.0 deg 136.0 ft Horiz. eave to ridge dist (W) = Roof length parallel to ridge (L) = 96.0 ft

no

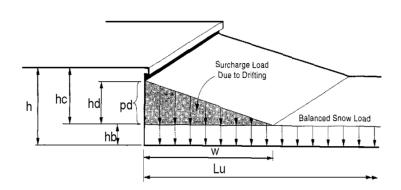
Type of Roof Monoslope **Ground Snow Load** Pg =105.0 psf Risk Category Ш Importance Factor | = 1.0 Thermal Factor Ct = 1.00 **Exposure Factor** Ce = 1.0 Pf = 0.7*Ce*Ct*I*Pq73.5 psf Unobstructed Slippery Surface

Sloped-roof Factor Cs = 1.00 Balanced Snow Load 73.5 psf

Rain on Snow Surcharge Angle 2.72 dea Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge 0.0 psf Ps plus rain surcharge 73.5 psf = Minimum Snow Load Pm = 20.0 psf

Uniform Roof Design Snow Load = 73.5 psf use 75.0 Nominal Snow Forces

Near ground level surface balanced snow load = 105.0 psf


NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

Windward Snow Drifts 1 - Against walls, parapets, etc

Upwind fetch lu = 29.3 ft Projection height h = 4.0 ft 27.7 pcf Snow density g = hb = Balanced snow height 2.66 ft hd = 2.13 ft hc = 1.34 ft hc/hb > 0.2 = 0.5Therefore, design for drift Drift height (hc) 1.34 ft Drift width w = 10.73 ft Surcharge load: $pd = \gamma^*hd =$ 37.1 psf Balanced Snow load: 73.5 psf 110.6 psf

Windward Snow Drifts 2 - Against walls, parapets, etc

Upwind fetch lu = 52.0 ft Projection height h = 10.0 ft Snow density g = 27.7 pcf hb = Balanced snow height 2.66 ft hd = 2.82 ft hc = 7.34 ft hc/hb > 0.2 = 2.8Therefore, design for drift Drift height (hd) 2.82 ft Drift width w = 11 27 ft Surcharge load: pd = y*hd =77.9 psf Balanced Snow load: 73.5 psf 151.4 psf

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

103. WIND LOADS

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910

JOB TITLE Basecamp Phase 1

JOB NO.	21304	SHEET NO.	
CALCULATED BY	Sina Erturk	DATE	6/18/21
CHECKED BY	Jake Sujansky	DATE	

Wind Loads: ASCE 7- 16

Ultimate Wind Speed	115 mph			
Nominal Wind Speed	89.1 mph			
Risk Category	I			
Exposure Category	С			
Enclosure Classif.	Enclosed Building			
Internal pressure	+/-0.18			
Directionality (Kd)	0.85			
Kh case 1	0.939			
Kh case 2	0.939			
Type of roof	Gable			

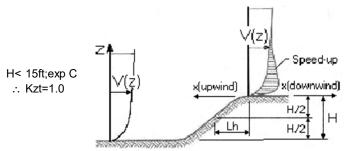
Topographic Factor (Kzt)						
Topography		Flat				
Hill Height	(H)	10.0 ft				
Half Hill Length	ո (Lh)	10.0 ft				
Actual H/Lh	=	0.00				
Use H/Lh	=	0.00				
Modified Lh	=	10.0 ft				
From top of cr	est: x =	10.0 ft				
Bldg up/down	downwind					

H/Lh= 0.00 $K_1 = 0.000$ x/Lh = 1.00 $K_2 = 0.333$ z/Lh = 2.43 $K_3 = 1.000$

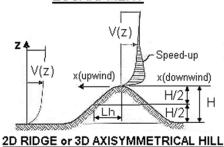
24.3 ft

136.0 ft

15.0 ft


At Mean Roof Ht:

B =


/z (0.6h) =

Gust Effect Factor

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$

ESCARPMENT

Flexible structure if natural frequency < 1 Hz (T > 1 second).

If building h/B>4 then may be flexible and should be investigated.

h/B = 0.18 Rigid structure (low rise bldg)

G = 0.85 Using rigid structure default

Rigid	<u>Structure</u>	Flexible or Dyn	amically Se	nsitive St	ructure		
ē =	0.20	34 ncy $(\eta_1) =$	0.0 Hz				
$z_{\min} = $	500 ft 15 ft	Damping ratio (β) = /b =	0 0.65				
$c = g_Q, g_V = L_z =$	0.20 3.4 427.1 ft	/α = Vz = N ₁ =	0.15 97.1 0.00				
Q = I _z =	0.86 0.23	R _n = R _h =	0.000 28.282	η =	0.000	h =	24.3 ft
G =	0.85 use G = 0.85	R _B = R _L = g _R = R = Gf =	28.282 28.282 0.000 0.000 0.000	η = η =	0.000 0.000		

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910

JOB TITLE Basecamp Phase 1

JOB NO. 21304	SHEET NO.	
CALCULATED BY Sina Erturk	DATE	6/18/21
снескер ву Jake Sujansky	DATE	

Test for Enclosed Building: Ao < 0.01Ag or 4 sf, whichever is smaller

<u>Test for Open Building:</u> All walls are at least 80% open.

Ao ≥ 0.8Ag

Test for Partially Enclosed Building: Predominately open on one side only

	Input			Test	
Ao	500.0	sf	Ao ≥ 1.1Aoi	NO	
Ag	600.0	sf	Ao > 4' or 0.01Ag	YES	
Aoi	1000.0	sf	Aoi / Agi ≤ 0.20	YES	Building is NOT
Agi	10000.0	sf			Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

Aoi / Agi ≤ 0.20

Where

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

<u>Test for Partially Open Building:</u> A building that does not qualify as open, enclosed or partially enclosed.

(This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog): 0 sf
Unpartitioned internal volume (Vi): 0 cf
Ri = 1.00

Ground Elevation Factor (Ke)

Grd level above sea level = 6680.0 ft Ke = 0.7852

Constant = 0.00256 Adj Constant = 0.00201

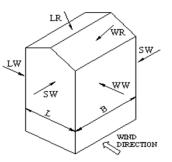
1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910

JOB	TITI F	Basecamp	Phase 1
300		Dascoamp	1 11030 1

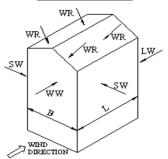
JOB NO. 21304	SHEET NO.	
CALCULATED BY Sina Erturk	DATE	6/18/21
CHECKED BY Jake Sujansky	DATE	

Wind Loads - MWFRS all h (Except for Open Buildings)

Kh (case 2) =	0.94	h =	24.3 ft	GCpi =	+/-0.18
Base pressure (q _h) =	21.2 psf	ridge ht =	32.8 ft	G =	0.85
Roof Angle (θ) =	14.0 deg	L =	96.0 ft	qi = qh	


Roof tributary area - $(h/2)^*L$: 1164 sf B = 136.0 ft $(h/2)^*B$: 1649 sf

Ultimate Wind Surface Pressures (psf)


			nate mina e						
	Wind Normal to Ridge			Wind Normal to Ridge Wind Parallel to Ridge					
	B/L =	1.42	h/L =	0.18		L/B =	0.71	h/L = 0.25	
Surface	Ср	q_hGC_p	w/+q _i GC _{pi}	w/-q _h GCpi	Dist.*	Ср	q_hGC_p	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
Windward Wall (WW)	0.80	14.4	see tab	le below		0.80	14.4	see tab	le below
Leeward Wall (LW)	-0.42	-7.5	-11.3	-3.7		-0.50	-9.0	-12.8	-5.2
Side Wall (SW)	-0.70	-12.6	-16.4	-8.8		-0.70	-12.6	-16.4	-8.8
Leeward Roof (LR)	-0.46	-8.3	-12.1	-4.5		Inc	cluded in w	indward roof	
Neg Windward Roof pressure	-0.54	-9.7	-13.5	- 5.9	0 to h/2*	-0.90	-16.2	-20.1	-12.4
Pos/min Windward Roof press.	-0.03	-0.6	-4.4	3.2	h/2 to h*	-0.90	-16.2	-20.1	-12.4
·					h to 2h*	-0.50	-9.0	-12.8	-5.2
					> 2h*	-0.30	-5.4	-9.2	-1.6
					Min press.	-0.18	-3.2	-7.1	0.6

^{*}Horizontal distance from windward edge

Windward Wall Pressures at "z" (psf)								W + LW
				V	Vindward Wa	all	Normal	Parallel
	Z	Kz	Kzt	q_zGC_p	$w/+q_iGC_{pi}$	$w/-q_hGC_{pi}$	to Ridge	to Ridge
_	0 to 15'	0.85	1.00	13.0	9.2	16.9	20.6	22.1
h=	24.3 ft	0.94	1.00	14.4	10.6	18.3	21.9	23.5
h=	24.3 ft	0.94	1.00	14.4	10.6	18.3	21.9	23.5
ridae =	32.8 ft	1.00	1.00	15.4	11.6	19.2	22.9	24.4

WIND NORMAL TO RIDGE

WIND PARALLEL TO RIDGE

LW

SW

SW

TYPICAL WIND LOADING

MIND DIRECTION

NOTE:

See figure in ASCE7 for the application of full and partial loading of the above wind pressures. There are 4 different loading cases.

Parapet			
Z	Kz	Kzt	qp (psf)
29.0 ft	0.98	1.00	22.0

Windward parapet: 33.1 psf (GCpn = +1.5) Leeward parapet: -22.0 psf (GCpn = -1.0)

Windward roof overhangs (add to windward roof pressure): 14.4 psf (upward)

103-4

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910

JOB TITLE Basecamp Phase 1

JOB NO.	21304	SHEET NO.		
CALCULATED BY	Sina Erturk	DATE	6/18/21	
CHECKED BY	Jake Suiansky	DATE		

Ultimate Wind Pressures

Wind Loads - Components & Cladding : h ≤ 60'

 Kh (case 1) =
 0.94
 h =
 24.3 ft

 Base pressure (qh) =
 21.2 psf
 a =
 9.6 ft

 Minimum parapet ht =
 4.8 ft
 GCpi =
 +/-0.18

 Roof Angle (θ) =
 14.0 deg
 qi = qh =
 21.2 psf

Type of roof = Gable

Roof	
------	--

Area
Negative Zone 1 & 2e
Negative Zone 2n, 2r &3e
Negative Zone 3r
Positive All Zones
Overhang Zone 1 & 2e
Overhang Zone 2n & 2r
Overhang Zone 3one 3e

Γ					Surface Pr	essure (psf)	
а	2 sf	10 sf	20 sf	50 sf	75 sf	100 sf	200 sf	250 sf
е	-46.3	-46.3	-46.3	-28.1	-20.1	-16.0	-16.0	-16.0
е	-67.5	-67.5	-58.3	-46.3	-40.9	-37.1	-28.0	-25.0
3r	-80.2	-80.2	-68.7	-53.5	-46.8	-42.0	-42.0	-42.0
s	16	16	16	16	16.0	16.0	16.0	16.0
е	-49.2	-49.2	-49.2	-37.2	-31.8	-28.0	-28.0	-28.0
2r	-74.3	-70.5	-63.6	-54.5	-50.5	-47.7	-40.8	-38.6
е	-87	-87	-75.1	-59.4	-52.5	-47.5	-35.7	-31.8
3r	-99.7	-99.7	-84.4	-64.1	-55.2	-48.8	-48.8	-48.8

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0

Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.8 psf)

Parapet

qp = 22.0 psf

sf	Surface Pressure (psf)					
Solid Parapet Pressure	10 sf	20 sf	50 sf	100 sf	250 sf	500 sf
CASE A: Zone 2e :	66.1	64.9	44.6	29.2	27.6	26.4
Zone 2n, 2r & 3e:	88.1	77.5	63.4	52.7	38.6	37.5
Zone 3r :	101.4	88.3	70.9	57.8	56.3	55.1
CASE B: Interior zone:	-46.3	-43.9	-40.8	-38.5	-35.4	-33.1
Corner zone :	-52.9	-49.4	-44.7	-41.2	-36.6	-33.1

User input 20 sf				
64.9 77.5 88.3				
-43.9 -49.4				

<u>Walls</u>	GCp +/- GCpi				Surface Pressure at h			
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-1.28	-1.10	-1.05	-0.98	-22.9	-23.4	-22.3	-20.8
Negative Zone 5	-1.58	-1.23	-1.12	-0.98	-42.0	-26.0	-23.8	-20.8
Positive Zone 4 & 5	1.18	1.00	0.95	0.88	22.9	21.3	20.2	18.7

User input						
20 sf	20 sf					
-26.0	-26.0					
-31.3	-31.3					
23.9	23.9					

User input

20 sf

-46.3

-58.3

-68.7

16.0

-49.2

-63.6

-75.1

-84.4

50 sf

-28.1

-46.3

-53.5

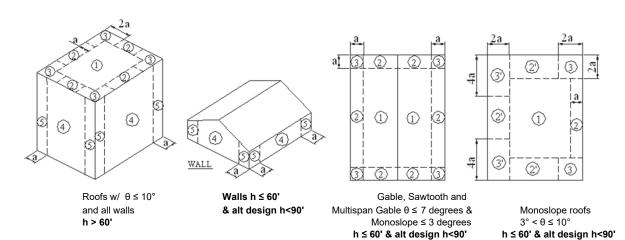
16.0

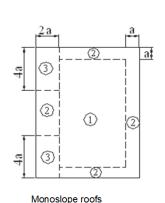
-37.2

-54.5

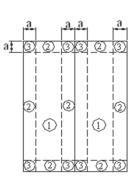
-59.4

-64.1

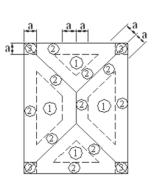

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910 JOB TITLE Basecamp Phase 1

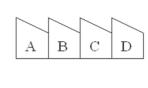

 JOB NO.
 21304
 SHEET NO.

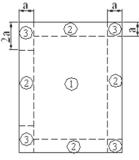
 CALCULATED BY
 Sina Erturk
 DATE
 6/18/21


 CHECKED BY
 Jake Sujansky
 DATE
 DATE

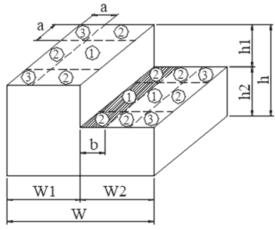
Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier



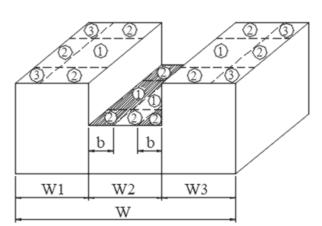

 $10^{\circ} < \theta \le 30^{\circ}$ h ≤ 60' & alt design h<90'



Multispan Gable & Gable $7^{\circ} < \theta \le 45^{\circ}$

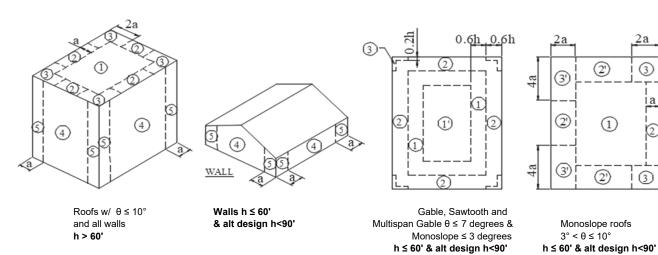


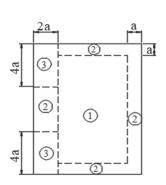
Hip $7^{\circ} < \theta \le 27^{\circ}$



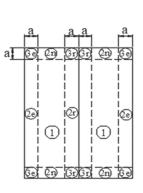
Sawtooth $10^{\circ} < \theta \le 45^{\circ}$ h $\le 60'$ & alt design h<90'

Stepped roofs $\theta \le 3^{\circ}$ h \le 60' & alt design h<90'

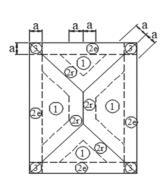


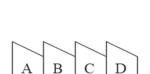

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910

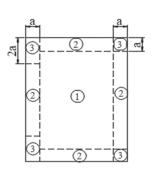
JOB TITLE Basecamp Phase 1


JOB NO. 2	21304	SHEET NO.	
CALCULATED BY S	Sina Erturk	DATE	6/18/21
CHECKED BY J	ake Sujansky	DATE	

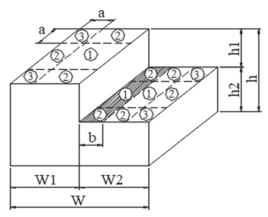
Location of C&C Wind Pressure Zones - ASCE 7-16



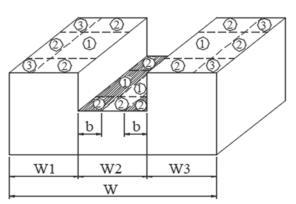

Monoslope roofs $10^{\circ} < \theta \leq 30^{\circ}$ h \leq 60' & alt design h<90'



Multispan Gable & Gable 7° < θ ≤ 45°



Hip $7^{\circ} < \theta \le 27^{\circ}$



Sawtooth $10^{\circ} < \theta \le 45^{\circ}$ h \le 60' & alt design h<90'

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

104. SEISMIC LOADS

Hazards by Location

Search Information

Address: 1901 Curve Plaza, Steamboat Springs, CO 80487,

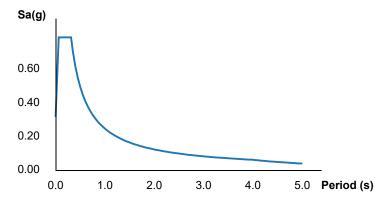
USA

Coordinates: 40.5005622, -106.8562806

Elevation: 6673 ft

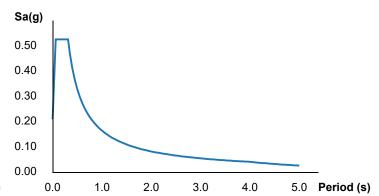
Timestamp: 2021-06-18T17:49:19.019Z

Hazard Type: Seismic


ASCE7-16 Reference

Document:

Risk Category:


Site Class: D-default

MCER Horizontal Response Spectrum

Walden 6673 ft edicine w-Routt Hayden National Forests 40) Pagoda Oak Creek Nat [34] Google Map data ©2021 Google

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	0.596	MCE _R ground motion (period=0.2s)
S ₁	0.103	MCE _R ground motion (period=1.0s)
S _{MS}	0.789	Site-modified spectral acceleration value
S _{M1}	0.247	Site-modified spectral acceleration value
S _{DS}	0.526	Numeric seismic design value at 0.2s SA
S _{D1}	0.165	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	D	Seismic design category
Fa	1.323	Site amplification factor at 0.2s
F _v	2.394	Site amplification factor at 1.0s
		104-2

CR _S	0.906	Coefficient of risk (0.2s)
CR ₁	0.946	Coefficient of risk (1.0s)
PGA	0.418	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.502	Site modified peak ground acceleration
T _L	4	Long-period transition period (s)
SsRT	0.596	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.658	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.103	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.109	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

- 3. Agricultural storage structures intended only for incidental human occupancy.
- 4. Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

Routt County Building Department Local Policy Amendment to Section 1613 Earth quake Loads: All properties within Routt County Incorporated and Unincorporated Jurisdictions have been adopted and approved to be a Seismic Design Category C designation through our Building Code Adoption Approval Processes. Structures shall be designed in accordance with our local amendment policy using a Seismic Design Category C designation as the base level design standard. When approved by the Structural Engineer of Record through review of the Geotechnical Soils Report and Soils Site Class, the Seismic Category may be reduced by the Engineer of Record based on the known Soils Site Class and in accordance with ASCE-7 and Chapter 16 of the IBC.

Structural Engineers Acceptable Design Parameters Local Routt County Building Department Policy: The Routt County Building Department has developed these design parameters to align with our Local Code Adoptions that were approved designating all of Routt County a Seismic Design Category C. This Policy has been created to provide maximum values for SDS and SD1 respectively to be used in the mapped areas throughout Routt County that have been designated Seismic Category D in accordance ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/. The parameters below may be used by Structural Engineers based on the Risk Factor of the Building to perform calculations to determine structural designs. The below parameters may be used with Site Class D- Default (See Section 11.4.3) being set on the ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/. Lower values may be used if justified by soil Site Class and resulting site-specific ground motion parameters set forth in ASCE 7-16 and USGS Seismic Design Data Map and approved by the Code Official.

- Risk Category I, II, and II Building: SDS = 0.333 and SD1 = 0.133
- Risk Category IV Building: SDS = 0.499 and SD1 = 0.199

The intent of setting these parameters and values is to help support Structural Engineers in designing buildings within the spirt of our Locally Approved Code Adoptions designating a standard Seismic Design Category C throughout all of Routt County, to avoid conflicts in what data would otherwise be provided through ASCE 7-16 USGS Seismic Design Data Map found at https://seismicmaps.org/.

Routt County Regional Building Department 2018 IRC Code Adoption

Table R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA, is completed as follows:

- Ground Snow Load Case Study Area contact the Building Department for Ground Snow Load Valuations per site.
- Climate Zone 7
- Wind Speed 115 MPH (ultimate design wind speed)
- Topographic Effects No
- Seismic Design Category C Note: When approved by the Structural Engineer of Record through review of the Geotechnical Soils Report and Soils Site Class, the Seismic Category may be reduced

ROUTT County Regional Building Department

1717 Washington Avenue, St. 100 Golden, Colorado 80401 303-384-9910 JOB TITLE Basecamp Phase 1

JOB NO.	21304	SHEET NO.	
CALCULATED BY	Sina Erturk	DATE	6/18/21
CHECKED BY	Jake Sujansky	DATE	

Seismic Loads: IBC 2018 Strength Level Forces

Risk Category: II Importance Factor (I): 1.00

Site Class :) - code default

Ss (0.2 sec) = 32.50 %g S1 (1.0 sec) = 8.30 %g

 $S_{DS} =$ Fa = 1.540 Sms = 0.501 0.334 Design Category = С 2.400 Sm1 = В Fv = 0.199 $S_{D1} =$ 0.133 Design Category =

Seismic Design Category = \mathbf{C} Redundancy Coefficient ρ = 1.00 Number of Stories: 1 Structure Type: Light Frame

Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity

Flexible Diaphragms: Yes

Building System: Bearing Wall Systems

Seismic resisting system: Light frame (wood) walls with structural wood shear panels

System Structural Height Limit: Height not limited

Actual Structural Height (hn) = 32.8 ft

DESIGN COEFFICIENTS AND FACTORS

Response Modification Coefficient (R) = 6.5Over-Strength Factor (Ω 0) = 2.5

Over-Strength Factor (Ω o) = 2.5 Deflection Amplification Factor (Cd) : 4

> $S_{DS} = 0.334$ $S_{D1} = 0.133$

Seismic Load Effect (E) = Eh +/-Ev = ρC_E +/- 0.2S_{DS}D = Qe +/- 0.067D Q_E = horizontal seismic force

Special Seismic Load Effect (Em) : Emh +/- Ev = Ω 0 Q_E +/- $0.2S_{DS}$ D = 2.5Qe +/- 0.067D D = dead load

PERMITTED ANALYTICAL PROCEDURES

Simplified Analysis - Use Equivalent Lateral Force Analysis

Equivalent Lateral-Force Analysis - Permittec

Building period coef. (C_T) = 0.020 Cu = 1.63 rox fundamental period (Ta): $C_T h_n$ = 0.274 sec x = 0.75 Tmax = CuTa = 0.444

Approx fundamental period (Ta): $C_T h_n^= 0.274 \text{ sec} \quad x = 0.75$ Tmax = CuTa = 0.448 User calculated fundamental period (T) = sec Use T = 0.274

 $\begin{array}{cccc} \mbox{Long Period Transition Period (TL) =} & \mbox{ASCE7 map =} & 4 \\ \mbox{Seismic response coef. (Cs) =} & \mbox{S}_{DS}I/R = & 0.051 \\ \mbox{need not exceed Cs =} & \mbox{Sd1I/RT =} & 0.075 \\ \mbox{but not less than Cs =} & 0.044SdsI = & 0.015 \\ \end{array}$

ot less than Cs = 0.044Sdsl = 0.015 USE Cs = 0.051

Design Base Shear V = 0.051W

Model & Seismic Response Analysis - Permitted (see code for procedure)

ALLOWABLE STORY DRIFT

Structure Type: All other structures

Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below level x

200. INFILL ADDITION

200 Infill Addition Calculation Index:

Existing Structure Check	200
Gravity Design	201
Lateral Design	202

200. INFILL ADDITION

Wood Infill Existing Structure Loading Calculations

Prepared by: Sina	Erturk
Date: 10/07/2021	

		Date: 10/07/2021										
			DL	LL	SL	ASD_Live	ASD_Snow	ASD_Live				
		Roof	65	0	75	65		40	121.25			
		Mazzanine	41	100	0	141		41	116			
		(E) Roof 1	25	0	75	25		00	81.25			
		(E) Roof 2	25	0	225	25		50	193.75			
		(N) Drift 1	0	0	78	C		78	58.5			
		(N) Drift 3	0	0	37	C)	37	27.75			
		Story Width	11.3 ft									
		Story Width	11.5 10			Column 1	HSS6x6x1/4, PL3/4	x12x1'-0" C				
						Drift Area (sqf)	40	XIZXI O , C				
		Beam 1				(E) Area (sqf)	275	Addition	Drift	Ex	isting To	tal
		Length	14.2 ft			(=) : == (=4:)	ASD_Live (k)		8.21	0	6.88	15.08
		Trib Width	5.63 ft				ASD Snow (k)		7.21	3.12	27.50	37.83
		ASD_Live	2.59 k			Total	ASD_L+S (k)		9.45	2.34	22.34	34.14
	Roof	ASD Snow	5.58 k				ASD (k)		9.45	3.12	27.50	37.83
		ASD L+S	4.831055 k				. ,					
E C		ASD Live	5.62 k			Column 2	HSS7x7x1/4, PL7/8	x13x1'-1", D				
Reaction	Mazzanine	ASD_Snow	1.63 k			Drift Area (sqf)	40					
Reg		ASD_L+S	4.621875			(E) Area (sqf)	79	Addition	Drift	: Ex	isting To	tal
		ASD_Live	8.21 k				ASD_Live (k)		22.69	0	1.98	24.67
	Total	ASD_Snow	7.21 k			Total	ASD_Snow (k)		19.94	1.48	7.90	29.32
		ASD_L+S	9.45293 k			Total	ASD_L+S (k)		26.13	1.11	6.42	33.66
							ASD (k)		26.13	1.48	7.90	33.66
		Beam 2				Column 3	HSS7x7x1/4 PL7/8	x13x1'-1", D				
		Length	25 ft			Drift Area (sqf)	40					
		Trib Width	5.63 ft			(E) Area (sqf)	79	Addition	Drift		isting To	tal
		ASD_Live	4.57 k				ASD_Live (k)		22.69	0	1.98	24.67
	Roof	ASD_Snow	9.84 k			Total	ASD_Snow (k)		19.94	1.48	7.90	29.32
_		ASD_L+S	8.525391 k				ASD_L+S (k)		26.13	1.11	6.42	33.66
ë		ASD_Live	9.91 k				ASD (k)		26.13	1.48	7.90	33.66
Reaction	Mazzanine		2.88 k									
ž		ASD_L+S	8.15625 k			Column 4	HSS7x7x1/4 PL7/8	x13x1'-1", C				
	Total	ASD_Live	14.48 k			Drift Area (sqf)	40		5 :0	_		
	Total	ASD_Snow	12.73 k			(E) Area (sqf)	352	Addition	Drift	: EX	isting To	
		ASD_L+S	16.68164 k				ASD_Live (k)		8.21 7.21	3.12	8.80	17.01
						Total	ASD_Snow (k)		7.21 9.45	2.34	88.00 68.20	98.33 79.99
		Beam 3					ASD_L+S (k) ASD (k)		9.45	3.12	88.00	98.33
		Length	14.2 ft				ASD (K)		9.45	5.12	00.00	90.55
		Trib Width	5.63 ft									
		ASD_Live	2.59 k									
	Roof	ASD_Snow	5.58 k									
	11001	ASD_SHOW ASD_L+S	4.831055 k									
Ę		ASD_Live	5.62 k									
Reaction	Mazzanine	_	1.63 k									
Rea		ASD L+S	4.621875 k									
_		ASD_Live	8.21 k									
	Total	ASD_Snow	7.21 k									
		ASD_L+S	9.45 k									
		-										

	De	sign Calculations
HSS6x6x1/4		
Pasd	38.0 k	
Height	19 ft	
P/Ω	76.2 k	from AISC Table 4-4 (p4-59)
Capacity	50%	
HSS7x7x1/4		
Pasd	99.0 k	
Height	19 ft	
P/Ω	107 k	from AISC Table 4-4 (p4-58)
Capacity	93%	
Footing C		
Pasd	38.0 k	
P/Ω	85 k	
Capacity	45%	
Footing D		
Pasd	98.0 k	
P/Ω	108 k	
Capacity	91%	

Project Name: Basecamp

Project Number: 21304

Engineer: SYE

Date: 11/11/2021

Existing Base Plates Check Column Base Plates for Axial Compression

per AISC Steel Manual, 13th Ed. Or 14th Ed, p 14-4, LRFD Analysis

			·					
Seneral Input								
	C1		Base Plate Design					
Column Section	HSS6X6X1/4		HSS Column					
В	12	in	Width Base Plate					
N	12	in	Length of Base Plate					
f' _c	4000	psi	28-day Compressive Strength of Concrete					
P_u	58.5	kips	Required Compressive Strength					
F_y	36	ksi	Yield Strength of Base Plate					
В	6.00) in	Width of HSS					
Н	6.00) in	Depth of HSS					
alculations								
A 1	144	in ²	Area of steel concentrically bearing on concrete support					
A_2	0	in ²	area of the lower base of the largest frustum of a pyramid,					
			contained wholly within the support and having for its upper base the loaded areas, and having side slopes of 1 vertical to 2 horizontal (Enter 0 to ignore bearing load multiplier)					
$sqrt(A_2/A_1) \le 2.0$ 1.000)	Bearing load multiplier					

A 1	144 IN	Area of steel concentrically bearing of concrete support
A_2	0 in ²	area of the lower base of the largest frustum of a pyramid, contained wholly within the support and having for its upper bas the loaded areas, and having side slopes of 1 vertical to 2 horizontal (Enter 0 to ignore bearing load multiplier)
$sqrt(A_2/A_1) \le 2.0$	1.000	Bearing load multiplier
ϕP_{p}	318 kips	Design bearing load on concrete (φ=0.65 per ACI 318-02)
X	0.18	
λ	0.45	
λn'	0.68 in	Cantilever dimension for base plate
n	3.60 in	Cantilever dimension for base plate
m	3.15 in	Cantilever dimension for base plate
I	3.60 in	Critical cantilever dimension for base plate
t _{min}	0.57 in	Minimum base plate thickness
	5/8 in	Practical base plate thickness
base plate dimensions	12"x12"x0.625"	
weight of baseplate	25.56 lb	
base plate mark	0.570087713	

Comments: (E) Column

200-6

Project Name: Basecamp

Engineer: SYE Project Number: 21304 Date: 11/11/2021

Column Base Plates for Axial Compression (HSS Columns)

per AISC Steel Manual, 13th Ed. Or 14th Ed, p 14-4, LRFD Analysis

General	Inpu	ıſ
---------	------	----

General Input			
	C2		Base Plate Design
Column Section	HSS7X7X1/4		HSS Column
В	13	in	Width Base Plate
N	13	in	Length of Base Plate
f' _c	4000	psi	28-day Compressive Strength of Concrete
P_u	147	kips	Required Compressive Strength
F_{y}	36	ksi	Yield Strength of Base Plate
,			3
В	7.00	in	Width of HSS
Н	7.00	in	Depth of HSS
Calculations			
A_1	169	in ²	Area of steel concentrically bearing on concrete support
A_2		in ²	area of the lower base of the largest frustum of a pyramid,
			contained wholly within the support and having for its upper base
			the loaded areas, and having side slopes of 1 vertical to 2
			horizontal (Enter 0 to ignore bearing load multiplier)
$sqrt(A_2/A_1) \le 2.0$	1.000		Bearing load multiplier
ϕP_{ρ}	373	kips	Design bearing load on concrete (φ=0.65 per ACI 318-14)
			m baseplate bearing area
A reqd	67	in ²	minimum area for bearing conconrete
X	0.39		
λ	0.71		
λn'	1.23	in	Cantilever dimension for base plate
n	3.70		Cantilever dimension for base plate
m	3.18	in	Cantilever dimension for base plate
1	3.70	in	Critical cantilever dimension for base plate
,			
t _{min}	0.86		Minimum base plate thickness
	7/8	in	Practical base plate thickness
h l - 4 -			
base plate	13"x13"x0.8	375"	
dimensions	42.00	lh	
weight of baseplate base plate mark	42.00 B1A		
base plate Mark	DIA		

Column Base Plates for Axial Compression (HSS Columns)

per AISC Steel Manual, 13th Ed. Or 14th Ed, p 14-4, LRFD Analysis

Design	Mark	Column Section	В	N	f' _c	P_{u}	F_y	A_2	t _{min}	Recommended BP	Comments
			(in)	(in)	(psi)	(kips)	(ksi)	(in ²)			
C1	0.570088	HSS6X6X1/4	12	12	4000	58.5	36		0.57 in	12"x12"x0.625"	(E) Column
C2	0.857353	HSS7X7X1/4	13	13	4000	147	36		0.86 in	13"x13"x0.875"	(E) Column

Project Name: Basecamp Project Number21304

Engineer: SYE Date: 11/11/2021

Title Basecamp Date 10/19/21 Job No. 21304

Wood Infill Existing

Subject Footings By SYE Sheet

Project Settings								
Concrete Strength, f'c	4	ksi	Alowable Soil Bearing, q	3	ksf			
Reinf Cover	3.00	in	Soil Density, γ	100	pcf			
Reinf Yeild Strength, f _y	60	ksi						

PASS PASS

	FOOTING I	DESIGN SU	MMARY		V2-2													Limit	States		
	Fastina	Minimun	n Col Size		Design Capacity		Foo	ting Size		Bot	Reinf	Тор	Reinf	Soil H	leight	Soil Brg	Punching	BM Shear	Flexure	Uplift	Neg Flx
	Footing Mark	В	N	$\varphi P_n^{\;\;(LRFD)}$	$P/\Omega^{(ASD)}$	P _{uplift} (ASD)	b	L	h	Qty	Bar	Qty	Bar	min	max	D/C	D/C	D/C	D/C	D/C	D/C
		(in)	(in)	(kip)	(kip)	(kip)	(in)	(in)	(in)					(ft)	(ft)						
S	F1	12.0	12.0	128	85	0	64	64	12	(6)	#5	()	#5	1.0	4.0	1.00	0.84	0.66	0.80	0.00	0.00
S	F2	12.0	12.0	158	105	0	84	84	14	(7)	#5	()	#5	1.0	4.0	0.71	0.79	0.56	0.99	0.00	0.00
	F3																				
	F4																				
	F5																				
	F6																				
	F7																				
	F8																				
	F9																				
	F10																				
	F11																				
	F12																				
	F13																				
	F14																				
	F15																				
	F16																				
	F17																				
	F18																				
	F19																				
	F20																				

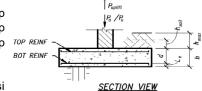
Title	Basecamp	Date	6/25/14	Job No.	21304
Subject	Wood Infill Existing Footings	Bv	SYE	Sheet	
Subject	Wood IIIIII Laisiiig i ooliigs	DУ	SIL	SHEEL	

Subject Wood Infill Existing Footings

CONCENTRIC SPREAD FOOTING DESIGN

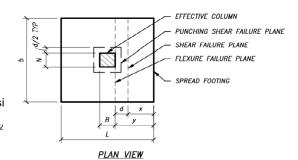
V2-2

FOOTING NUMBER


F1

DESIGN CAPACITY

Governing Code:


Axial (ASD), P/Ω 85 kip Axial (LRFD), φP_n = 128 kip Net Uplift (ASD), Puplift 0 kip =

ACI 318-14

FOOTING CRITERIA

4 ksi Concrete Strength, f'c = 64 in Footing Width, b = Footing Length, L = 64 in Footing Thickness, h 12 in

BOTTOM REINFORCMENT

(6) Quantity = #5 Reinforcing bar 60 ksi Reinforcing strength, fv = Reinforcing bar diam, dh 0.63 in 0.31 in² Reinforcing bar Area, A_b = Reinf Clear Cover, Le 3 in

TOP REINFORCMENT

Quantity () = #5 Reinforcing bar = 0.63 in Reinforcing bar diam Reinforcing bar Area 0.31 in² **SOIL CRITERIA**

Soil Bearing, q Soil Density, y Min Soil Height, h_{soil} Max Soil Height, hmax

=		ksf
=	100	pcf
=	1.0	ft
=	4.0	ft

MINIMUM COLUMN SIZE

Depth, B 12.0 in = 12.0 in Width, N

DESIGN SUMMARY

12 " 5' - 4" 5' - 4" Footing

(6) #5B EW

LIMIT STATE SUMMARY

D/C Limit Soil Bearing 1.00 1.0 FTG Punching Shear 0.84 ≤ 1.0 FTG Beam Shear 0.66 ≤ 1.0 FTG Flexure 0.80 ≤ 1.0 Uplift 0.00 ≤ 1.0 N/A FTG Negative Flexure 1.0

Title	Basecamp	Date	6/25/14	Job No.	21304
Subject	Wood Infill Existing Footings	By	SYE	Sheet	

1.0 OK

CONCENTRIC SPREAD FOOTING DESIGN

Governing Code: ACI 318-14 V2-2

F1

FOOTING NUMBER =

SOIL BEARING

Service Load, P _a Ultimate Load, P _u		= =	85.3 kip 128.0 kip
Footing Width, b Footing Length, L Area of Footing, A	= bL	= = =	64 in 64 in 4096 in ²
Soil Allowable Applied Soil Pressure, q _a Ultimate Soil Rxn, q _u	$= P_a/A$ $= P_u/A$	= = =	3 ksf 3.0 ksf 0.031 ksi q _a / q

FOOTING PUNCHING SHEAR

Resistance Factor, φ		=	0.75
Depth of Reinforcing, d	$= h - L_e - d_b/2$	=	8.7 in
Effective Col Width, Be	= B	=	12.0 in
Effective Col Depth, N _e	= N	=	12.0 in
Perimeter, b _o	$= 2(N_e+d)+2(B_e+d)$	=	83 in
α_{s}		=	40
β	$=$ N_e/B_e	=	1.0
Punching Force, R_{u}	$= P_u - q_u (N_e + d) (B_e + d)$	=	114.6 kip
Punching Shear Strength, V			
Egn (11-33)	= $(2+4/\beta)(f'_c)^0.5 b_o d$	=	273 kip
Eqn (11-34)	$= [(\alpha_s d)/b_o + 2)(f'_c)^0.5 b_o d$	=	282 kip
Eqn (11-35)	$= 4(f_c)^0.5 b_o d$	=	182 kip Controls
Punching Shear Design Stree	ngth, φR _n	=	136 kip
			$R_u / \phi R_n$
			0.84 ≤ 1.0 OK

Title Basecamp Date 6/25/14 Job No. 21304

Subject Wood Infill Existing Footings By SYE Sheet

CONCENTRIC SPREAD FOOTING DESIGN

Governing Code: ACI 318-14 V2-2

FOOTING NUMBER = F1

FOOTING BEAM SHEAR

Resistance Factor, φ = 0.75 Distance to Shear Plane, x = $b/2 - [min(B_e, N_e)/2 + d]$ = 17.3 in Shear Force, R_u = $q_u(x)L$ = 34.6 kip Shear Strength, V_c = 2 (f_c)^0.5 b d = 70.3 kip

Beam Shear Design Strength, ϕR_n = 52.7 kip

 $R_u / \phi R_n$

0.66 ≤ 1.0 OK

FOOTING FLEXURE

Resistance Factor, ϕ 0.9 = Distance to Moment, y = b/2 - min(B_e, N_e)/2 = 26.0 in $q_u b y^2/2$ Moment, Mu = 676.0 k-in Minimum Steel, A_{s,min} 0.0018*b*h 1.38 in² Bars Used, n_b (6) = 1.86 in² Area of Steel, As $n_b * A_b$ =

Area of Steel, A_s = $n_b^*A_b$ = 1.86 in² $A_{s,min}/A_s$ = 0.74 a = $A_s F_y/(0.85 f_c^* b)$ = 0.51 in Moment Capacity, M_n = $A_s F_y (d - a/2)$ = 941 k-in

Design Moment Capacity, ϕM_n = 847 k-in

 $R_u / \varphi R_n$ 0.80 \leq 1.0 OK

UPLIFT

Uplift Load, P_{uplift} = 0 kip Volume of Concrete, V_{fta} = bLh = 28 cuft

Volume of Concrete, v_{ftg} = bLn = 28 cuft Volume of Soil, V_{soil} = bLh_{soil} = 28 cuft Dead Load, DL = $V_{ftg}^*\gamma_{conc} + V_{soil}^*\gamma$ = 7 kip Effective Dead Load, 0.6DL = 4 kip

D/C

0.00 ≤ 1.0 OK

FOOTING NEGATIVE FLEXURE

2.8E-03 ksi Soil weight, q_{soil} $h_{max}\gamma$ = Footing Self Weight, qftq 1.0E-03 ksi = q_{soil} b $y^2/2$ 83 k-in Moment, M_u = Bars Used, n_b 0 $0 in^2$ Area of Steel, As $n_b * A_b$ =

a = $A_s F_v/(0.85 f_c b)$ = 0.00 in Moment Capacity, M_n = $A_s F_v (d - a/2)$ = 0 k-in

Design Moment Capacity, ϕM_n = 0 k-in

 $R_u / \varphi R_n$ N/A > 1.0 NG

_	Title	Baseca	mp	Date	6/25/14	J	ob No.	21304	ļ

Subject Wood Infill Existing Footings

By SYE

Sheet

V2-2

CONCENTRIC SPREAD FOOTING DESIGN

FOOTING NUMBER = F2

ACI 318-14

DESIGN CAPACITY

Governing Code:

GN CAPACITY

Axial (ASD), P/Ω = 105 kip

Axial (LRFD), ΦP_n = 158 kip

=

Net Uplift (ASD), P_{uplift}

BOTTOM REINFORCMENT

Quantity (7) = #5 Reinforcing bar = 60 ksi Reinforcing strength, fv = Reinforcing bar diam, db 0.63 in 0.31 in² Reinforcing bar Area, A_b = Reinf Clear Cover, Le 3 in

| SECTION VIEW

EFFECTIVE COLUMN

PUNCHING SHEAR FAILURE PLANE
SHEAR FAILURE PLANE
FLEXURE FAILURE PLANE
SPREAD FOOTING

PLAN VIEW

TOP REINFORCMENT

Quantity=()Reinforcing bar=#5Reinforcing bar diam=0.63 inReinforcing bar Area=0.31 in²

SOIL CRITERIA

Soil Bearing, q Soil Density, γ Min Soil Height, h_{soil} Max Soil Height, h_{max} = 3 ksf = 100 pcf = 1.0 ft = 4.0 ft

MINIMUM COLUMN SIZE

Depth, B = 12.0 in Width, N = 12.0 in

DESIGN SUMMARY

Footing 7' - 0" x 7' - 0" x 14 "

w/ (7) #5B EW

LIMIT STATE SUMMARY

D/C Limit Soil Bearing 0.71 1.0 FTG Punching Shear 0.79 ≤ 1.0 FTG Beam Shear 0.56 ≤ 1.0 FTG Flexure 0.99 ≤ 1.0 Uplift 0.00 ≤ 1.0 N/A FTG Negative Flexure 1.0

Title	Basecamp	Date	6/25/14	Job No.	21304
Subject	Wood Infill Existing Footings	By	SYE	Sheet	

Governing Code: ACI 318-14 V2-2

FOOTING NUMBER =

= F2

SOIL BEARING

Service Load, P _a		=	105.0 kip	
Ultimate Load, P _u		=	157.5 kip	
Footing Width, b		=	84 in	
Footing Length, L		=	84 in	
Area of Footing, A	= bL	=	7056 in ²	
Soil Allowable		=	3 ksf	
Applied Soil Pressure, qa	= P _a /A	=	2.1 ksf	
Ultimate Soil Rxn, q _u	$= P_u/A$	=	0.022 ksi	

 q_a/q 0.71 \leq 1.0 OK

FOOTING PUNCHING SHEAR

Resistance Factor, φ		=	0.75
Depth of Reinforcing, d	$= h - L_e - d_b/2$	=	10.7 in
Effective Col Width, Be	= B	=	12.0 in
Effective Col Depth, Ne	= N	=	12.0 in
Perimeter, b _o	$= 2(N_e+d)+2(B_e+d)$	=	91 in
α_{s}	(0) (0)	=	40
β	$= N_e/B_e$	=	1.0
Punching Force, R _u	$= P_u - q_u (N_e + d) (B_e + d)$	=	146.0 kip
Punching Shear Strength, V c			
Egn (11-33)	= $(2+4/\beta)(f_c)^0.5 b_0 d$	=	368 kip
Eqn (11-34)	(, , (),	=	412 kip
Eqn (11-35)	$= 4(f_c)^0.5 b_o d$	=	245 kip Controls
Punching Shear Design Streng	gth, φR _n	=	184 kip
			R _u / ϕ R _n
			0.79 ≤ 1.0 OK

Title	Basecamp	Date	6/25/14	Job No.	21304
Subject	Wood Infill Existing Footings	D.	CVE	Choot	
Subject	Wood Infill Existing Footings	Ву	SIE	Sheet	

Governing Code: ACI 318-14 V2-2 F2

FOOTING NUMBER

FOOTING BEAM SHEAR

Resistance Factor, φ			=	0.75
Distance to Shear Plane, x	=	$b/2 - [min(B_e, N_e)/2 + d]$	=	25.3 in
Shear Force, R _u	=	$q_u(x)L$	=	47.5 kip
Shear Strength, V _c	=	2 (f' _c)^0.5 b d	=	113.6 kip

Beam Shear Design Strength, φR_n 85.2 kip

> $R_u / \varphi R_n$ 0.56 ≤ 1.0 OK

0.9

FOOTING FLEXURE

Resistance Factor, ϕ

Distance to Moment, y	=	b/2 - min(B _e , N _e)/2	=	36.0 in
Moment, M _u	=	$q_u b y^2/2$	=	1215.0 k-in
Minimum Steel, A _{s,min}	=	0.0018*b*h	=	2.12 in ²
Bars Used, n _b			=	(7)
Area of Steel, A _s	=	$n_b^*A_b$	=	2.17 in ²
$A_{s,min}/A_s$			=	0.98
a	=	$A_s F_v/(0.85 f_c^{\prime} b)$	=	0.46 in
Moment Capacity, M _n	=	$A_s F_y$ (d - a/2)	=	1362 k-in
Design Moment Capacity,φM	/I n		=	1226 k-in

 $R_u / \varphi R_n$ 0.99 ≤ 1.0 OK

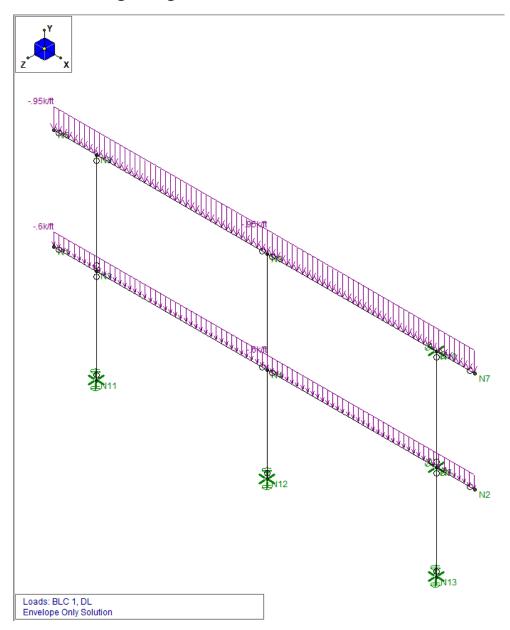
0 kip

UPLIFT Uplift Load, P_{uplift}

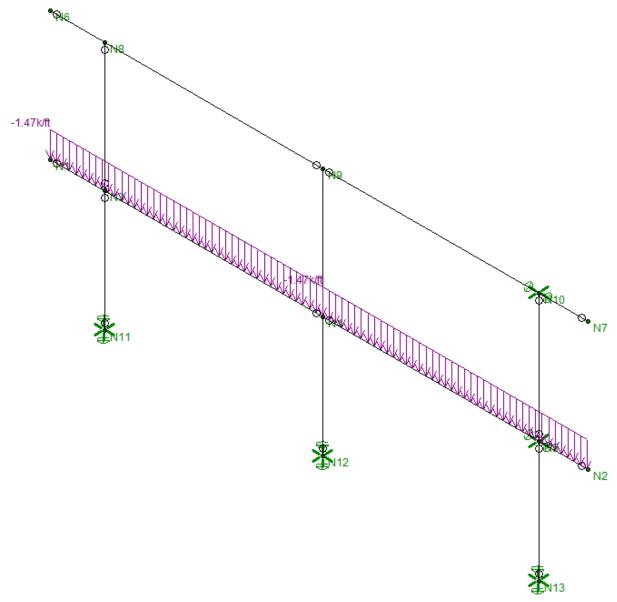
Volume of Concrete, V _{ftq}	=	bLh	=	57 cuft
Volume of Soil, V _{soil}	=	bLh _{soil}	=	49 cuft
Dead Load, DL	=	$V_{ftg}^*\gamma_{conc}+V_{soil}^*\gamma$	=	13 kip
Effective Dead Load, 0.6DL			=	8 kip

D/C 0.00 ≤ 1.0 OK

FOOTING NEGATIVE FLEXURE

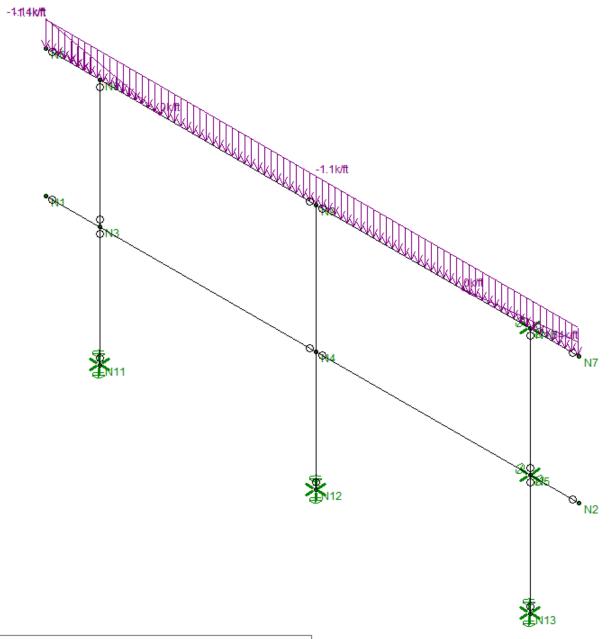

Soil weight, q _{soil}	=	$h_{max}\gamma$	=	2.8E-03 ksi
Footing Self Weight, q _{ftg}			=	1.2E-03 ksi
Moment, M _u	=	q_{soil} b $y^2/2$	=	217 k-in
Bars Used, n _b			=	0
Area of Steel, A _s	=	$n_b^*A_b$	=	0 in ²
a	=	$A_s F_v/(0.85 f_c^t b)$	=	0.00 in
Moment Capacity, M _n	=	$A_s F_v (d - a/2)$	=	0 k-in
Design Moment Capacity,φM _n			=	0 k-in

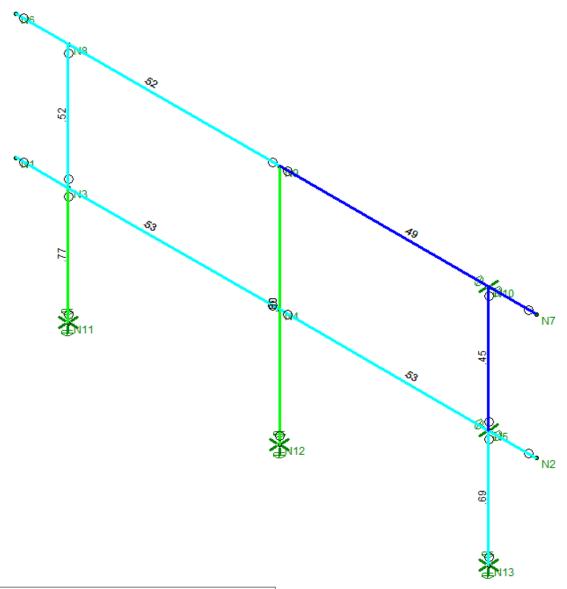
 $R_u / \varphi R_n$ 1.0 NG N/A >


Calculation Package

201. GRAVITY DESIGN

Steel Framing Design Calculations




Loads: BLC 2, LL Envelope Only Solution

Loads: BLC 3, SL Envelope Only Solution

Member Code Checks Displayed (Enveloped) Envelope Only Solution

Wide Flange or			
Channel Shape	W14x22		
F _y	50	ksi	Yield strength
É	29000	ksi	Modulus of Elasticity
G	11200	ksi	Shear Modulus of Elasticity
Α	6.49	in ²	Cross Sectional Area of beam
I _x	199.00	in ⁴	Moment of Inertia about Major Axis
Sx	29.00	in ³	Section Modulus about Major Axis
Z _x	33.20	in ³	Plastic Modulus about Major Axis
I _v	7.00	in ⁴	Moment of Inertia about Minor Axis
r_{v}	1.04	in	Radius of Gyration about Minor Axis
Ĵ	0.21	in ⁴	Polar Moment of Inertia
C _w	314	in ⁶	Warping Constant
d	13.70	in	Depth
t _w	0.23	in	Web Thickness
t_f	0.34	in	Flange Thickness
b _f	5.00	in	Flange Width
k	0.74	in	Fillet Dimension
h	11.56	in	Distance flanges less the fillet
h ₀	13.37	in	Distance between centroids of flanges
A_{w}	3.15	in ²	Area of web
_	N	Use LTE	B modification factor? (Y/N)
C _b	1.00		Modification Factor for Nonuniform Moment
Lb	2	ft	Distance between lateral braces

Service Load Combinations Combo 1: D + L

Combo 3: D + 0.75L + 0.75S

Factored Load Combinations

Combo 2: 1.2D + 1.6L + 0.5(L_r or S)

Combo 3: 1.2D + 1.6(Lr or S) + 0.5L

Avg. Load Factor for Governing Load Case

Governing Combination

Governing Combination

Combo 2: D + S

Combo 1: 1.4D

Service Loads		
Dead		psf
Live	0	psf
Dead Live Snow or Live Roof	112	psf
Garage/Assembly?	N	(Y/N)

Geometry		
Simple Span	14.2	ft
Tributary Width	14.65	ft
Beam Slope	0	/12
	0.00	degrees
	0.0000	radians
Slope Factor	1.000	
Sloped Length	14.20	ft

Governing Limit State	
Flexure	0.76

Reactions	R ₁	R ₂
Total Service, kips	18.41	18.41
Total Factored, kips	26.75	26.75

13th Ed AISC Manual, LRFD Design

Beam Flexural			
Check for	r Lateral Torsior	nal Buckli	• , ,
L _b	2 ft		Distance between lateral braces
Lp	3.67 ft	(F2-5)	Limiting unbraced length for limit state of yielding
L _r	10.4 ft	(F2-6)	Limiting unbraced length for limit state of inelastic LTB
r_{ts}^{2}	1.62 in	(F2-7)	Square of effective radius of gyration
С	1.00	(F2-8a,b)	LTB constant
Fcr	809.29 ksi	(F2-4)	Elastic LTB stress
$M_p = (M_n)_1$	138.3 k*ft	(F2-1)	if L _b <= L _p Plastic moment
$(M_n)_2$	138.3 k*ft	(F2-2)	if $L_p < L_b \le L_r$ Inelastic buckling moment
$(M_n)_3$	138.3 k*ft	(F2-3)	if L _b > L _r Elastic buckling moment
Check for	r Flange Local B	uckling	
λ	7.46		Width-thickness ratio for flange
λ_p	9.15	Table B4.1-	Limiting slenderness for compact flange
λ_r	24.08	1	Limiting slenderness for non-compact flange
	Compact		Slenderness Check
k _c	0.56	F3.2	Coefficient for slender, unstiffened elements
M_n	138.3 k*ft	(F3-1)	Nominal flexural strength
Flexural	Strength Summa	ary	
ϕ_b	0.9		Resistance factor for bending
M_n	138.3 k*ft		Nominal flexural strength
ϕM_n	124.5 k*ft		Design flexural strength
M _u	94.97 k*ft		Required flexural strength
D/C	0.76		Demand/Capacity ratio

Bean	Beam Shear Strength				
	ϕ_{ν}	1.0		Resistance factor for shear	
	а	0 in		Transverse stiffener clear spacing (0 = no stiffeners)	
	$\underline{}$ k_v	5.000	G2.1(ii)	Web plate shear buckling coefficient	
$(h/t_w)/$	$k_v E/F_y$	0.933		Web shear coefficient (formula limits)	
	` C _v	1.00	(G2-2)	Web shear coefficient	
	Vn	94.5 kips	(G2-1)	Nominal shear strength	
	ϕV_n	94.5 kips		Design shear strength	
	V _u	26.75 kips		Required shear strength	
	D/C	0.28		Demand/Capacity ratio	

Beam Deflect	Beam Deflection						
L / 240	0.710 in	Total load deflection criteria					
L / 360	0.473 in	Live load deflection criteria					
Δ_{TL}	0.411 in	Maximum deflection under total load					
Δ_{LL}	0.260 in	Maximum deflection under live load					
I _x	199.00 in ⁴	Moment of Inertia about Major Axis					
I min	115.21 in⁴	Minimum Moment of Inertia					
D/C	0.58						

65 psf

177 psf

149 psf

177 psf

91 psf

134 psf

257 psf

257 psf

Mid-Flore			
Wide Flange or Channel Shape	W16x31		
	50	ksi	Yield strength
F _y	29000		Modulus of Elasticity
G	11200		Shear Modulus of Elasticity
A	9.13		Cross Sectional Area of beam
I _x	375.00		Moment of Inertia about Major Axis
S _v	47.20		Section Modulus about Major Axis
Z_{ν}	54.00		Plastic Modulus about Major Axis
~	12.40		Moment of Inertia about Minor Axis
I _y			
r_y	1.17		Radius of Gyration about Minor Axis
J	0.46		Polar Moment of Inertia
C _w	739	inº	Warping Constant
d	15.90	in	Depth
t_w	0.28	in	Web Thickness
t_f	0.44	in	Flange Thickness
b_f	5.53	in	Flange Width
k	0.84	in	Fillet Dimension
h	13.34	in	Distance flanges less the fillet
h _o	15.46	in	Distance between centroids of flanges
A_{w}	4.37	in ²	Area of web
	N	Use	LTB modification factor? (Y/N)
C _b	1.00		Modification Factor for Nonuniform Moment
Lb	2	ft	Distance between lateral braces

Service Load Combinations

Combo 3: D + 0.75L + 0.75S

Governing Combination

Combo 1: D + L Combo 2: D + S

Service Loads		
Dead Live	41	psf
Live	100	psf
Snow or Live Roof	0	psf
Garage/Assembly?	N	(Y/N)

Geometry		
Simple Span	25	ft
Tributary Width	6.00	ft
Beam Slope	0	/12
	0.00	degrees
	0.0000	radians
Slope Factor	1.000	
Sloped Length	25.00	ft

Governing Limit State	
Deflection	0.58

Factored Load Combinations	
Combo 1: 1.4D	57 psf
Combo 2: 1.2D + 1.6L + 0.5(L _r or S)	209 psf
Combo 3: 1.2D + 1.6(Lr or S) + 0.5L	99 psf
Governing Combination	209 psf
Avg. Load Factor for Governing Load Case	1.484

141 psf 41 psf

116 psf

141 psf

Reactions	R ₁	R ₂
Total Service, kips	10.58	10.58
Total Factored, kips	15.69	15.69

13th Ed AISC Manual, LRFD Design

Beam Flexura	l Strength		
Check fo	or Lateral Torsio	nal Buckli	ng (LTB)
Lb	2 ft		Distance between lateral braces
Lp	4.13 ft	(F2-5)	Limiting unbraced length for limit state of yielding
Lr	11.9 ft	(F2-6)	Limiting unbraced length for limit state of inelastic LTB
r_{ts}^{2}	2.03 in	(F2-7)	Square of effective radius of gyration
С	1.00	(F2-8a,b)	LTB constant
F _{cr}	1014.81 ksi	(F2-4)	Elastic LTB stress
$M_p = (M_n)_1$	225.0 k*ft	(F2-1)	if L _b <= L _p Plastic moment
$(M_n)_2$	225.0 k*ft	(F2-2)	if $L_p < L_b \le L_r$ Inelastic buckling moment
$(M_n)_3$	225.0 k*ft	(F2-3)	if L _b > L _r Elastic buckling moment
Check fo	or Flange Local	Buckling	
λ	6.28		Width-thickness ratio for flange
λ_p	9.15	Table B4.1-	Limiting slenderness for compact flange
λ_r	24.08	1	Limiting slenderness for non-compact flange
	Compact		Slenderness Check
k _c	0.57	F3.2	Coefficient for slender, unstiffened elements
M_n	225.0 k*ft	(F3-1)	Nominal flexural strength
Flexural	Strength Summ	ary	
Φ_b	0.9		Resistance factor for bending
M_n	225.0 k*ft		Nominal flexural strength
φ M _n	202.5 k*ft		Design flexural strength
M_u	98.06 k*ft		Required flexural strength
D/C	0.48		Demand/Capacity ratio

Beam Shear Strength								
	ϕ_{ν}	1.0		Resistance factor for shear				
	а	0 in		Transverse stiffener clear spacing (0 = no stiffeners)				
	$\underline{_{v}}$	5.000	G2.1(ii)	Web plate shear buckling coefficient				
$(h/t_w)/$	$k_v E/F_y$	0.901		Web shear coefficient (formula limits)				
	` C _v	1.00	(G2-2)	Web shear coefficient				
	Vn	131.2 kips	(G2-1)	Nominal shear strength				
	ϕV_n	131.2 kips		Design shear strength				
	V_u	15.69 kips		Required shear strength				
	D/C	0.12		Demand/Capacity ratio				

Beam Deflecti	on	
L / 240	1.250 in	Total load deflection criteria
L / 360	0.833 in	Live load deflection criteria
Δ_{TL}	0.684 in	Maximum deflection under total load
Δ_{LL}	0.485 in	Maximum deflection under live load
I_x	375.00 in⁴	Moment of Inertia about Major Axis
I min	218.21 in ⁴	Minimum Moment of Inertia
D/C	0.58	

Title Date 11/11/21 Job No.

Subject By Sheet

Project Settings										
Concrete Strength, f'c	3	ksi	Alowable Soil Bearing, q	3	ksf					
Reinf Cover	2.50	in	Soil Density, γ	100	pcf					
Reinf Yeild Strength, f _v	60	ksi		•						

PASS PASS PASS PASS

	FOOTING I	DESIGN SU	MMARY		V2-2													Limit	States		
	Footing	Minimun	n Col Size	De	sign Capac		F	ooting Siz	ze	Bot	Reinf	Top I	Reinf	Soil H	leight	Soil Brg	Punching	BM Shear	Flexure	Uplift	Neg Flx
	Mark	В	N	$\varphi P_n^{\;\;(LRFD)}$	P/Ω (ASD)	P _{uplift} (ASD)	b	L	h	Qty	Bar	Qty	Bar	min	max	D/C	D/C	D/C	D/C	D/C	D/C
		(in)	(in)	(kip)	(kip)	(kip)	(in)	(in)	(in)					(ft)	(ft)						
,	F1	12.0	12.0	128	85	0	64	64	12	(6)	#5	()	#5	1.0	4.0	1.00	0.89	0.70	0.76	0.00	0.00
,	F2	12.0	12.0	162	108	0	72	72	14	(7)	#5	()	#5	1.0	4.0	1.00	0.85	0.64	0.84	0.00	0.00
,	F3	12.0	12.0	162	108	0	72	72	14	(7)	#5	()	#5	1.0	4.0	1.00	0.85	0.64	0.84	0.00	0.00
,	F4	12.0	12.0	113	75	0	60	60	12	(6)	#5	()	#5	1.0	4.0	1.00	0.77	0.61	0.70	0.00	0.00
, [F5	12.0	12.0	72	48	0	48	48	12	(5)	#5	()	#5	1.0	4.0	1.00	0.45	0.36	0.67	0.00	0.00
Ĺ	F6																				
Ĺ	F7																				
	F8																				
	F9																				
Ĺ	F10																				
Ĺ	F11																				
Ĺ	F12																				
Ĺ	F13																				
	F14																				
	F15																				
Į	F16																				
	F17																				
	F18																				
	F19																				
	F20																				

Title	Date	6/25/14	Job No.	
Subject	Bv		Sheet	

Pa /Pa

SECTION VIEW

CONCENTRIC SPREAD FOOTING DESIGN

Governing Code: ACI 318-11 V2-2

TOP REINF

FOOTING NUMBER = F1

DESIGN CAPACITY

FOOTING CRITERIA

BOTTOM REINFORCMENT

Quantity (6) = #5 Reinforcing bar = 60 ksi Reinforcing strength, fv = Reinforcing bar diam, db 0.63 in 0.31 in² Reinforcing bar Area, A_b = Reinf Clear Cover, Le 2.5 in

EFFECTIVE COLUMN

PUNCHING SHEAR FAILURE PLANE
SHEAR FAILURE PLANE
FLEXURE FAILURE PLANE
SPREAD FOOTING

PLAN VIEW

TOP REINFORCMENT

Quantity=()Reinforcing bar=#5Reinforcing bar diam=0.63 inReinforcing bar Area=0.31 in²

SOIL CRITERIA

MINIMUM COLUMN SIZE

Depth, B = 12.0 in Width, N = 12.0 in

DESIGN SUMMARY

Footing 5'-4" x 5'-4" x 12 " w/ (6) #5B EW

LIMIT STATE SUMMARY			
	D/C		Limit
Soil Bearing	1.00	≤	1.0
FTG Punching Shear	0.89	≤	1.0
FTG Beam Shear	0.70	≤	1.0
FTG Flexure	0.76	≤	1.0
Uplift	0.00	≤	1.0
FTG Negative Flexure	N/A	>	1.0

Title	Date	6/25/14	Job No.	
Subject	Ву		Sheet	

Governing Code: ACI 318-11 V2-2

FOOTING NUMBER

F1

SOIL BEARING

Service Load, P _a Ultimate Load, P _u		= =	85.3 kip 128.0 kip
Footing Width, b Footing Length, L Area of Footing, A	= bL	= = =	64 in 64 in 4096 in ²
Soil Allowable Applied Soil Pressure, q _a Ultimate Soil Rxn, q _{ii}	= P _a /A = P ₁ /A	= = =	3 ksf 3.0 ksf 0.031 ksi

q_a/q 1 ≤ 1.0 OK

FOOTING PUNCHING SHEAR

Resistance Factor, φ Depth of Reinforcing, d	_	h - L _e - d _b /2	=	0.75 9.2 in	
Depth of Reinfording, a	_	11 - L _e - u _b /2	-	9.2 111	
Effective Col Width, Be	=	В	=	12.0 in	
Effective Col Depth, N _e	=	N	=	12.0 in	
Perimeter, b _o	=	$2(N_e+d)+2(B_e+d)$	=	85 in	
α_{s}			=	40	
β	=	N_e/B_e	=	1.0	
Punching Force, R _u	=	P_u - q_u (N_e +d) (B_e +d)	=	114.0 kip	
Punching Shear Strength, V c					
Eqn (11-33)	=	(2+4/β)(f' _c)^0.5 b _o d	=	256 kip	
Eqn (11-34)	=	$[(\alpha_s d)/b_o + 2)(f'_c)^0.5 b_o d$	=	270 kip	
Eqn (11-35)	=	4(f' _c)^0.5 b _o d	=	171 kip	Controls
Punching Shear Design Stren	gth,	φR _n	=	128 kip	
				R	/ AR

 $R_u / \phi R_n$ $0.89 \leq 1.0 \text{ OK}$

	Title	Date	6/25/14	Job No.
'-	Subject	Ву		Sheet

Governing Code: ACI 318-11 V2-2

F1 **FOOTING NUMBER**

FOOTING BEAM SHEAR

Beam Shear Design Strength, φR_n 48.3 kip

> $R_u / \varphi R_n$ 0.70 ≤ 1.0 OK

FOOTING FLEXURE

Resistance Factor, ϕ

Distance to Moment, y	=	$b/2 - min(B_e, N_e)/2$	=	26.0 in
Moment, M _u	=	$q_u b y^2/2$	=	676.0 k-in
Minimum Steel, A _{s,min}	=	0.0018*b*h	=	$1.38 in^2$
Bars Used, n _b			=	(6)
Area of Steel, A _s	=	n _b *A _b	=	1.86 in ²
$A_{s.min}/A_{s}$			=	0.74
a	=	$A_s F_v/(0.85 f_c^{\dagger} b)$	=	0.68 in
Moment Capacity, M _n	=	A _s F _v (d - a/2)	=	987 k-in
Design Moment Capacity,φM _n		• • •	=	888 k-in

 $R_u / \varphi R_n$

0.9

0.76 ≤ 1.0 OK

UPLIFT

Uplift Load, P _{uplift}			=	0 kip	
Volume of Concrete, V _{ftq}	=	bLh	=	28 cuft	
Volume of Soil, V _{soil}	=	bLh _{soil}	=	28 cuft	
Dead Load, DL	=	$V_{ftg}^*\gamma_{conc} + V_{soil}^*\gamma$	=	7 kip	
Effective Dead Load, 0.6DL			=	4 kip	
				D/C	

0.00 ≤ 1.0 OK

FOOTING NEGATIVE FLEXURE

Soil weight, q _{soil}	=	$h_{max}\gamma$	=	2.8E-03 ksi
Footing Self Weight, q _{ftq}			=	1.0E-03 ksi
Moment, M _u	=	q_{soil} b $y^2/2$	=	83 k-in
Bars Used, n _b			=	0
Area of Steel, A _s	=	n _b *A _b	=	0 in ²
а	=	$A_s F_v/(0.85 f_c^{\dagger} b)$	=	0.00 in
Moment Capacity, M _n	=	$A_s F_v (d - a/2)$	=	0 k-in
Design Moment Capacity,φM _n			=	0 k-in

 $R_u / \varphi R_n$

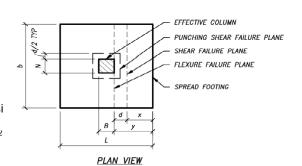
N/A > 1.0 NG

Title	Date	6/25/14	Job No.	
Subject	Bv		Sheet	

V2-2 Governing Code: ACI 318-11

F2 **FOOTING NUMBER**

DESIGN CAPACITY


Axial (ASD), P/Ω 108 kip Axial (LRFD), φP_n = Net Uplift (ASD), Puplift =

P. /P. 162 kip 0 kip TOP REINF **FOOTING CRITERIA** SECTION VIEW

3 ksi Concrete Strength, f'c = 72 in Footing Width, b = 72 in Footing Length, L = Footing Thickness, h 14 in

BOTTOM REINFORCMENT

Quantity (7) = #5 Reinforcing bar = 60 ksi Reinforcing strength, fv = Reinforcing bar diam, db 0.63 in 0.31 in² Reinforcing bar Area, A_b = Reinf Clear Cover, Le 2.5 in

TOP REINFORCMENT

Quantity () = #5 Reinforcing bar = 0.63 in Reinforcing bar diam Reinforcing bar Area 0.31 in² **SOIL CRITERIA** 3 ksf Soil Bearing, q = 100 pcf Soil Density, y = Min Soil Height, h_{soil} = 1.0 ft Max Soil Height, h_{max} 4.0 ft

MINIMUM COLUMN SIZE

12.0 in Depth, B = 12.0 in Width, N

DESIGN SUMMARY

6' - 0" 6' - 0" 14 " (7) #5B EW Footing

LIMIT STATE SUMMARY D/C Limit Soil Bearing 1.00 1.0 FTG Punching Shear 0.85 ≤ 1.0 FTG Beam Shear 0.64 ≤ 1.0 FTG Flexure 0.84 ≤ 1.0 Uplift 0.00 ≤ 1.0 N/A FTG Negative Flexure 1.0

Title	Date	6/25/14	Job No.	
				<u>.</u>
Subject	Ву		Sheet	

Governing Code: ACI 318-11 V2-2

FOOTING NUMBER

F2

SOIL BEARING

Service Load, P _a Ultimate Load, P _u		= =	108.0 kip 162.0 kip
Footing Width, b Footing Length, L Area of Footing, A	= bL	= = =	72 in 72 in 5184 in ²
Soil Allowable Applied Soil Pressure, q _a Ultimate Soil Rxn, q _{ii}	= P _a /A = P _u /A	= = =	3 ksf 3.0 ksf 0.031 ksi

q_a/q 1 ≤ 1.0 OK

> $R_u / \varphi R_n$ 0.85 \leq

1.0 OK

FOOTING PUNCHING SHEAR

Resistance Factor, φ Depth of Reinforcing, d	=	h - L _e - d _b /2	=	0.75 11.2 in	
Effective Col Width, B_e Effective Col Depth, N_e Perimeter, b_o α_s β	= = =	$\begin{array}{l} B \\ N \\ 2(N_e + d) + 2(B_e + d) \\ \\ N_e / B_e \end{array}$	= = = =	12.0 in 12.0 in 93 in 40 1.0	
Punching Force, R _u	=	P_u - q_u (N_e +d) (B_e +d)	=	145.2 kip	
Punching Shear Strength, V _c Eqn (11-33) Eqn (11-34) Eqn (11-35)	=	$(2+4/\beta)(f_c)^0.5 b_o d$ $[(\alpha_s d)/b_o + 2)(f_c)^0.5 b_o d$ $4(f_c)^0.5 b_o d$	= = =	341 kip 388 kip 227 kip	Controls
Punching Shear Design Stren	gth,	ΦR_n	=	171 kip	

Title	Date	6/25/14	Job No.	
Subject	Ву		Sheet	

Governing Code: ACI 318-11 V2-2

FOOTING NUMBER = F2

FOOTING BEAM SHEAR

$= q_u(x)L$	= = = =	0.75 18.8 in 42.3 kip 88.2 kip
- 2 (1 _c) 0.0 b d	_	00.2 KIP
	= $b/2 - [min(B_e, N_e)/2 + d]$ = $q_u(x)L$ = $2 (f_c)^0.5 b d$	= $b/2 - [min(B_e, N_e)/2 + d]$ = = $q_u(x)L$ =

Beam Shear Design Strength, ϕR_n = 66.2 kip

 $R_u / \varphi R_n$ 0.64 \leq 1.0 OK

FOOTING FLEXURE

Resistance Factor, ϕ

Design Moment Capacity,φM_n

Distance to Moment, y	=	b/2 - min(B _e , N _e)/2	=	30.0 in
Moment, M _u	=	$q_u b y^2/2$	=	1012.5 k-in
Minimum Steel, A _{s,min}	=	0.0018*b*h	=	1.81 in ²
Bars Used, n _b			=	(7)
Area of Steel, A _s	=	· n _b *A _b	=	2.17 in^2
$A_{s,min}/A_{s}$			=	0.84
a	=	$= A_s F_v/(0.85 f_c b)$	=	0.71 in
Moment Capacity, M _n	=	$= A_s F_y (d - a/2)$	=	1410 k-in

 $R_u / \varphi R_n$

0.9

1269 k-in

0.84 ≤ 1.0 OK

UPLIFT

Uplift Load, P _{uplift}			=	0	kip		
Volume of Concrete, V _{ftg}	=	bLh	=	42	cuft		
Volume of Soil, V _{soil}	=	bLh _{soil}	=	36	cuft		
Dead Load, DL	=	$V_{ftg}^*\gamma_{conc} + V_{soil}^*\gamma$	=	10	kip		
Effective Dead Load, 0.6DL			=	6	kip		
					D/C		
					0.00	≤	1.0 OK

FOOTING NEGATIVE FLEXURE

Soil weight, q _{soil}	=	$h_max\gamma$	=	2.8E-03 ksi
Footing Self Weight, q _{ftq}			=	1.2E-03 ksi
Moment, M _u	=	q_{soil} b $y^2/2$	=	129 k-in
Bars Used, n _b		100 2	=	0
Area of Steel, A _s	=	$n_b^*A_b$	=	0 in ²
а	=	$A_s F_v/(0.85 f_c^{\dagger} b)$	=	0.00 in
Moment Capacity, M _n	=	$A_s F_v (d - a/2)$	=	0 k-in
Design Moment Capacity,φM _n			=	0 k-in

 $R_u / \varphi R_n$ N/A > 1.0 NG

Column Base Plates for Axial Compression (HSS Columns)

per AISC Steel Manual, 13th Ed. Or 14th Ed, p 14-4, LRFD Analysis

Design	Mark	Column Section	В	N	f' _c	P_{u}	F_y	A ₂	t _{min}	Recommended BP	Comments
			(in)	(in)	(psi)	(kips)	(ksi)	(in ²)			
C1	0.570088	HSS4X4X1/2	10	10	4000	98	50		0.71 in	10"x10"x0.75"	(E) Column
C2	0.857353	HSS6X6X1/2	12	12	4000	104	50		0.64 in	12"x12"x0.75"	(E) Column
C3	1.176239	HSS4X4X1/2	5.5	12	4000	88	50		1.00 in	5.5"x12"x1"	

Project Name: Basecamp Project Number21304

Engineer: SYE Date: 11/11/2021

Project Name: Basecamp

Project Number: 21304

Engineer: SYE

Date: 11/11/2021

Column Base Plates for Axial Compression per AISC Steel Manual, 13th Ed. Or 14th Ed, p 14-4, LRFD Analysis

General I	n	р	u
-----------	---	---	---

General Input			
	C1		Base Plate Design
Column Section	HSS4X4X1/2		HSS Column
В	10	in	Width Base Plate
N	10	in	Length of Base Plate
f' _c	4000	psi	28-day Compressive Strength of Concrete
P_u	98	kips	Required Compressive Strength
F _y	50	ksi	Yield Strength of Base Plate
В	4.00	in	Width of HSS
H	4.00	in	Depth of HSS
Calculations			
A ₁	100	in ²	Area of steel concentrically bearing on concrete support
A_2		in ²	area of the lower base of the largest frustum of a pyramid,
A 2	U	in	contained wholly within the support and having for its upper base the loaded areas, and having side slopes of 1 vertical to 2 horizontal (Enter 0 to ignore bearing load multiplier)
$sqrt(A_2/A_1) \le 2.0$	1.000		Bearing load multiplier
ϕP_{p}	221	kips	Design bearing load on concrete (φ=0.65 per ACI 318-02)
X	0.44		
λ	0.76		
λn'	0.76		Cantilever dimension for base plate
n	3.40		Cantilever dimension for base plate
m	3.10		Cantilever dimension for base plate
1	3.40	ın	Critical cantilever dimension for base plate
t _{min}	0.71	in	Minimum base plate thickness
	3/4	in	Practical base plate thickness
base plate dimensions	10"x10"x0.		
weight of baseplate base plate mark	21.30 0.570087713		

Comments: (E) Column

201-16

Project Name: Basecamp

Engineer: SYE Project Number: 21304 Date: 11/11/2021

Column Base Plates for Axial Compression (HSS Columns) per AISC Steel Manual, 13th Ed. Or 14th Ed. p 14-4, LRFD Analysis

General	l Input
---------	---------

General Input			
	C3		Base Plate Design
Column Section	HSS4X4X1/2		HSS Column
В	5.5	in	Width Base Plate
Ν	12	in	Length of Base Plate
f′ _c	4000	psi	28-day Compressive Strength of Concrete
P_u	88	kips	Required Compressive Strength
F _y	36	ksi	Yield Strength of Base Plate
. у		ito:	Tiola of ongri of Base Flate
В	4.00	in	Width of HSS
H	4.00		Depth of HSS
			'
Calculations			
A_1	66	in ²	Area of steel concentrically bearing on concrete support
A_2		in ²	area of the lower base of the largest frustum of a pyramid,
			contained wholly within the support and having for its upper base
			the loaded areas, and having side slopes of 1 vertical to 2
			horizontal (Enter 0 to ignore bearing load multiplier)
$sqrt(A_2/A_1) <= 2.0$	1.000		Bearing load multiplier
ϕP_{p}	146	kips	Design bearing load on concrete (φ=0.65 per ACI 318-14)
, ,		·	
			m baseplate bearing area
A reqd	40	in ²	minimum area for bearing conconrete
X	0.60		
λ	0.95		
λn'	0.95	in	Cantilever dimension for base plate
n	1.15	in	Cantilever dimension for base plate
m	4.10	in	Cantilever dimension for base plate
1	4.10	in	Critical cantilever dimension for base plate
t _{min}	1.18		Minimum base plate thickness
	1 1/4	in	Practical base plate thickness
haaa ml-4-			
base plate		25"	
dimensions	23.43	lh	
weight of baseplate base plate mark	23.43 B1A		
pase plate Mark	DIA		

Title

Description

 Basecamp Infill
 Job No.
 21304

 Date
 11/2/2021

 By
 SYE

Web Check at Concentrated Load per AISC 360 15th Edition - LRFD Design

Column/Beam Connection

F _{yw} 50 ksi Yield strength of web F _{ow} 656 ksi Tensile strength of web F _{ow} 656 ksi Tensile strength of web E 20000 ksi t _v 0.32 in Web Thickness t _v 0.32 in Flange Thickness k 0.93 in Fillet Dimension Depth h 16.05 in Web Height D _v 6.02 in Flange Width l _v 11 in Length of Bearing C _v 960000 ksi See definition in Section J10.3 Stiffener Input Stiffener Width, b Stiffener Provided Thickness, D 1/4 in mit State Summary be Local Vielding be Local Vielding by A 0.02 ≤ 1.0 When the concentrated force to be resisted is applied at a distance from the member end that is greater than the depth of the member, d when the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d when the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to d / 2 When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to d	Shape	W18x40					Concentrated Load Input		
From 65 ksi Tensile strength of web E 29000 ksi Modulus of Elasticity Ves Ves Vey 0.32 in Web Thickness Ves Ves Ves Ves Ves Ves Ves Ves Ves	F _{yw}	50	ksi	Yield strength of we	b		Concentrated Load, P _u	60	kips
t _w 0.32 in Veb Thickness Sidesway Buckling 1.0			ksi	Tensile strength of v	web		Location of Load from Member End	60	in
t, 0.32 in Web Inickness Sidesway Buckling					у		Compression Flange Restrained for	Yes	
k 0.93 in d 17:90 in Depth									
d 17.90 in Neb Height h 16.05 in Web Height b₁ 6.02 in Flange Width l₀ 111 in Length of Bearing Q₁ 1 See definition in Section J10.3 Stiffener Type C, 960000 ksi See definition in Section J10.4 Stiffener Type Stiffener Hickness, t₀ 0.5 in Yield strength of stiffener, F₀ 36 ksi Stiffener Weld Thickness, D 1/4 in witt State Summary Ru/ φRn				•				16	ın
h 16.05 in Web Height b₁ 6.02 in Flange Width b₁ 11 in Length of Bearing Q₁ 1 See definition in Section J10.3 Stiffener Input Stiffener Input Stiffener Input Stiffener Input Stiffener Input Stiffener width, b 6 in 0.5 in Stiffener Width, b 6 in 0.5 in Stiffener Width, b 58 ksi Stiffener Weld Thickness, t₂ 0.5 in 1/4							either flange at the point of load, Lb		
Dept				•					
Stiffener Input Stiffener Input	-						Compression load occurs on both		
Q ₁ 1 See definition in Section J10.3 Stiffener Type Full Depti Cr, 960000 ksi See definition in Section J10.4 Stiffener width, b Stiffener width, b Stiffener width, b Stiffener width, b Stiffener, F _{vs} 36 ksi Yield strength of stiffener, F _{vs} 58 ksi Stiffener Weld Thickness, D 1/4 in with state Summary Part	b_f	6.02	in	Flange Width			sides of beam?	Yes	
Stiffener width, b Stiffener width, b Stiffener width, b Stiffener thickness, t_s 0.5 in Yield strength of stiffener, F_{ys} 36 ksi Yield strength of stiffener, F_{us} 58 ksi Stiffener Weld Thickness, D 11/4 in Mit State Summary Ru / ϕR_n Limit beb Local Yielding 0.24 \leq 1.0 beb Local Crippling 0.35 \leq 1.0 beb Sidesway Buckling N/A \leq 1.0 beb Compression Buckling 1.18 \leq 1.0 beb Compression Buckling 1.18 \leq 1.0 ffener Shear ffener Shear ffener Buckling 0.03 \leq 1.0 ffener Buckling 0.03 \leq 1.0 When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to $d/2$ When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to $d/2$ When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to $d/2$	I_b	11	in	Length of Bearing			Stiffener Input		
Stiffener thickness, t _s 0.5 in Yield strength of stiffener, F _{ys} 36 ksi Yield strength of stiffener, F _{us} 58 ksi Stiffener Weld Thickness, D 11/4 in Mit State Summary R _u / ΦR _n Limit be Local Yielding 0.24 ≤ 1.0 be Sidesway Buckling 0.35 ≤ 1.0 be Sidesway Buckling 1.18 > 1.0 be Sidesway Buckling 1.18 > 1.0 be Compression Buckling 0.02 ≤ 1.0 ffener Shear 0.03 ≤ 1.0 ffener Buckling 0.02 ≤ 1.0 ffener Buckling 0.03 ≤ 1.0 Meb Compression Buckling OK, Stiffener Provided ffener Buckling 0.03 ≤ 1.0 Men the concentrated force to be resisted is applied at a distance from the member end that is greater than the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2 When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2 When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2 When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2	Q_f	1		See definition in Sec	ction J10.3	3	Stiffener Type	Full	Depth
Tyield strength of stiffener, F_{ys} 36 ksi Yield strength of stiffener, F_{us} 58 ksi Stiffener Weld Thickness, D 1/4 in $\frac{F_{ys}}{F_{ys}}$ 1/4 in \frac	C_r	960000	ksi	See definition in Sec	ction J10.4	ļ	Stiffener width, b	6	in
Stiffener Weld Thickness, D Sk ksi Sk							Stiffener thickness, t _s	0.5	in
Stiffener Weld Thickness, D Sk ksi Sk							Yield strength of stiffener, F _{vs}	36	ksi
The state Summary Ru / φRn							•		
mit State Summary Ru / ϕR_n Limit ab Local Yielding b Local Crippling 0.24 ≤ 1.0 b Sidesway Buckling b Compression Buckling 1.18 > 1.0 Web Compression Buckling OK, Stiffener Provided ffener Shear 0.03 ≤ 1.0 ffener Buckling 0.02 ≤ 1.0 ffener Buckling 0.03 ≤ 1.0 b Local Yielding per J10.2 D/C 0.24 ϕR_n 246.3 kips When the concentrated force to be resisted is applied at a distance from the member end that is greater than the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d B Local Crippling per J10.3 When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to $d / 2$ When the concentrated force to be resisted is applied at a distance from the member end that is less than $d / 2$									
φ 1.0 D/C 0.24 φR _n 246.3 kips When the concentrated force to be resisted is applied at a distance from the member end that is greater than the depth of the member, d When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d when the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, d when the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2 When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2 When the concentrated force to be resisted is applied at a distance from the member end that is less than d / 2	Veb Comp Stiffener S Stiffener W	oression Bu hear /eld		1.18 0.03 0.02	> ≤ ≤	1.0 1.0 1.0	Web Compression Buckling OK, Stiffer	ner Provided	
D/C 0.24	Veb Loca	l Yielding	per J10.2						
member end that is greater than the depth of the member, <i>d</i> When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member, <i>d</i> Beb Local Crippling per J10.3 \$\phi\$ 0.75 D/C 0.35 \$\phi R_n\$ 171.9 kips When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to <i>d</i> / 2 When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to <i>d</i> / 2			ф	1.0					
member end that is less than or equal to the depth of the member, <i>d</i> be Local Crippling per J10.3 φ 0.75 D/C 0.35 φR _n 171.9 kips When the concentrated force to be resisted is applied at a distance from the member end that is greater than or equal to <i>d</i> / 2 When the concentrated force to be resisted is applied at a distance from the member end that is less than <i>d</i> / 2	D/C	0.24	ϕR_n	246.3 kips					om the
	D/C	0.29	ϕR_n	209.8 kips			• • • • • • • • • • • • • • • • • • • •		om the
D/C 0.35	Veb Loca	l Crippling	<u>per J1</u> 0.	3					
member end that is greater than or equal to $d/2$ When the concentrated force to be resisted is applied at a distance from the member end that is less than $d/2$			ф	0.75					
member end that is less than d / 2	D/C	0.35	ϕR_n	171.9 kips				a distance fro	om the
D/C 0.70 ϕR_n 85.9 kips For <i>lb</i> / <i>d</i> \leq 0.2							• • • • • • • • • • • • • • • • • • • •	a distance fro	om the
	D/C	0.70	ϕR_n	85.9 kips	For Ib /	$d \leq 0.2$			

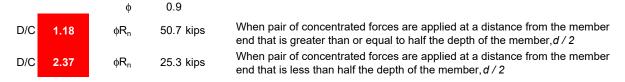
 ϕR_n D/C 0.63 94.8 kips For lb / d > 0.2

Web Sidesway Buckling per J10.4

0.85

Compression flange is restrained against rotation

 $(h/t_w)/(L_b/b_f)$ 19.17 compactness parameter


D/C N/A φR_n n/a kips Sidesway web buckling will not control if the compactness parameter is > 2.3

Compression flange is not restrained against rotation

 $(h/t_w)/(L_b/b_f)$ 19.17 compactness parameter

D/C N/A φR_n n/a kips Sidesway web buckling will not control if the compactness parameter is > 1.7

Web Compression Buckling per J10.5

Partial Height Stiffener Design (assumes identical stiffeners, one on each side of web. Such stiffeners are appropriate for web yielding, web crippling, and web sidesway.)

 ϕR_n 171.9 kips Governing design strength (from above) for partial length stiffener design. R. 60 kips Required strength

Stiffener Definition

 b_f 6.02 in Flange width

1.85 in Minimum stiffener width per J10.8 b_{min}

b 6 in Stiffener width

0.375 in Minimum stiffener thickness

0.5 in Stiffener thickness t_s

0.315 in Beam web thickness t_w

Minimum stiffener length (half the depth of the web) L_{min} 8.95 in

0 in Actual stiffener length L_s

 \boldsymbol{A}_{vs} 0.00 in² Shear area of single stiffener

Shear Check per J4.2

 V_{u} -55.9 kips Required shear strength per stiffener = $(Ru - \phi Rn)/2$

Resistance factor for shear φ 1.0

0.0 kips

 ϕV_n Stiffener shear design strength D/C

N/A

Weld Check per J2.4

 V_{u} -55.9 kips Required shear strength per stiffener = $(Ru - \phi Rn) / 2$

φ 0.75 Resistance factor for shear D_{max} 0.29 in Maximum Effective Weld Size

D 0.25 in Weld Size -1.81 in I_{w} Weld Length

 $\varphi V_n \\$ 0.0 kips Weld shear design strength

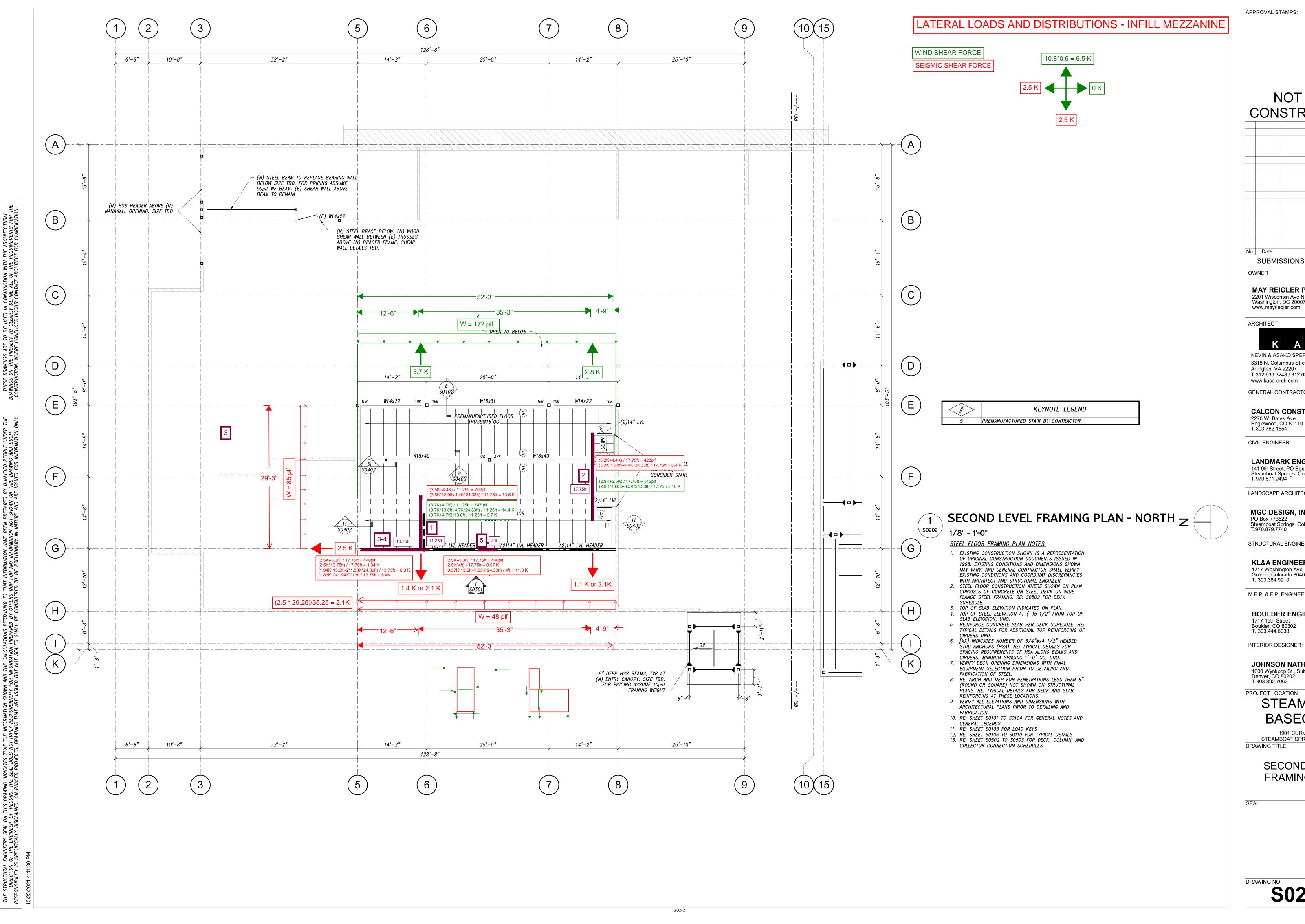
Full Height Stiffener Design (assumes identical stiffeners, one on each side of web. Such stiffeners are appropriate if Compression Buckling of Web is an issue.)

 ϕR_n Input governing design strength (from above) for full length stiffener design. 50.7 kips

 R_u Required strength 60 kips

Stiffener Definition

 b_f 6.02 in Flange width


1.85 in Minimum stiffener width per J10.8 b_{min}

b 6 in Stiffener width

t _{s_min}	0.375	in	Minimum stiffener	thickness				
t _s	0.5	in	Stiffener thickness					
t _w	0.315	in	Beam web thickne	SS				
L _s	16.85		Stiffener length					
L _{seff}	13.23		•	Effective Stiffener Length accounting for beam k and clearances required				
A _{e_end}	7.191		Effective area of er					
A _{e_interior}	8.481			terior stiffener column				
l _e	77.819			of inertia of stiffeners about major axis				
_	3.290		Radius of gyration					
r _{end}	3.029		••	for interior stiffeners				
$r_{interior}$ A_{v}	6.61		Shear area of sing					
Shear Che			Official area of sirilg	ic suiterier				
V _u		kips	Required shear str	ength per stiffener = $(Ru - \phi Rn) / 2$				
ф	1.0	МРО	Resistance factor f					
φVn	142.8	kips	Stiffener shear des	sign strength	D/C	0.03		
Weld Chec	k per J2.4	1						
V_u	4.7	kips	Required shear str	ength per stiffener = $(Ru - \phi Rn) / 2$				
ф	0.75		Resistance factor f					
D_{max}	0.29		Maximum Effective	e Weld Size				
D	0.25		Weld Size					
I _w	13.23		Weld Length		- 10			
φV _n	294.5	kips	Weld shear design	strength	D/C	0.02		
Buckling C		ion ner .	110 4					
V _u		kips		sive strength = <i>Ru</i> - <i>∮Rn</i>				
· u	0.0	ф		sive strength – rta-φrtir				
K	0.75	'	Effective Length Fa	actor				
L_c	12.0345	in	Effective Length if	Section per J10.8				
Stiffener is	at the Inte		e Beam, > 12.5t _w					
		L _c /r	3.97	Compactness Parameter - Interior				
D/C	0.03	ϕR_n	274.772 kips	When is stiffener section is determined to be compact per J10.4 interior of the beam	and is a	at the		
O4:ff :-	interior of the beam							
Stiffener is at the End of the Beam, ≤ 12.5t _w								
221101 10	at the End							
251101 10	at the End	l of the B L _c /r		Compactness Parameter - End				
D/C	at the End		3.66		1 and is a	at the		
D/C	0.04	L _c /r ∳R _n	3.66 233.0 kips	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4	1 and is a	at the		
	0.04	L _c /r ∳R _n	3.66 233.0 kips	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4	1 and is a	at the		
D/C Nonslende	0.04 r Compre	L_c/r ϕR_n ession pe	3.66 233.0 kips er E3 0.90 12	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4	1 and is a	at the		
D/C Nonslende	0.04 r Compre	L_c/r ϕR_n ession pe	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter	1 and is a	at the		
D/C Nonslende	0.04 r Compre	L_c/r ϕR_n ession pe	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam	4 and is a	at the		
D/C Nonslende	0.04 r Compre	L_c/r ϕR_n ession pe	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter	1 and is a	at the		
D/C Nonslende	0.04 r Compre	L_c/r ϕR_n ession pe ϕ λ rior of the	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress Critical Buckling Stress				
D/C Nonslende	0.04 r Compre	L_c/r ϕR_n ession per ϕ λ rior of the L_c/r F_e	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi 36.0	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress				
D/C Nonslende Stiffener is	0.04 or Compresat the Inte	L_c/r ϕR_n ession pe λ rior of the L_c/r F_e ϕR_n	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi 36.0 274.5 kips	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress Critical Buckling Stress When is stiffener section is determined to be nonslender per B4				
D/C Nonslende Stiffener is	0.04 or Compresat the Inte	L_c/r ϕR_n ession pe λ rior of the L_c/r F_e ϕR_n	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi 36.0 274.5 kips eam, ≤ 12.5t _w	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress Critical Buckling Stress When is stiffener section is determined to be nonslender per B4 at the interior of the beam				
D/C Nonslende Stiffener is	0.04 or Compresat the Inte	L_c/r ϕR_n ession pe λ rior of the L_c/r ϕR_n I of the B L_c/r	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi 36.0 274.5 kips eam, ≤ 12.5t _w	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress Critical Buckling Stress When is stiffener section is determined to be nonslender per B4 at the interior of the beam Compactness Parameter - End				
D/C Nonslende Stiffener is	0.04 or Compresat the Inte	L_c/r ϕR_n ession per λ rior of the L_c/r ϕR_n I of the B L_c/r F_e	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi 36.0 274.5 kips eam, ≤ 12.5t _w 3.66 21387.3 ksi	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress Critical Buckling Stress When is stiffener section is determined to be nonslender per B4 at the interior of the beam Compactness Parameter - End Elastic Buckling Stress				
D/C Nonslende Stiffener is	0.04 or Compresat the Inte	L_c/r ϕR_n ession pe λ rior of the L_c/r ϕR_n I of the B L_c/r	3.66 233.0 kips er E3 0.90 12 e Beam, > 12.5t _w 3.97 18134.2 ksi 36.0 274.5 kips eam, ≤ 12.5t _w 3.66 21387.3 ksi 36.0 ksi	Compactness Parameter - End When is stiffener section is determined to be compact per J10.4 end of the beam Slenderness Parameter Compactness Parameter - Interior Elastic Buckling Stress Critical Buckling Stress When is stiffener section is determined to be nonslender per B4 at the interior of the beam Compactness Parameter - End	1.1 and E	E3 and is		

Slender Co	ompressi	on per E7		
		ф	0.90	
		λ	12	Slenderness Parameter
		λ_{r}	12.77	Limiting Width-to-Thickness Ratio
Stiffener is	at the Inte	rior of the E	Beam, > 12.5t _w	
		F_{el}	90.5 ksi	Elastic Buckling Stess - Slender
		b_{e}	6.00 in	Effective Width of Slender Stiffener
		$A_{e_interior}$	8.48 in ²	Effective area of interior stiffener column
D/C	0.03	ϕR_n	274.5 kips	When is stiffener section is determined to be slender per B4.1 and E7 and is at the interior of the beam
Stiffener is	at the End	d of the Bea	m, ≤ 12.5t _w	
		F_{el}	90.5 ksi	Elastic Buckling Stess - Slender
		b_{e}	6.00 in	Effective Width of Slender Stiffener
		A_{e_end}	7.19 in ²	Effective area of interior stiffener column
D/C	0.04	ϕR_n	232.8 kips	When is stiffener section is determined to be slender per B4.1 and E7 and is at the end of the beam

202. LATERAL DESIGN

APPROVAL STAMPS:

NOT FOR CONSTRUCTION

Description SUBMISSIONS & REVISIONS

MAY REIGLER PROPERTIES 2201 Wisconsin Ave NW Suite 200 Washington, DC 20007 www.mayriegler.com

KEVIN & ASAKO SPERRY ARCHITECTURE

3318 N. Columbus Street Arlington, VA 22207 T.312.636.3248 / 312.636.4252 www.kasa-arch.com

GENERAL CONTRACTOR

CALCON CONSTRUCTORS, INC. 2270 W. Bates Ave. Englewood, CO 80110 T.303.762.1554

CIVIL ENGINEER

LANDMARK ENGINEERING 141 9th Street, PO Box 774943 Steamboat Springs, Colorado 80477 T.970.871.9494

LANDSCAPE ARCHITECT

MGC DESIGN, INC. PO Box 773522 Steamboat Springs, Colorado 80477 T.970.879.7740

STRUCTURAL ENGINEER

KL&A ENGINEERS & BUILDERS

1717 Washington Ave. Golden, Colorado 80401 T. 303.384.9910

M.E.P. & F.P. ENGINEERS

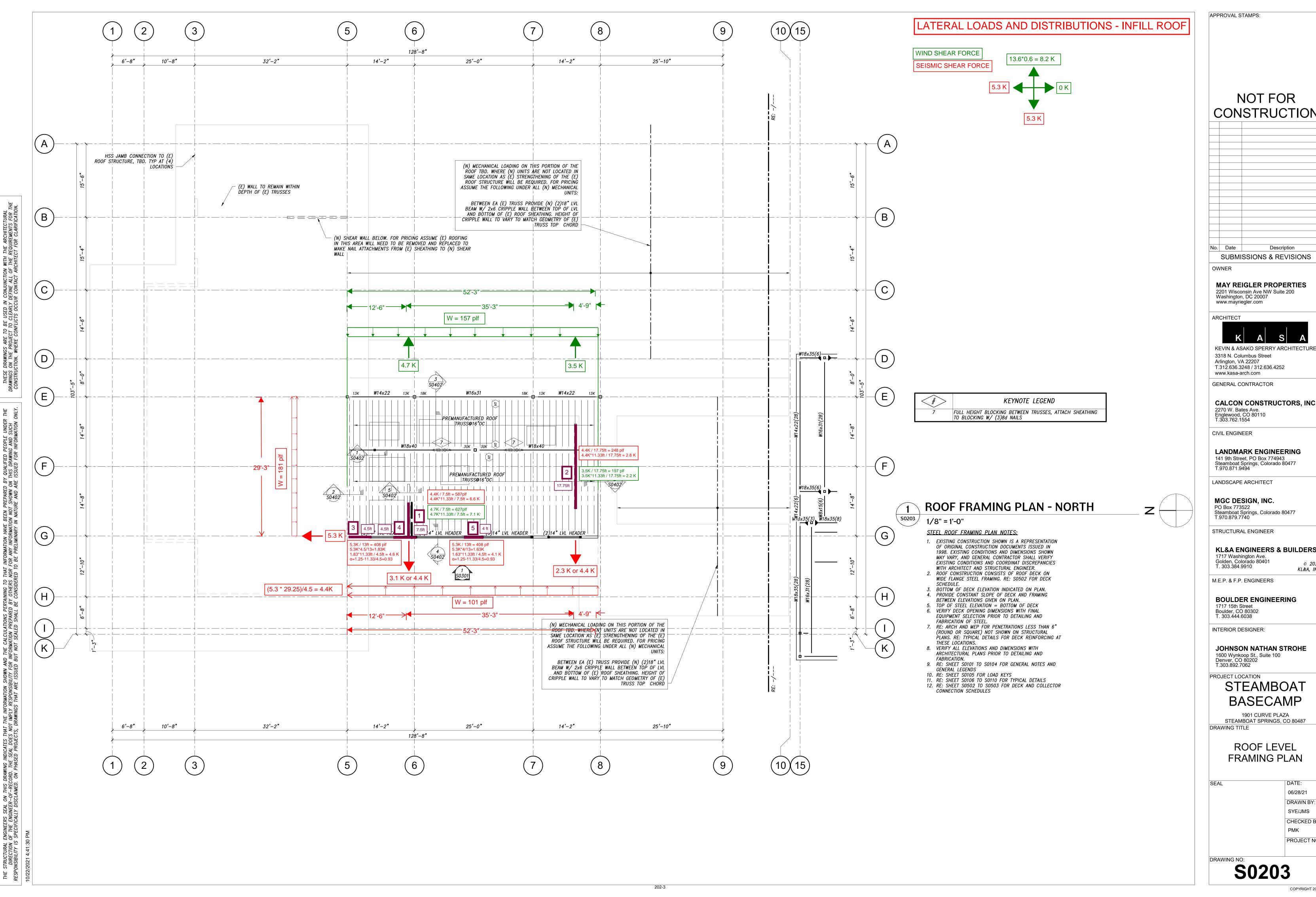
BOULDER ENGINEERING

KL&A, INC

JOHNSON NATHAN STROHE 1600 Wynkoop St., Suite 100 Denver, CO 80202 T.303.892.7062

STEAMBOAT BASECAMP

1901 CURVE PLAZA STEAMBOAT SPRINGS, CO 80487 DRAWING TITLE


> SECOND LEVEL FRAMING PLAN

DATE: 07/14/21 DRAWN BY: SYE/JMS CHECKED BY: PROJECT NO:

COPYRIGHT 2019

DRAWING NO:

S0202

APPROVAL STAMPS:

NOT FOR CONSTRUCTION

Description SUBMISSIONS & REVISIONS

MAY REIGLER PROPERTIES 2201 Wisconsin Ave NW Suite 200 Washington, DC 20007 www.mayriegler.com

ARCHITECT

3318 N. Columbus Street Arlington, VA 22207 T.312.636.3248 / 312.636.4252 www.kasa-arch.com

GENERAL CONTRACTOR

CALCON CONSTRUCTORS, INC. 2270 W. Bates Ave. Englewood, CO 80110 T.303.762.1554

CIVIL ENGINEER

LANDMARK ENGINEERING 141 9th Street, PO Box 774943 Steamboat Springs, Colorado 80477 T.970.871.9494

LANDSCAPE ARCHITECT

MGC DESIGN, INC. PO Box 773522 Steamboat Springs, Colorado 80477 T.970.879.7740

STRUCTURAL ENGINEER

KL&A ENGINEERS & BUILDERS

1717 Washington Ave. Golden, Colorado 80401 T. 303.384.9910 KL&A, INC

M.E.P. & F.P. ENGINEERS

BOULDER ENGINEERING 1717 15th Street

Boulder, CO 80302 T. 303.444.6038

JOHNSON NATHAN STROHE 1600 Wynkoop St., Suite 100 Denver, CO 80202 T.303.892.7062

STEAMBOAT BASECAMP

1901 CURVE PLAZA STEAMBOAT SPRINGS, CO 80487 DRAWING TITLE

> **ROOF LEVEL** FRAMING PLAN

DATE: 06/28/21 DRAWN BY: SYE/JMS CHECKED BY: PROJECT NO:

COPYRIGHT 2019

DRAWING NO:

S0203

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Drafts_211102_HD1_SYE Date: 11/12/2021

Fastening point:

Specifier's comments:

1 Input data

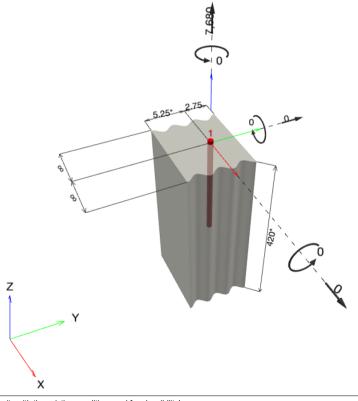
Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 5/8

 $\begin{tabular}{ll} Item number: & not available \\ Effective embedment depth: & $h_{ef} = 12.000 \ in.$ \\ Material: & ASTM F 1554 \\ Evaluation Service Report: & Hilti Technical Data \\ \end{tabular}$

Issued I Valid: - | -

Proof: Design Method ACI 318-14 / CIP

Stand-off installation:


Profile:

Base material: cracked concrete, 4000, $f_c' = 4,000 \text{ psi}$; h = 420.000 in.

Reinforcement: tension: condition A, shear: condition B; anchor reinforcement: tension

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

202-4

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Drafts 211102 HD1 SYE Date: 11/12/2021

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 7,680; V_x = 0; V_y = 0;$	no	79
		$M = 0 \cdot M = 0 \cdot M = 0$		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	7,680	0	0	0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ∮ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	7,680	9,831	79	OK
Pullout Strength*	7,680	10,170	76	OK
Concrete Breakout Failure** ¹	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction y+**	7,680	14,063	55	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

2

¹ Tension Anchor Reinforcement has been selected!

www.hilti.com

 Company:
 Page:
 3

 Address:
 Specifier:

 Phone I Fax:
 E-Mail:

Design: Drafts_211102_HD1_SYE Date: 11/12/2021

3.1 Steel Strength

Fastening point:

 $N_{sa} = A_{se,N} f_{uta}$ ACI 318-14 Eq. (17.4.1.2) $\phi N_{sa} \ge N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.23 58,000

Calculations

N_{sa} [lb] 13,108

Results

 $\frac{N_{sa}[lb]}{13,108}$ $\frac{\phi}{steel}$ $\frac{\phi}{N_{sa}[lb]}$ $\frac{N_{ua}[lb]}{9,831}$ $\frac{7,680}{100}$

3.2 Pullout Strength

 $\begin{array}{ll} N_{pN} &= \psi_{\,c,p} \,\, N_p & \qquad & \text{ACI 318-14 Eq. (17.4.3.1)} \\ N_p &= 8 \,\, A_{brg} \,\, \dot{f_c} & \qquad & \text{ACI 318-14 Eq. (17.4.3.4)} \\ \varphi \,\, N_{pN} \geq N_{ua} & \qquad & \text{ACI 318-14 Table 17.3.1.1} \end{array}$

Variables

Calculations

N_p [lb] 14,528

Results

 N_{pn} [lb]
 φ concrete
 φ N_{pn} [lb]
 N_{ua} [lb]

 14,528
 0.700
 10,170
 7,680

202-6

3

www.hilti.com

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

Design: Drafts 211102 HD1 SYE Date: 11/12/2021

Fastening point:

3.3 Concrete Side-Face Blowout, direction y+

$$\begin{array}{lll} {\rm N_{sb}} & = 160 \; \alpha_{\rm corner} \; c_{\rm a1} \; \sqrt{A_{\rm brg}} \; \; \lambda_{\rm a} \; \; \sqrt{f_{\rm c}} \\ & \phi \; \; N_{\rm sb} \; \geq N_{\rm ua} \end{array} \qquad \begin{array}{ll} {\rm ACI \; 318\text{-}14 \; Eq. \; (17.4.4.1)} \\ {\rm ACI \; 318\text{-}14 \; Table \; 17.3.1.1} \end{array}$$

$$\alpha_{\text{corner}} = \frac{\left(1 + \frac{C_{a2}}{C_{a1}}\right)}{4}$$
 see ACI 318-14, Section 17.4.4.1

Variables

Calculations

Results

N _{sb} [lb]	ф _{concrete}	φ N _{sb} [lb]	N _{ua} [lb]	
18,750	0.750	14,063	7,680	

202-7

4

www.hilti.com

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Drafts 211102 HD1 SYE	Date:	11/12/2021
Fastening point:			

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The design of Anchor Reinforcement is beyond the scope of PROFIS Engineering. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- · Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Engineering calculations.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD1_SYE Date: 11/12/2021

Fastening point:

6 Installation data

Anchor type and diameter: Hex Head ASTM F 1554 GR.

6

36 5/8

Profile: - Item number: not available

Hole diameter in the fixture: - Maximum installation torque: -

Hole diameter in the base material: - in. Hole depth in the base material: 12.000 in.

Minimum thickness of the base material: 12.922 in.

Hilti Hex Head headed stud anchor with 12 in embedment, 5/8, Steel galvanized, installation per instruction for use

Coordinates Anchor in.

Plate thickness (input): -

Anchor	X	у	C _{-x}	C+x	C _{-y}	c _{+y}	
1	0.000	0.000	-	-	5.250	2.750	

www.h	ıilti	.com	1
-------	-------	------	---

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Drafts 211102 HD1 SYE	Date:	11/12/202
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD2_SYE Date: 11/12/2021

Fastening point:

Specifier's comments:

1 Input data

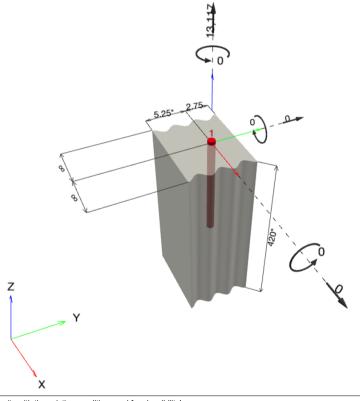
Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 7/8

 $\begin{tabular}{ll} Item number: & not available \\ Effective embedment depth: & $h_{ef} = 12.000 \ in.$ \\ Material: & ASTM F 1554 \\ Evaluation Service Report: & Hilti Technical Data \\ \end{tabular}$

Issued I Valid: - | -

Proof: Design Method ACI 318-14 / CIP

Stand-off installation:


Profile:

Base material: cracked concrete, 4000, $f_c' = 4,000 \text{ psi}$; h = 420.000 in.

Reinforcement: tension: condition A, shear: condition B; anchor reinforcement: tension

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Drafts 211102 HD2 SYE Date: 11/12/2021

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 13,117; V_x = 0; V_y = 0;$	no	67
		$M_{x} = 0$; $M_{y} = 0$; $M_{z} = 0$;		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	13.117	0	0	0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ∮ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	13,117	20,097	66	OK
Pullout Strength*	13,117	19,958	66	OK
Concrete Breakout Failure** ¹	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction y+**	13,117	19,701	67	OK

202-12

2

2

^{*} highest loaded anchor **anchor group (anchors in tension)

¹ Tension Anchor Reinforcement has been selected!

www.hilti.com

 Company:
 Page:

 Address:
 Specifier:

 Phone I Fax:
 E-Mail:

Design: Drafts_211102_HD2_SYE Date: 11/12/2021

3.1 Steel Strength

Fastening point:

 $N_{sa} = A_{se,N} f_{uta}$ ACI 318-14 Eq. (17.4.1.2) $\phi N_{sa} \ge N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.46 58,000

Calculations

N_{sa} [lb] 26,796

Results

 $\frac{N_{sa}[lb]}{26,796}$ $\frac{\phi}{0.750}$ $\frac{\phi}{0.097}$ $\frac{\phi}{0.3117}$

3.2 Pullout Strength

 $\begin{array}{ll} {\rm N_{pN}} &= \psi_{\,{\rm c,p}}\,{\rm N_p} & {\rm ACI\,318\text{-}14\,Eq.\,(17.4.3.1)} \\ {\rm N_p} &= 8\,{\rm A_{brg}}\,\dot{\rm f_c} & {\rm ACI\,318\text{-}14\,Eq.\,(17.4.3.4)} \\ {\rm \phi}\,\,{\rm N_{pN}} \geq {\rm N_{ua}} & {\rm ACI\,318\text{-}14\,Table\,17.3.1.1} \end{array}$

Variables

Calculations

N_p [lb] 28,512

Results

 N_{pn} [lb]
 φ concrete
 φ N_{pn} [lb]
 N_{ua} [lb]

 28,512
 0.700
 19,958
 13,117

202-13

3

www.hilti.com

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

Design: Drafts 211102 HD2 SYE Date: 11/12/2021

Fastening point:

3.3 Concrete Side-Face Blowout, direction y+

$$\begin{array}{ll} {\rm N_{sb}} & = 160 \ \alpha_{\rm corner} \ c_{\rm a1} \ \sqrt{{\rm A_{brg}}} \ \lambda_{\rm a} \ \sqrt{{\rm f_c}} \\ & \phi \ N_{\rm sb} \ \geq N_{\rm ua} \end{array} \qquad \begin{array}{ll} {\rm ACI \ 318\text{-}14 \ Eq. \ (17.4.4.1)} \\ {\rm ACI \ 318\text{-}14 \ Table \ 17.3.1.1} \end{array}$$

$$\alpha_{\text{corner}} = \frac{\left(1 + \frac{\varsigma_{32}}{\varsigma_{a1}}\right)}{\frac{1}{4}}$$
 see ACI 318-14, Section 17.4.4.1

Variables

$$c_{a1}$$
 [in.] c_{a2} [in.] c_{brg} [in.²] c_{a2} [in.] c_{a2} [in.] c_{a3} [in.] c_{a2} [in.] c_{a3} [in.]

Calculations

$$\frac{\alpha_{\text{corner}}}{1.000}$$
 $\frac{N_{\text{sb}}}{26,268}$

Results

$$N_{sb}$$
 [lb] $\Phi_{concrete}$ Φ_{sb} [lb] N_{ua} [lb] 26,268 0.750 19,701 13,117

www.hilti.com

 Company:
 Page:
 5

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Drafts_211102_HD2_SYE
 Date:
 11/12/2021

 Fastening point:
 11/12/2021

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The design of Anchor Reinforcement is beyond the scope of PROFIS Engineering. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- · Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Engineering calculations.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts 211102 HD2 SYE Date: 11/12/2021

Fastening point:

6 Installation data

Plate thickness (input): -

Coordinates Anchor in.

Anchor type and diameter: Hex Head ASTM F 1554 GR.

6

36 7/8

Profile: - Item number: not available

Hole diameter in the fixture: - Maximum installation torque: -

Hole diameter in the base material: - in. Hole depth in the base material: 12.000 in.

Minimum thickness of the base material: 13.052 in.

Hilti Hex Head headed stud anchor with 12 in embedment, 7/8, Steel galvanized, installation per instruction for use

Anchor	X	у	C _{-x}	C+x	C _{-y}	C _{+y}	
1	0.000	0.000	-	_	5.250	2.750	

www.h	ıilti	.com	1
-------	-------	------	---

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:	I	E-Mail:	
Design:	Drafts 211102 HD2 SYE	Date:	11/12/2021
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD3_SYE Date: 11/12/2021

Fastening point:

Specifier's comments:

1 Input data

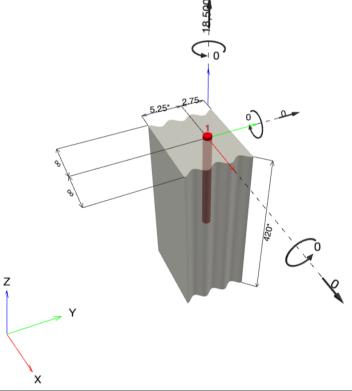
Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 1

 $\begin{tabular}{ll} Item number: & not available \\ Effective embedment depth: & $h_{ef} = 12.000 \ in.$ \\ Material: & ASTM F 1554 \\ Evaluation Service Report: & Hilti Technical Data \\ \end{tabular}$

Issued I Valid: - | -

Proof: Design Method ACI 318-14 / CIP

Stand-off installation:


Profile:

Base material: cracked concrete, 4000, $f_c' = 4,000 \text{ psi}$; h = 420.000 in.

Reinforcement: tension: condition A, shear: condition B; anchor reinforcement: tension

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD3_SYE Date: 11/12/2021

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]		Max. Util. Anchor [%]	
1	Combination 1	$N = 18,500; V_x = 0; V_y = 0;$	no	83	
		$M = 0 \cdot M = 0 \cdot M = 0$			

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	18,500	0	0	0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ∮ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	18,500	26,361	71	OK
Pullout Strength*	18,500	26,051	72	ОК
Concrete Breakout Failure** ¹	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction y+**	18,500	22,508	83	OK

202-19

2

2

^{*} highest loaded anchor **anchor group (anchors in tension)

¹ Tension Anchor Reinforcement has been selected!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Drafts_211102_HD3_SYE Date: 11/12/2021

3

3.1 Steel Strength

Fastening point:

$$N_{sa} = A_{se,N} f_{uta}$$
 ACI 318-14 Eq. (17.4.1.2)
 $\phi N_{sa} \ge N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.61	58,000

Calculations

Results

N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]
35,148	0.750	26,361	18,500

3.2 Pullout Strength

$$\begin{array}{ll} N_{pN} &= \psi_{\,c,p} \,\, N_p & \qquad & \text{ACI 318-14 Eq. (17.4.3.1)} \\ N_p &= 8 \,\, A_{brg} \,\, \dot{f_c} & \qquad & \text{ACI 318-14 Eq. (17.4.3.4)} \\ \varphi \,\, N_{pN} \geq N_{ua} & \qquad & \text{ACI 318-14 Table 17.3.1.1} \end{array}$$

Variables

$\Psi_{c,p}$	A _{brg} [in. ²]	λα	f _c [psi]	
1 000	1 16	1 000	4 000	

Calculations

Results

N _{pn} [lb]	φ concrete	φ N _{pn} [lb]	N _{ua} [lb]
37,216	0.700	26,051	18,500

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

Design: Drafts 211102 HD3 SYE Date: 11/12/2021

Fastening point:

3.3 Concrete Side-Face Blowout, direction y+

$$\begin{array}{ll} {\rm N_{sb}} & = 160 \; \alpha_{\rm corner} \; c_{\rm a1} \; \sqrt{A_{\rm brg}} \; \; \lambda_{\rm a} \; \; \sqrt{f_{\rm c}} \\ & \phi \; \; N_{\rm sb} \; \geq N_{\rm ua} \end{array} \qquad \begin{array}{ll} {\rm ACI \; 318\text{-}14 \; Eq. \; (17.4.4.1)} \\ {\rm ACI \; 318\text{-}14 \; Table \; 17.3.1.1} \end{array}$$

$$\alpha_{\text{corner}} = \frac{\left(1 + \frac{C_{a2}}{C_{a1}}\right)}{4}$$
 see ACI 318-14, Section 17.4.4.1

Variables

$$c_{a1}$$
 [in.] c_{a2} [in.] A_{brg} [in.²] λ_a f_c [psi] s [in.] 2.750 - 1.16 1.000 4,000 -

Calculations

Results

N _{sb} [lb]	ϕ_{concrete}	φ N _{sb} [lb]	N _{ua} [lb]	
30,010	0.750	22,508	18,500	

www.hilti.com

 Company:
 Page:
 5

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Drafts_211102_HD3_SYE
 Date:
 11/12/2021

 Fastening point:
 11/12/2021

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The design of Anchor Reinforcement is beyond the scope of PROFIS Engineering. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- · Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Engineering calculations.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD3_SYE Date: 11/12/2021

Fastening point:

6 Installation data

Plate thickness (input): -

Anchor type and diameter: Hex Head ASTM F 1554 GR.

6

36 1

Profile: - Item number: not available

Hole diameter in the fixture: - Maximum installation torque: -

Hole diameter in the base material: - in.

Hole depth in the base material: 12.000 in.

Minimum thickness of the base material: 13.172 in.

Hilti Hex Head headed stud anchor with 12 in embedment, 1, Steel galvanized, installation per instruction for use

Coordinates Anchor in.

Anchor	X	у	C _{-x}	C+x	C _{-y}	C _{+y}	
1	0.000	0.000	-	_	5.250	2.750	

www.h	ıilti	.com	1
-------	-------	------	---

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:	I	E-Mail:	
Design:	Drafts 211102 HD3 SYE	Date:	11/12/2021
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD4_SYE Date: 11/12/2021

Fastening point:

Specifier's comments:

1 Input data

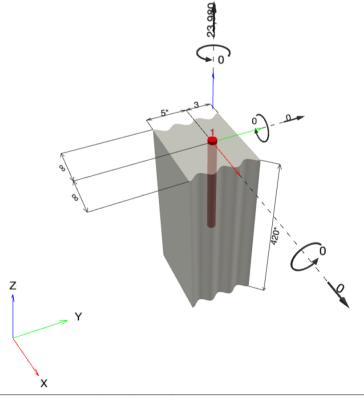
Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 1

 $\begin{tabular}{ll} Item number: & not available \\ Effective embedment depth: & $h_{ef} = 12.000 \ in.$ \\ Material: & ASTM F 1554 \\ Evaluation Service Report: & Hilti Technical Data \\ \end{tabular}$

Issued I Valid: - | -

Proof: Design Method ACI 318-14 / CIP

Stand-off installation:


Profile:

Base material: cracked concrete, 4000, $f_c' = 4,000 \text{ psi}$; h = 420.000 in.

Reinforcement: tension: condition A, shear: condition B; anchor reinforcement: tension

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD4_SYE Date: 11/12/2021

Fastening point:

1.1 Design results

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 23,980 0 0 0

 $\label{eq:max_concrete} \begin{array}{ll} \text{max. concrete compressive strain:} & \text{- } [\%] \\ \text{max. concrete compressive stress:} & \text{- } [\text{psi}] \\ \text{resulting tension force in } (\text{x/y}) = (0.000/0.000): & 0 \text{ [lb]} \\ \text{resulting compression force in } (\text{x/y}) = (0.000/0.000): & 0 \text{ [lb]} \\ \end{array}$

3 Tension load

	Load N _{ua} [lb]	Capacity ∮ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	23,980	26,361	91	OK
Pullout Strength*	23,980	26,051	93	OK
Concrete Breakout Failure** ¹	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction y+**	23,980	24,554	98	OK

202-26

2

2

^{*} highest loaded anchor **anchor group (anchors in tension)

¹ Tension Anchor Reinforcement has been selected!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Drafts_211102_HD4_SYE Date: 11/12/2021

3

Fastening point:

3.1 Steel Strength

$$N_{sa} = A_{se,N} f_{uta}$$
 ACI 318-14 Eq. (17.4.1.2)
 $\phi N_{sa} \ge N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.61	58,000

Calculations

Results

N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]	
35,148	0.750	26,361	23,980	

3.2 Pullout Strength

$$\begin{array}{ll} N_{pN} &= \psi_{\,c,p} \,\, N_p & \qquad & \text{ACI 318-14 Eq. (17.4.3.1)} \\ N_p &= 8 \,\, A_{brg} \,\, \dot{f_c} & \qquad & \text{ACI 318-14 Eq. (17.4.3.4)} \\ \varphi \,\, N_{pN} \geq N_{ua} & \qquad & \text{ACI 318-14 Table 17.3.1.1} \end{array}$$

Variables

$\Psi_{c,p}$	A _{brg} [in. ²]	λ _a	f _c [psi]
1 000	1 16	1 000	4 000

Calculations

Results

N _{pn} [lb]	φ concrete	φ N _{pn} [lb]	N _{ua} [lb]
37,216	0.700	26,051	23,980

www.hilti.com

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 E-Mail:

Design: Drafts 211102 HD4 SYE Date: 11/12/2021

Fastening point:

3.3 Concrete Side-Face Blowout, direction y+

$$\begin{array}{ll} {\rm N_{sb}} & = 160 \; \alpha_{\rm corner} \; c_{\rm a1} \; \sqrt{A_{\rm brg}} \; \; \lambda_{\rm a} \; \; \sqrt{f_{\rm c}} \\ & \phi \; \; N_{\rm sb} \; \geq N_{\rm ua} \end{array} \qquad \begin{array}{ll} {\rm ACI \; 318\text{-}14 \; Eq. \; (17.4.4.1)} \\ {\rm ACI \; 318\text{-}14 \; Table \; 17.3.1.1} \end{array}$$

$$\alpha_{\text{corner}} = \frac{\left(1 + \frac{C_{a2}}{C_{a1}}\right)}{4}$$
 see ACI 318-14, Section 17.4.4.1

Variables

$$c_{a1}$$
 [in.] c_{a2} [in.] A_{brg} [in.²] λ_a f_c [psi] s [in.] 3.000 - 1.16 1.000 4,000 -

Calculations

Results

$$N_{sb}$$
 [lb] $\Phi_{concrete}$ Φ_{sb} [lb] N_{ua} [lb] 32,739 0.750 24,554 23,980

www.hilti.com

 Company:
 Page:
 5

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Drafts_211102_HD4_SYE
 Date:
 11/12/2021

 Fastening point:
 11/12/2021

4 Shear load

	Load V _{ua} [lb]	Capacity ϕ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The design of Anchor Reinforcement is beyond the scope of PROFIS Engineering. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- · Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Engineering calculations.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Drafts_211102_HD4_SYE Date: 11/12/2021

Fastening point:

6 Installation data

Plate thickness (input): -

Anchor type and diameter: Hex Head ASTM F 1554 GR.

6

36 1

Profile: - Item number: not available

Hole diameter in the fixture: - Maximum installation torque: -

Hole diameter in the base material: - in.

Hole depth in the base material: 12.000 in.

Minimum thickness of the base material: 13.172 in.

Hilti Hex Head headed stud anchor with 12 in embedment, 1, Steel galvanized, installation per instruction for use

Coordinates Anchor in.

Anchor	X	у	C _{-x}	C+x	c _{-y}	C _{+y}	
1	0.000	0.000	-	-	5.000	3.000	

www hilti	CO	m

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:	I	E-Mail:	
Design:	Drafts_211102_HD4_SYE	Date:	11/12/2021
Fastening point:			

7 Remarks; Your Cooperation Duties

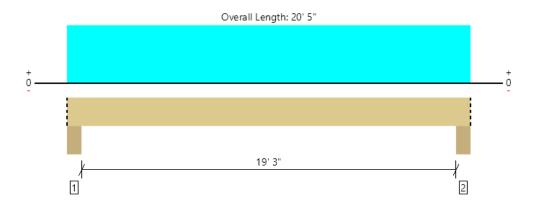
- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

202-31

7

300. EXISTING WOOD SHEAR WALL/BEARING WALL REMOVAL

Existing Wood Shear Wall/Bearing Wall Removal -The following calculations are for the removal of the wall highlighted below. A new glulam beam spanning to wood columns will replace the gravity load path of the wall. A new shear wall to the east of the existing wall will replace the lateral load path.



Glulam beam to support roof trusses at removed bearing wall

Level 1, Roof: Drop Beam 1 piece(s) 8 3/4" x 27" 24F-V4 DF Glulam

MEMBER REPORT

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	38357 @ 5 1/2"	39813 (7.00")	Passed (96%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	27711 @ 2' 10"	47998	Passed (58%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	178595 @ 10' 2 1/2"	215318	Passed (83%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.315 @ 10' 2 1/2"	0.975	Passed (L/743)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.473 @ 10' 2 1/2"	1.300	Passed (L/495)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Commercial Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- . Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.88 that was calculated using length L = 19' 6".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Total	Accessories
1 - Column - DF	7.00"	7.00"	6.74"	12836	204	25521	38561	Blocking
2 - Column - DF	7.00"	7.00"	6.74"	12836	204	25521	38561	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	20' 5" o/c	
Bottom Edge (Lu)	20' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 20' 5"	N/A	57.4			
1 - Uniform (PLF)	0 to 20' 5"	N/A	1200.0	20.0	2500.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Jake Sujansky KL&A, Inc. (303) 384-9910 jsujansky@klaa.com	300-	3 Weyerhaeuser

11/11/2021 3:27:06 PM UTC

ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16

Column support on both sides of Glulam beam

Level 1, Free Standing Post 1 piece(s) 7" x 7" 1.8E Parallam® PSL

Post Height: 13'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (45%)		
Compression (lbs)	38357	67883	Passed (57%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	38357	1455300	Passed (3%)		1.0 D + 1.0 S
Bending/Compression	0.94	1	Passed (94%)	1.15	1.0 D + 1.0 S

- Input axial load eccentricity for this design is 16.67% of applicable member side dimension.
- Applicable calculations are based on NDS.

Supports	Туре	Material			
Base	Plate	Steel			

Max Unbraced LengthCommentsFull Member LengthNo bracing assumed.

Member Type : Free Standing Post Building Code : IBC 2015 Design Methodology : ASD

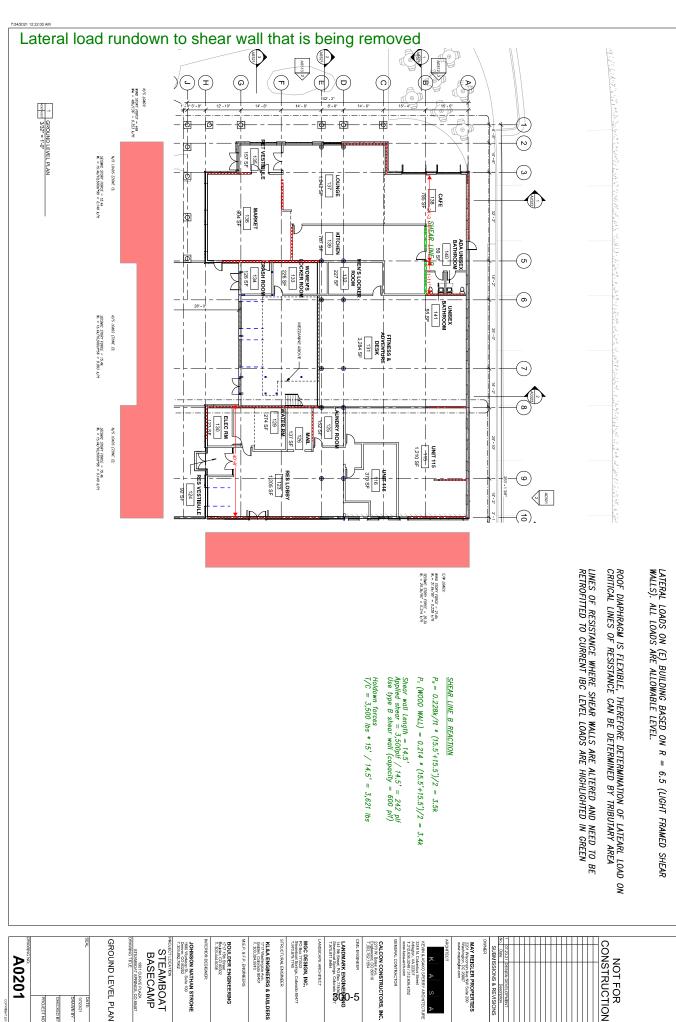
Drawing is Conceptual

	Dead	Roof Live	Snow	
Vertical Load	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	12836	204	25521	Linked from: Roof: Drop Beam, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes	
Jake Sujansky KL&A, Inc. (303) 384-9910 jsujansky@klaa.com	300-	4 Weyerhaeus

11/3/2021 4:41:06 PM UTC

ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16

File Name: Basecamp Phase 1

Page 1 / 1

MAY REIGLER PROPERTIES 2201 Wiscorsin Ave NW Suite 200 Washington, DC 20007 www.mayriegler.com

CALCON CONSTRUCTORS, INC. 2270 W. Bates Ave. Englewood, CO 80110 T.303.762.1554

KL&A ENGINEERS & BUILDERS 1717 Washington Ave. Golden, Cobrado 89401 T. 303,384,9910

400. FOLDING DOOR ROUGH OPENING SUPPORT

Title	Date	Job no.	
-------	------	---------	--

Subject By Sheet

Design Wood Framing For Support of new Rough Openings at New Folding Doors

Design header for out of plane wind load: Wind Pressure = 29.2 psf (Ultimate), 17.5psf (Nominal) Trib = 8.75ft*17.5psf = 154 plf Span = 9ft

Use (2)2x8 DFL-No2 flat orientation for out of plane -->see attached spreadsheet for capacity (374plf)

Roof Gravity Loads:

Dead = 35psf --> results in 280 plf line load to hdr Snow = 75psf --> results in 600 plf line load to hdr

Wall Dead Load = 20psf*13ft = 260 plf

Point Load From Glulam Supporting Ceiling diaphragm beyond:

Dead = 900 lbs

Wu = 280plf + 600plf + 260plf = 1,140plf

 $Mu = [1,140plf * (9ft)^2 / 8] + 900 lbs * 6.5ft*2.5ft/9ft$

Mu = 13,168 lb-ft

Vu = [1,140plf * 9ft / 2] + 900 lbs * 6.5ft/9ft

Vu = 5,780 lbs

Use **(4)14"LVL -->**Ma = 55,796 ft-lb

Check perp grain crushing of (2)2x8 flat header for Vu from vert header

Allowable load = $625psi^*3"^*7" = 13,125 lbs > 5,780 lbs$

Therefore (2) trimmer studs are acceptable for bearing.

Design King Studs For Bending

Height = 18ft

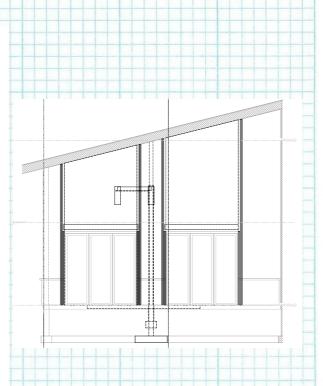
Pu from 2x8 header = 154plf*9ft/2 = 694 lbs

Pu occurs at 9.5ft from ground

Wu = 2ft trib * 17.5psf = 35 plf full height

 $Mu = [35plf * (18ft)^2 / 8] + 694lbs*9.5ft*8.5ft/18ft$

Mu = 4,531 lb-ft


Vu = [35plf * 18ft / 2] + 694 lbs * 9.5ft/18ft

Vu = 682 lbs

Use (3)2x8 DFL-No2 King studs, Ma = 3*1,892 lb-ft =

5,676 lb-ft

Attach top and bottom of king studs with (2)A34 clips Conn capacity = 2*545 lbs = 1,090 lbs

Project: Basecamp Phase 1

Proj #: Engineer: JMS Date:

Dimensional Timber Beams

Input:	Material: (Matl-Grade)		dfl-No2
	Load Duration:		Wind
	Repetitive?		No
	TL Deflection Criteria	L/	180
	LL Deflection Criteria	L/	240

Flat Member Use?

Dimension Lumber: Timbers: Fb = 900 psi Fb = 875 psi 180 psi 170 psi E= 1600 ksi E= 1300 ksi

Cd 1.60 Cfu 1.00 Cr 1.00 1300 ksi **Material Options** ASP DFL Doug Fir-Larch DFLN Doug Fir-Larch (North) DFS Doug Fir (South)

HF Hem Fir HFN Hem Fir (North) MO Mixed Oak RW Redwood

SPF Spruce-Pine-Fire WC Western Cedars 187 allo single 2

Select Structural

Grade Options

No1 Number 1

No2 Number 2

No3 Number 3

Load Duration Options Normal Snow Wind

Seismic Impact

Repetitive Options
No = Beams Flat Member Use Options No = Beams/Joists Yes = Joists

Yes = Decking

		Official
owable load for		Moment
	ĺ	Deflection
2x8		

	Cr 1.00 E'= 1300 ksi					Sirigle 2X0								MAXIMUM UNIFORM LOAD (Ib/ft) Minimum OF M,V OR Delta					
	Nomin	nal	Act	ual				Max	Max								Lengt	h of beam (ft)	
١	W	d	w	d	S	Α	1	М	V	3	4	5	6	7	8	9	10	11	12
(i	in)	(in)	(in)	(in)	(in ³)	(in ²)	(in ⁴)	ft-lbs	lbs	TL LL	TL LL	TL LL	TL LL	TL LL	TL L	TL LL	TL LL	TL LL	TL LL
	2	4	1 1/2	3 1/2	3.1	5.3	5	551	1,008	490	276	176 152	118 88	74 56	50 37	35 26	25 19	19 14	15 11
	2	6	1 1/2	5 1/2	7.6	8.3	21	1,180	1,584	1,049	590	378	262	193	147 144	117 101	94 74	74 56	57 43
	2	8	1 1/2	7 1/4	13.1	10.9	48	1.892	2,088	1,682	946	606	421	309	237	187	151	125	105 98
	2	10	1 1/2	9 1/4	21.4	13.9	99	2,824	2,664	2,510	1,412	904	627	461	353	279	226	187	157
	2	12	1 1/2	11 1/4	31.6	16.9	178	3,797	3,240	3,375	1,898	1,215	844	620	475	375	304	251	211
	3	6	2 1/2	5 1/2	12.6	13.8	35	1,966	2,640	1,748	983	629	437	321	246 241	194 169	157 123	123 93	95 71

2	4	1 1/2	3 1/2	3.1	5.3	5	551	1,008	490	276	176 152	118 88	74 56	50 37	35 26	25 19	19 14	15 11
2	6	1 1/2	5 1/2	7.6	8.3	21	1,180	1,584	1,049	590	378	262	193	147 144	117 101	94 74	74 56	57 43
2	8	1 1/2	7 1/4	13.1	10.9	48	1,892	2,088	1,682	946	606	421	309	237	187	151	125	105 98
2	10	1 1/2	9 1/4	21.4	13.9	99	2,824	2,664	2,510	1,412	904	627	461	353	279	226	187	157
2	12	1 1/2	11 1/4	31.6	16.9	178	3,797	3,240	3,375	1,898	1,215	844	620	475	375	304	251	211
3	6	2 1/2	5 1/2	12.6	13.8	35	1,966	2,640	1,748	983	629	437	321	246 241	194 169	157 123	123 93	95 71
3	8	2 1/2	7 1/4	21.9	18.1	79	3,154	3,480	2,803	1,577	1,009	701	515	394	311	252	209	175 163
3	10	2 1/2	9 1/4	35.7	23.1	165	4,706	4,440	4,183	2,353	1,506	1,046	768	588	465	376	311	261
3	12	2 1/2	11 1/4	52.7	28.1	297	6,328	5,400	5,625	3,164	2,025	1,406	1,033	791	625	506	418	352
3	14	2 1/2	13 1/4	73.2	33.1	485	7,900	6,360		3,950	2,528	1,756	1,290	988	780	632	522	439
3	16	2 1/2	15 1/4	96.9	38.1	739	10,465	7,320		5,233	3,349	2,326	1,709	1,308	1,034	837	692	581
4	4	3 1/2	3 1/2	7.1	12.3	13	1,286	2,352	1,143	643	412 356	274 206	173 130	116 87	81 61	59 44	45 33	34 26
4	6	3 1/2	5 1/2	17.6	19.3	49	2,753	3,696	2,447	1,376	881	612	449	344 337	272 237	220 173	173 130	133 100
4	8	3 1/2	7 1/4	30.7	25.4	111	4,783	4,872	4,252	2,392	1,531	1,063	781	598	472	383	316 297	266 229
4	10	3 1/2	9 1/4	49.9	32.4	231	7,187	6,216	6,389	3,594	2,300	1,597	1,173	898	710	575	475	399
4	12	3 1/2	11 1/4	73.8	39.4	415	9,745	7,560	8,663	4,873	3,119	2,166	1,591	1,218	963	780	644	541
4	14	3 1/2	13 1/4	102.4	46.4	678	12,289	8,904		6,145	3,933	2,731	2,006	1,536	1,214	983	813	683
4	16	3 1/2	15 1/4	135.7	53.4	1034	16.279	10.248		8.140	5.209	3.618	2.658	2.035	1.608	1.302	1.076	904

A-100 GEOTECHNICAL REPORT

March 15, 2021

FV Basecamp, LLC c/o May Riegler Properties 2201 Wisconsin Ave., Suite 200 Washington DC 20007

Attn: Gaby Riegler

Job Number: 20-11961

Subject: Supplemental Subsurface Investigation and Geotechnical Recommendations, Steamboat Basecamp, Lots 1 and 2, Worldwest Subdivision, Steamboat Springs, Colorado.

Gaby,

As requested, NWCC, Inc. (NWCC) has completed this Supplemental Subsurface Investigation and Geotechnical Recommendations report for the proposed Steamboat Basecamp to be constructed within Lots 1 and 2 of the Worldwest Subdivision in Steamboat Springs, Colorado. A Subsoil Investigation report was prepared for a proposed retail building under NWCC's Job Number 95-2241, dated June 27, 1995 within Lot 3, Block 1 of the Curve Subdivision. A Subsoil and Foundation Investigation report was prepared for a proposed building in the northeast corner of the property under NWCC's Job Number 07-7550, dated July 27, 2007. These reports were used in the preparation of this report as well as information from a Supplemental Subsurface Investigation completed at the site on November 11, 2020.

<u>Proposed Construction</u>: Based on our discussions with the client and Jake Mielke with Steamboat Engineering and Design, NWCC understands the project will consist of the renovation of the existing building and the construction of several multi-family residential and mixed use buildings, as well as several garage buildings in three phases.

The existing building will be remodeled for mixed commercial/residential use in Phase I of the project. A two-story addition will be constructed in the southeast portion of the building. Isolated interior pads will be constructed under the existing concrete slab to support the upper floors. A small addition will also be constructed in the northwest portion of the building. We have assumed that the addition will be constructed with a concrete slab-on-grade floor system placed near the existing ground surface.

Phase 2 of the project will consist of the construction of a multi-family building with 21 units and a commercial area in the northwest corner. Phase 3 of the project will consist of two multi-family units with separate garage structures within Lot 2 of the Worldwest Subdivision. We understand the buildings will consist of one to four story wood framed structures with the lower levels constructed with concrete slab on grade floor systems and/or crawlspaces. NWCC has assumed the lower levels of the buildings will be

constructed at or above the existing ground surface. NWCC has assumed site grading will include minor unretained cuts and fills of less than 6 feet in height.

<u>Subsurface Conditions:</u> To investigate the subsurface conditions at the site, six test holes were advanced in the area of the existing building for the investigation completed in 1995. Three additional test holes were drilled within Lot 2 for the investigation completed in 2007. Four test pits were advanced within Phase 2 and 3 on November 11, 2020 with a Komatsu PC238 trackhoe. A site plan showing the approximate test hole and pit locations is presented in Figure #1.

The subsurface conditions encountered in the test holes and test pits were variable and generally consisted of variable layers of fill materials overlying natural topsoil and organic materials, natural clays and natural sands and gravels to the maximum depth investigated, 15 feet below the existing ground surface (bgs). It should be noted that practical rig refusal was encountered in the test holes on cobbles at depths ranging from 8 to 15 feet bgs. Graphic logs of the exploratory test holes and test pits are presented in Figures #2, #3 and #4. The associated Legend and Notes are presented in Figure #5.

A thin layer of topsoil and organic fill materials was encountered at the ground surface in Test Pits 1 through 4 and was approximately 3 to 6 inches in thickness. Sand and gravel fill materials were encountered below the topsoil fill materials in Test Pits 1 and 2 and were approximately 12 to 30 inches in thickness. The sand and gravel fill materials were silty to clayey, low to non-plastic, medium dense, moist and brown in color. Clay fill materials were encountered at the existing ground surface in Test Holes 3, 4, 5, 7, 8 and 9; below the topsoil fill materials in Test Pits 3 and 4; and below the sand and gravel fill materials in Test Pit 1. The clay fill materials ranged from approximately 1 to 6 feet in thickness. The clay fill materials were sandy with occasional gravels and debris, low to highly plastic, medium stiff to soft, moist and brown in color.

A layer of natural topsoil and organic materials was encountered at the ground surface in Test Holes 1, 2, and 6 and below the fill materials in Test Holes 3, 4, and 5 and Test Pits 2 and 3. The layer of natural topsoil and organic materials was approximately 3 to 18 inches in thickness.

Natural clays were encountered below the natural topsoil materials in Test Holes 1, 3, 4, 5, 6 and Test Pits 2 and 3, and below the clay fill materials in Test Holes 8 and 9, and Test Pits 1 and 4 at depths ranging from 1 ½ to 5 feet bgs. The natural clays extended to depths ranging from 2 ½ to 12 feet bgs. The natural clays were slightly sandy to sandy, moderately to highly plastic, stiff, moist and brown in color. Samples of the natural clays classified as CL to CH soils in accordance with the Unified Soil Classification System (USCS).

Natural sands and gravels were encountered below the natural topsoil and organic materials in Test Hole 2, below the fill materials in Test Hole 7 and below the natural clays in Test Holes 1, 3, 4, 5, 6, 8 and 9, and Test Pits 1, 2, 3 and 4. The natural sands and gravels were encountered at depths ranging from 6 inches to 12 feet bgs in all of the test holes and test pits. The sands and gravels extended to the maximum depth investigated in each test hole and test pit. The natural sands and gravels were silty to slightly clayey, fine

to coarse grained with cobbles and small boulders, very low to non-plastic, dense, moist to wet and brown to gray in color. Samples of the natural gravels classified as SM to GM soils in accordance with the USCS.

Swell-consolidation tests conducted on samples of the natural clays from the previous investigations indicate these materials exhibited a moderate to high swell potential when wetted under a constant load.

Groundwater was encountered at depths ranging from 7 to 10 feet bgs in the Test Holes 1 through 6 at the time of drilling. These test holes were drilled on May 25, 1995, which was likely near the seasonal high groundwater table. Groundwater seepage was not encountered in any of the other test holes or pits at the time of drilling/excavation. It should be noted that the groundwater conditions at the site can be expected to fluctuate with changes in precipitation and runoff and flows in the Yampa River, located approximately 1,000 feet to the south.

During construction of the existing building all of the existing fill materials, topsoil and organic materials and natural clays were removed from under the foundations. Structural fill materials consisting of ¾-inch washed rock materials were compacted under the footings. The structural fill materials were compacted to a minimum of 80 percent of the maximum relative density of the materials.

Foundation Recommendations: Based on a review of the Subsoil and Foundation (NWCC, 2007) and Subsoil Investigation (NWCC, 1995) reports, the subsurface conditions encountered in the recent test pits NWCC anticipates that the natural sands and gravels will be encountered from 5 to 12 feet below the existing ground surface. Due to the highly variable depth of the existing fill materials and the swell potential of the natural clays, NWCC believes the most economically feasible building foundation systems will consist of footings placed on properly compacted structural fill materials placed over the natural sands and gravels after all of the existing fill materials and underlying topsoil and organic materials, and natural clays are removed. Due to the moderate to high swell potential of the clays, NWCC recommends these materials be removed from beneath the footings.

NWCC recommends the footings placed on the natural sands and gravels or on properly compacted, structural fill materials placed over the natural sands and gravels be designed using a maximum allowable soil bearing pressure of 3,000 psf. NWCC recommends structural fill materials placed under the footings consist of a non-expansive granular soil approved by this office. Footings placed on the natural sands and gravels or on non-expansive granular fill placed over the natural sands and gravels will not require a minimum dead load.

Structural fill materials should be uniformly placed in 6 to 8 inch loose lifts and compacted to at least 100 percent of the maximum standard Proctor density, within 2 percent of the optimum moisture content as determined by ASTM D-698. Structural fill materials should extend out from the edge of the footings on a 1(horizontal) to 1(vertical) or flatter slope.

NWCC recommends a **Site Class C** designation be used in structural design calculations in accordance with Table 20.3-1 in Chapter 20 of ASCE 7.

Alternate Foundation Recommendations: If the removal of all of the existing fill materials and natural clays is not economically feasible, an alternative deep foundation system for the buildings would be to place the buildings on deep foundation systems consisting of helical screw piles advanced into the natural sands and gravels. High capacity helical piles or pile groups with pile caps will most likely be required for the buildings due to anticipated loadings. The helical screw pile foundations will place the bottom of the foundations in a zone of relatively stable bearing soils and eliminate the risk of foundation movement from swell and/or consolidation of the existing fill materials and natural clays.

Utilizing this type of foundation, each column is supported on a single or group of screw piles and the structures are founded on grade beams or pier caps that are supported by a series of piles. Load applied to the piles is transmitted to the natural sands and gravels through the end bearing pressure at the helices of the screw pile. Foundation movement should be less than ½-inch if the following design and construction conditions are observed.

The helical screw pile foundation system should be designed by a qualified engineer, using industry standards and be installed by a licensed/certified installer. If pile groups are required, we recommend a minimum pile spacing of 3 times the largest helix to achieve the maximum capacity of each individual pile. Lateral loads should be resisted using battered piles or tiebacks or through passive soil pressures against foundation walls or grade beams.

We strongly recommend that at least two test piles be advanced at each building site so that the torque versus depth relationships can be established and the proper shaft and helix size and type can be determined. In addition, load testing of the helical screw piles is strongly recommended to verify the design capacity of the piles. Difficult installation should be anticipated due to the presence of cobbles and boulders in the fill materials.

A representative of this office should observe the test piles/load test and helical screw pile installations.

NWCC also recommends the following:

- · Minimum 10-inch diameter helix;
- Minimum installation torque of 4,000 ft-lbs;
- Full-time installation observation by a qualified special inspector;
- Review of the Contractor's quality control plan regarding instrumentation calibration and testing, materials QC, and pile installation procedures.

An alternative deep foundation system would consist of rammed aggregate piers (RAP). The rammed aggregate piers are typically constructed to bridge poor bearing soils, such as the existing fill materials and natural clays encountered at this site, extending down to a suitable bearing layer, the underlying natural sands and gravels. A RAP foundation system should develop an end bearing pressure of at least 4,000 psf for aggregate piers founded in the sand and gravels. A RAP foundation system has the advantage of not only supporting shallow foundation elements, but also supporting floor slab areas and improving the

engineering characteristics of the existing fill materials and native soils between the piers, thus decreasing the potential for floor slab movement and eliminating the need for structural slabs or structural floors over crawlspaces.

RAP foundation elements are designed as proprietary foundation systems. If a RAP foundation system is selected, NWCC should be contacted to coordinate with the RAP contractor/design team during foundation design.

Floor Slabs: NWCC has assumed the lower levels of the buildings will most likely be constructed with concrete slab-on-grade floor systems placed near the existing grades. The natural soils, excluding the existing fill materials and topsoil and organic materials, are capable of supporting slab-on-grade construction. However, floor slabs present a very difficult problem where swelling materials are present near floor slab elevation because sufficient dead load cannot be imposed on them to resist the uplift pressure generated when the materials are wetted and expand. Based on the moisture-volume change characteristics of the natural clays encountered at this site, NWCC believes slab-on-grade construction may be used, provided the risk of distress resulting from slab movement is recognized and special design precautions are followed.

The following measures must be taken to reduce damage, which could result from movement should the underslab clays are subjected to moisture changes.

- 1) Floor slabs must be separated from all bearing walls; columns and their foundation support with a positive slip joint. NWCC recommends the use of ½-inch thick cellotex or impregnated felt.
- 2) Interior non-bearing partition walls resting on the floor slabs must be provided with a slip joint, preferably at the bottom, so in the event, the floor slab moves this movement is not transmitted to the upper structure. This detail is also important for wallboard and doorframes and is shown in Figure #6. This detail can be omitted if all of the clays are removed from beneath the floor slabs.
- A minimum 6-inch gravel layer must be provided beneath all floor slabs to act as a capillary break and to help distribute pressures. Prior to placing the gravel, excavation should be shaped so that if water does get under the slab, it will flow to the low point of the excavation. In addition, all existing fill materials and topsoil and organic materials should be removed prior to placement of the underslab gravels or new granular fill materials. If the removal of all of the existing fill materials and topsoil and organics and replacing with granular fill materials is not economically feasible, we recommend the lower levels be constructed on structural floor systems over a crawlspace.
- 4) Floor slabs must be provided with control joints placed a maximum of 10 to 12 feet on center in each direction, depending on slab configurations, to help control shrinkage cracking. Locations of the joints should be carefully checked to assure that natural, unavoidable cracking will be controlled. Depth of the control joints should be a minimum of 1/4 the thickness of the slab.

Page 6 of 11

- 5) Underslab soils must be kept as close as possible to their in-situ moisture content. Excessive wetting or drying of these soils prior to placement of floor slab could result in differential movement after slabs are constructed.
- It has been NWCC's experience that the risk of floor slab movement can be reduced by removing at least 2 feet of the expansive soils and replacing them with a well compacted, non-expansive fill. If this is done or if fills are required to bring underslab areas to the desired grade, the fill should consist of non-expansive, granular materials. Fill should be uniformly placed and compacted in 6 to 8-inch lifts to at least 95% of the maximum standard Proctor density at or near the optimum moisture content, as determined by ASTM D-698.

Following the above precautions and recommendations will not prevent floor slab movement in the event the clays beneath the floor slabs undergo moisture changes. However, they should reduce the amount of damage if such movement occurs. The only way to eliminate the risk of all floor slab movement is to construct a structural floor over a well-vented crawl space or void form materials or remove all of the expansive clays and replace them with non-expansive granular fill materials.

<u>Foundation Walls and Retaining Structures:</u> Foundation walls and retaining structures, which are laterally supported and can be expected to undergo only a moderate amount of deflection, may be designed for a lateral earth pressure computed on the basis of an equivalent fluid unit weight of 45 pcf for imported, free draining granular backfill and 55 pcf for on-site soils.

Cantilevered retaining structures at the site can be expected to deflect sufficiently to mobilize full active earth pressure condition. Therefore, cantilevered structures may be designed for a lateral earth pressure computed on the basis of an equivalent fluid unit weight of 35 pcf for imported, free draining granular backfill and 45 pcf for on-site soils.

Foundation walls and retaining structures should be designed for appropriate hydrostatic and surcharge pressures such as adjacent buildings, traffic and construction materials. An upward sloping backfill and/or natural slope will also significantly increase earth pressures on foundation walls and retaining structures and the structural engineer should carefully evaluate these additional lateral loads when designing foundation and retaining walls.

Lateral resistance of retaining wall foundations placed on undisturbed natural soils at the site will be a combination of sliding resistance of the footings on the foundation materials and passive pressure against the sides of footings. Sliding friction can be taken as 0.4 times the vertical dead load. Passive pressure against the sides of the footing can be calculated using an equivalent fluid pressure of 250 pcf. Fill placed against the sides of footings to resist lateral loads should be compacted to at least 100% of the maximum standard Proctor density and near the optimum moisture content.

NWCC recommends imported granular soils for backfilling foundation walls and retaining structures because their use results in lower lateral earth pressures. Imported granular materials should be placed to within 2 to 3 feet of the ground surface. Imported granular soils should be free draining and have less than 7 percent passing the No. 200 sieve. Granular soils placed behind foundation and retaining walls should be

Page 7 of 11

sloped from the base of the wall at an angle of at least 45 degrees from the vertical. The upper 2 to 3 feet of fill should be a relatively impervious soil or pavement structure to prevent surface water infiltration into the backfill.

Wall backfill should be carefully placed in uniform lifts and compacted to at least 95 percent of the maximum standard Proctor density and near the optimum moisture content. Care should be taken not to overcompact backfill since this could cause excessive lateral pressure on the walls. Some settlement of deep foundation wall backfill materials will occur even if materials are placed correctly.

<u>Underdrain System:</u> Any floor levels constructed below the existing or finished ground surfaces and the foundations should be protected by underdrain systems to help reduce the problems associated with surface and subsurface drainage during high runoff periods. If any level is placed within 2 feet of the seasonal high groundwater table, a permanent/full-time dewatering system may be required in the lower level. NWCC must be consulted to provide or review the design of a dewatering system.

Localized perched water or runoff can infiltrate the lower levels of the structures at the foundation levels. This water can be one of the primary causes of differential foundation and slab movement. Especially, when expansive soils are encountered. Excessive moisture in crawl space areas or lower level can also lead to rotting and mildewing of wooden structural members and the formation of mold and mold spores. Formation of mold and mold spores could have detrimental effects on the air quality in these areas, which in turn can lead to potential adverse health effects.

Drains should be located around the entire perimeter of the lower levels and be placed and at least 12 inches below any floor slab or crawl space levels and at least 6 inches below the bottom of the foundation walls or footings. NWCC recommends the use of perforated PVC pipe for the drainpipe, which meets or exceeds ASTM D-3034/SDR 35 requirements, to minimize the potential for pipe crushing during backfill operations. Holes in the drainpipe should be oriented down between 4 o'clock and 8 o'clock to promote rapid runoff of water. Drainpipe should be surrounded with at least 12 inches of free-draining gravel and should be protected from contamination by a filter covering of Mirafi 140N subsurface drainage fabric or an equivalent product. Drains should have a minimum slope of 1/8 inch per foot and be daylighted at positive outfalls protected from freezing or be led to sumps from which water can be pumped. The use of interior laterals, multiple daylights, or sumps will likely be required for the proposed structure. Caution should be taken when backfilling so as not to damage or disturb the installed underdrain. NWCC recommends the drainage system include a cleanout every 100 feet, be protected against intrusion by animals at outfalls, and be tested prior to backfilling. NWCC also recommends the client retain our firm to observe the underdrain systems during construction to verify that they are being installed in accordance with recommendations provided in this report and observe a flow test prior to backfilling the system.

In addition, NWCC recommends an impervious barrier be constructed to keep water from infiltrating under the footings and/or foundation walls. The barrier should be constructed of an impervious material, which is approved by this office and placed below the perimeter drain and up against the sides of the foundation walls. A typical perimeter/underdrain detail is shown in Figure #7.

<u>Surface Drainage:</u> Proper surface drainage at this site is of paramount importance for minimizing infiltration of surface drainage into wall backfill and bearing soils, which could result in increased wall

Page 8 of 11

pressures, differential foundation, and slab movement. The following drainage precautions should be observed during construction and at all times after the structures have been completed:

- 1) Ground surface surrounding structures should be sloped (minimum of 1.0 inch per foot) to drain away from structures in all directions to a minimum of 10 feet. Ponding must be avoided. If necessary, raising the top of foundation walls to achieve a better surface grade is advisable.
- 2) Non-structural backfill placed around structures should be compacted to at least 95% of the maximum standard Proctor density at or near the optimum moisture content to minimize future settlement of the fill. Backfill should be placed immediately after the braced foundation walls are able to structurally support the fill. Puddling or sluicing must be avoided.
- 3) Top 2 to 3 feet of soil placed within 10 feet of foundations should be impervious in nature to minimize infiltration of surface water into wall backfill.
- 4) Roof downspouts and drains should discharge well beyond the limits of all backfill. Roof overhangs, which project two to three feet beyond foundation walls, should be considered if gutters are not used.
- Landscaping, which requires excessive watering and lawn sprinkler heads, should be located a minimum of 10 feet from the foundation walls of the structures or any permanent, unretained cuts. Additionally, large piles of man-made or natural snow should be removed prior to melting within 10 feet of the foundation walls of the structures or any permanent, unretained cuts.
- Plastic membranes should not be used to cover the ground surface adjacent to foundation walls.

<u>Site Grading:</u> Temporary cuts for foundation construction should be constructed to OSHA standards for temporary excavations. Permanent, unretained cuts should be kept as shallow as possible and should not exceed a 3(Horizontal) to 1(Vertical) configuration for the existing fill materials and natural clays.

We recommend permanent, unretained cuts be limited to 10 feet in height or less. The risk of slope instability will be significantly increased if groundwater seepage is encountered in the cuts. NWCC office should be notified immediately to evaluate the site if seepage is encountered or deeper cuts are planned and determine if additional investigations and/or stabilization measures are warranted.

Excavating during periods of low runoff at the site can reduce potential slope instability during excavation. Excavations should not be attempted during the spring or early summer when seasonal runoff and groundwater levels are typically high.

Fills up to 10 feet in height can be constructed at the site and should be constructed to a 2(Horizontal) to 1(Vertical) or flatter configuration. The fill areas should be prepared by stripping any existing fill materials and topsoil and organics, scarification, and compaction to at least 95% of the maximum standard Proctor density and within 2% of optimum moisture content as determined by ASTM D698. The fills should be

properly benched/keyed into the natural hillsides after the existing fill materials, natural topsoil, and organic materials, silts, and clays have been removed. The fill materials should consist of the on-site soils (exclusive of topsoil, organics, or silts) and be uniformly placed and compacted in 6 to 8-inch loose lifts to the minimum density value and moisture content range indicated above.

Proper surface drainage features should be provided around all permanent cuts and fills and steep natural slopes to direct surface runoff away from these areas. Cuts, fills, and other stripped areas should be protected against erosion by revegetation or other methods. Areas of concentrated drainage should be avoided and may require the use of riprap for erosion control. NWCC recommends that a maximum of 4 inches of topsoil be placed over the new cut and fill slopes. It should be noted that the newly placed topsoil materials may slough/slide off the slopes during the spring runoff seasons until the root zone in the vegetated cover establishes.

A qualified engineer experienced in this area should prepare site grading and drainage plans. The contractor must provide a construction sequencing plan for excavation, wall construction, and bracing and backfilling for the steeper and more sensitive portions of the site prior to starting the excavations or construction.

Pavement Section Recommendations: Pavement section alternatives presented below are based on anticipated soil conditions, assumed traffic loadings indicated below, pavement design procedures presented in the AASHTO Guide for Design of Pavement Structures, and our experience with similar sites and conditions in this part of Steamboat Springs. AASHTO pavement design procedures have been adopted and are used by the Colorado Department of Transportation (CDOT). NWCC has assumed the proposed pavement areas will be subjected to automobiles with occasional delivery trucks and with regular trash truck service.

Based on the results of the field and laboratory investigations and our understanding of the proposed construction, it appears the materials to be encountered at proposed pavement subgrade elevations will most likely consist of existing fill materials or natural clays. We have assumed the fill materials will generally classify as CL soils in accordance with the USCS, which is the worst-case scenario. NWCC recommends the pavement areas subjected to both truck and automobile traffic, such as at the entrances and roadways through the facility be constructed with a minimum of 4 inches of hot mix asphalt (HMA) overlying a minimum of 4 inches of CDOT class 6 aggregate base course (ABC) and a minimum of 8 inches of subbase aggregates (Pit Run). The pavement areas subjected to automobiles only, such as the parking stalls, can be paved with a minimum of 3 inches of HMS, 4 inches of CDOT class 6 aggregate base course (ABC), and a minimum of 6 inches of subbase aggregates (subbase).

NWCC recommends the areas subjected to heavy truck turning movements, such as the pads in front of the trash dumpsters or loading docks be paved with a rigid pavement section consisting of at least 8 inches of Portland cement concrete (PCC).

NWCC recommends the asphalt pavement material (HMA) consist of an approved "Superpave" mix designed by a qualified, registered engineer. The mix design should be designed using the SX gradation and mixed with PG 58-28 oil or other performance graded asphaltic materials. The mix should be

produced and placed by a qualified contractor and should be compacted to between 92 and 96 percent of the maximum theoretical (Rice) density or at least 92 percent of the maximum Rice density. Quality control activities should be conducted on paving materials at the time of placement.

Base course materials (ABC) should consist of a well-graded aggregate base course material that meets CDOT Class 6 ABC grading and durability requirements and the subbase should consist of well-graded aggregate materials that meet CDOT Class 2 ABC grading and durability requirements.

ABC and subbase materials should be uniformly placed and compacted in 4 to 6-inch loose lifts to at least 95 % of the maximum modified Proctor density and within +/- 2 % of the optimum moisture content as determined by ASTM D1557.

Concrete pavement materials shall be based on a mix design established by a qualified engineer. Concrete should have a minimum 28-day compressive strength of 4,500 psi, be air-entrained with approximately 6 percent air, and have a maximum water/cement ratio of 0.42. Concrete should have a maximum slump of 4 inches and should contain control joints no greater than 10 to 12 feet on center, depending on slab configurations. The depth of the control joints should be at least ¼ of the slab thickness.

Prior to placement of subbase materials, NWCC recommends that all of the existing fill materials be removed, any debris removed and the materials moisture conditioned and compacted. Prior to placement of the subgrade fill materials the natural clays should be scarified and recompacted to a depth of 8 inches. The scarified natural clays and subgrade materials should be compacted in 6 to 8 inch lifts to at least 95 % of the maximum standard Proctor density and within +/- 2 % of the optimum moisture content as determined by ASTM D698. The finished subgrade surface, after recompaction, should also be sloped at least 1 percent to avoid ponding and to reduce the potential for wetting and expansion of the subgrade soils. The finished subgrade surface should be proof rolled with a loaded tandem dump truck or loaded water truck and any areas deflecting or rutting should be removed and or stabilized prior to placing the subbase aggregates.

The collection and diversion of surface and subsurface drainage away from the paved areas is extremely important to the satisfactory performance of the pavement. The design of the surface and subsurface drainage features should be carefully considered to remove all water from paved areas and to prevent ponding of water on and adjacent to paved areas.

<u>Limitations:</u> The recommendations provided in this report are based on the subsurface conditions encountered at this site and our understanding of the proposed construction. We believe that this information gives a high degree of reliability for anticipating the behavior of the proposed structures; however, our recommendations are professional opinions and cannot control nature, nor can they assure the soils profiles beneath those or adjacent to those observed. No warranties expressed or implied are given on the content of this report.

Expansive soils were encountered at this site. These soils are not prone to volume changes at their natural moisture content but can consolidate or swell with changes in moisture and loading. The behavior of expansive soils is not fully understood. The swell and/or consolidation potential of any particular site can change erratically both in lateral and vertical extent. Moisture changes also occur erratically, resulting in

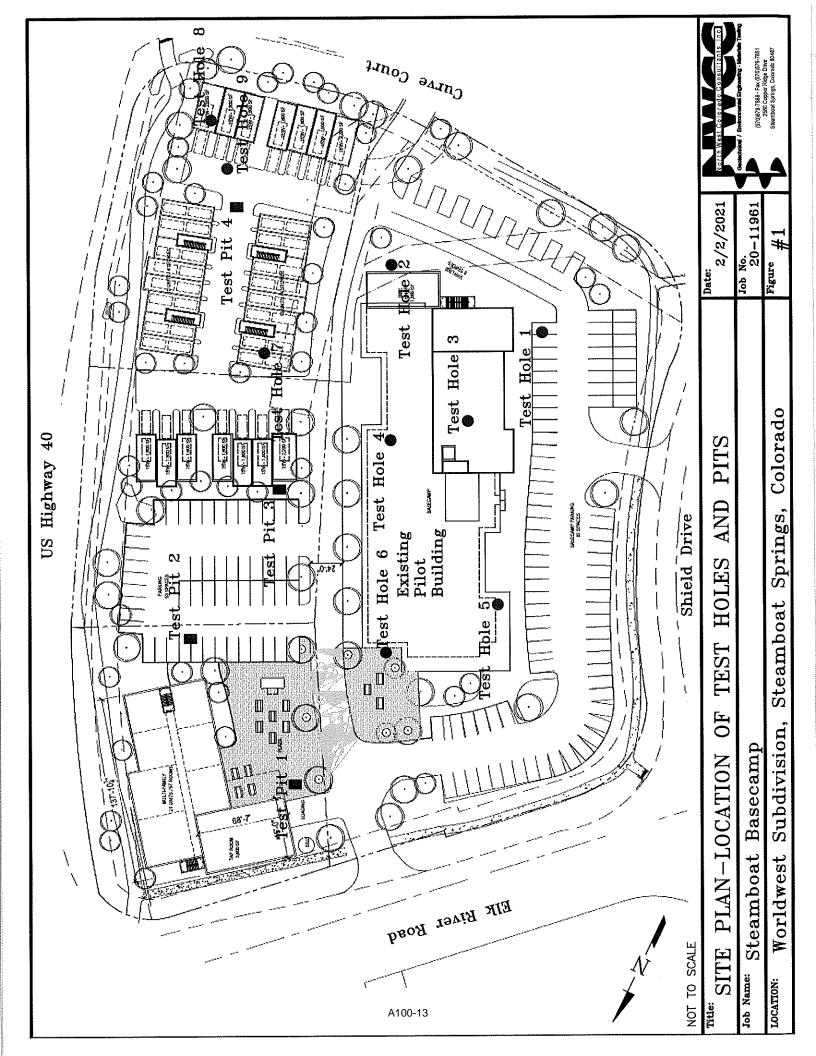
conditions, which cannot always be predicted. The recommendations presented in this report are based on the current state of the art for foundations and floor slabs on swelling/consolidating soils. The owner should be aware that there is a risk in construction on these types of materials. Performance of the structures will depend on following the recommendations and in proper maintenance after construction is complete. As water is the main cause for volume change in the soils, it is necessary that the changes in moisture content be kept to a minimum; therefore, positive surface drainage should be maintained away from the structures. Any distress noted in the structures should be brought to the attention of this office.

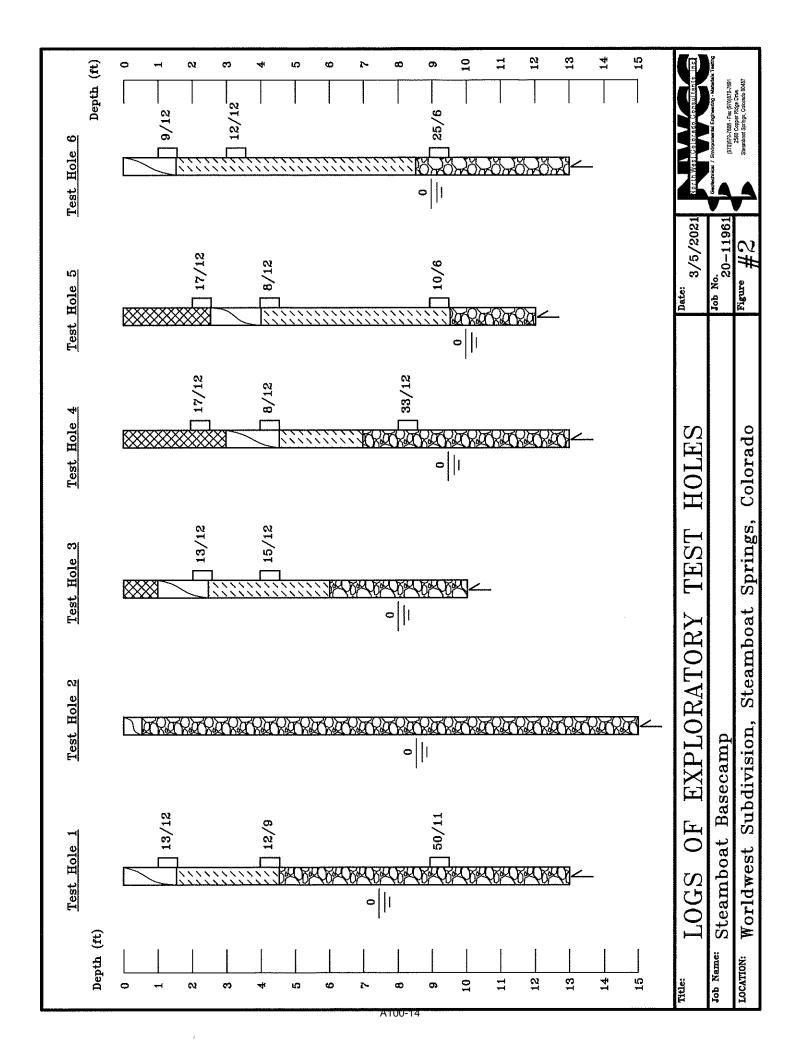
This report is based on the investigation at the described site and on the specific anticipated construction as stated herein. If either of these conditions is changed, the results would also most likely change. Therefore, NWCC strongly recommends that our firm be contacted prior to finalizing the construction plans so that we can verify that our recommendations are being properly incorporated into the construction plans. Manmade or natural changes in the conditions of a property can also occur over a period of time. In addition, changes in requirements due to state of the art knowledge and/or legislation do from time to time occur. As a result, the findings of this report may become invalid due to these changes. Therefore, this report is subject to review and not considered valid after a period of 3 years or if conditions as stated above are altered.

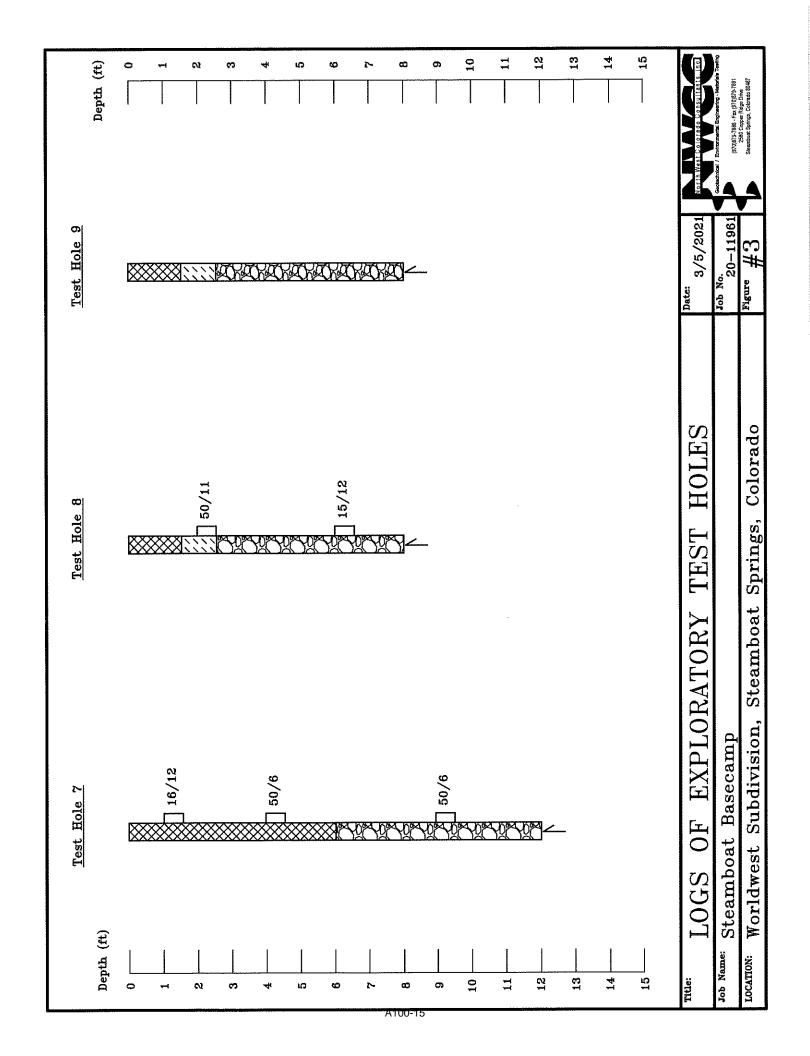
It is the responsibility of the owner or his representative to ensure information in this report is incorporated into the plans and/or specifications and construction of the project. It is advisable that a contractor familiar with construction details typically used to dealing with the local subsoils and climatic conditions be retained to build the structures.

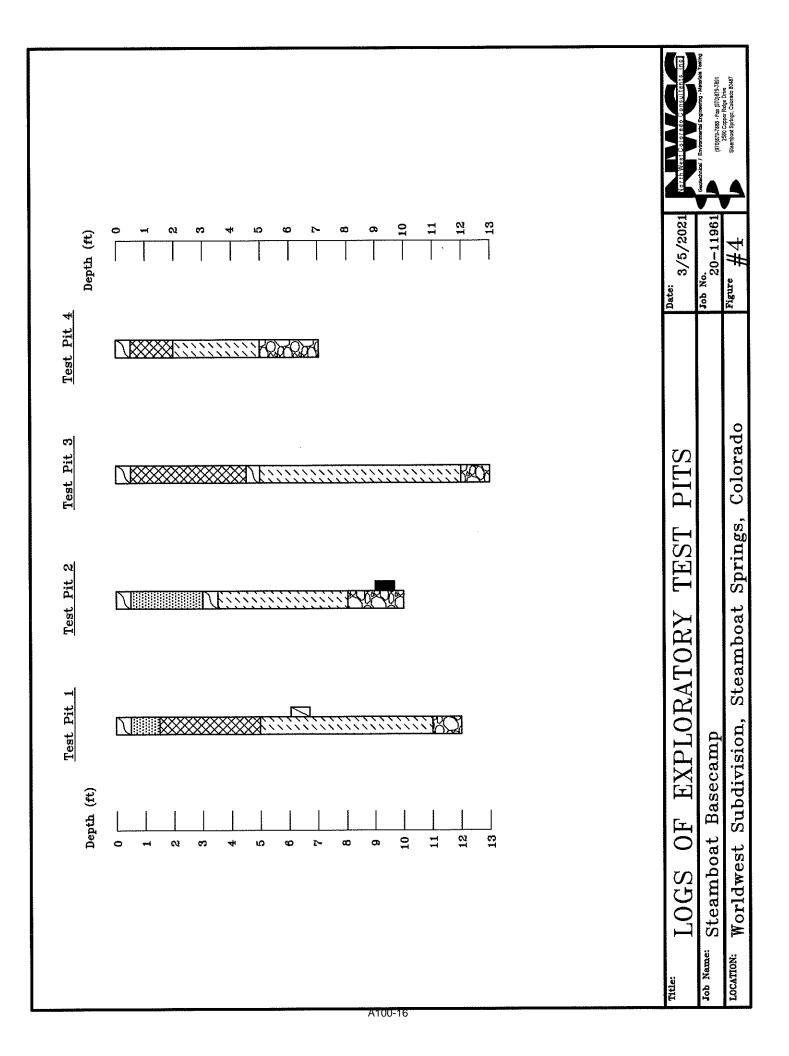
If you have any questions regarding this report or if we may be of further service, please do not hesitate to contact us.

Sincerely,


NWCC, INC.,


Timothy S. Travis, P.E.


Senior Project Engineer


Reviewed by Brian I

cc: Jake Mie

<u>LEGEND:</u>

Topsoil and organics.

SAND AND GRAVEL FILL: Silty to clayey, low to non-plastic, medium dense, moist and brown in color.

CLAY FILL: Sandy with occasional gravels and debris, low to highly plastic, medium stiff to soft, moist and brown in color.

CLAY: Slightly sandy to sandy, moderately to highly plastic, stiff, moist and brown in color.

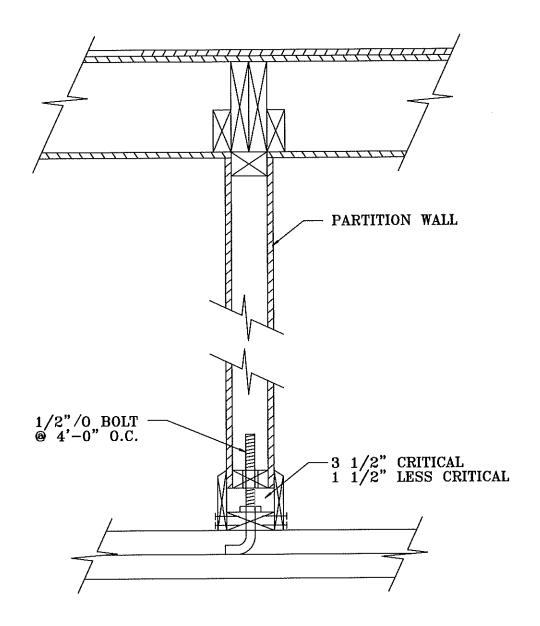
SANDS AND GRAVELS: Silty to slightly clayey, fine to coarse grained with cobbles and small boulders, very low to non-plastic, dense, moist to wet and brown to gray in color.

Drive Sample, 2-inch I.D. California Liner Sampler.

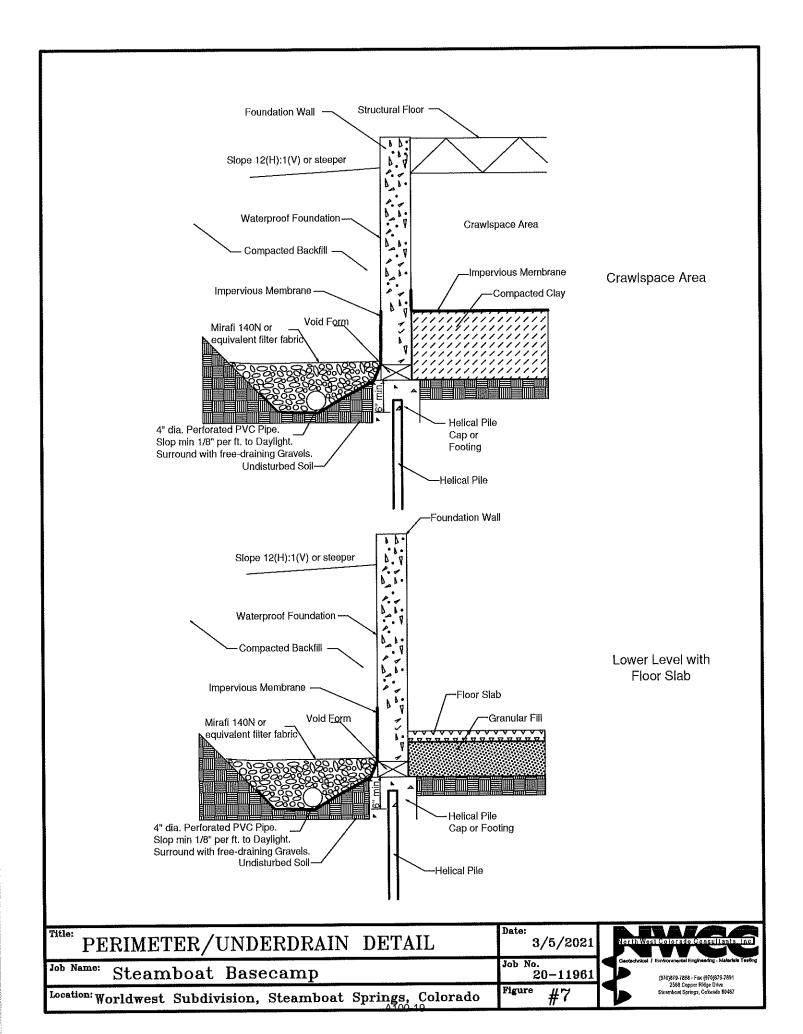
Hand Drive Sample-California Liner.

Small Disturbed Sample.

Indicates depth of practical rig refusal on cobbles.


13/12 Drive Sample Blow Count, indicates 13 blows of a 140-pound hammer falling 30 inches were required to drive the sampler 12 inches.

____ Indicates depth at which groundwater was encountered at the time of drilling.


NOTES:

- 1) Test Holes 1 through 6 were drilled on May 25, 1995 and Test Holes 7 through 9 were drilled on May 10, 2007 with a truck-mounted drill rig using 4-inch diameter continuous flight power augers. Test Pits 1 through 4 were excavated on November 11, 2020 with a Cat trackhoe.
- 2) Locations of the test holes and test pits were determined in the field by pacing from the existing structure.
- 3) Elevations of the test holes were not measured and logs are drawn to the depths investigated.
- 4) The lines between materials shown on the logs represent the approximate boundaries between material types and transitions may be gradual.
- 5) The water level readings shown on the logs were made at the time and under the conditions indicated. Fluctuations in the water levels will probably occur with time.

LEGEND AND NOTES	Date: 3/5/2021	
Job Name: Steamboat Basecamp	Job No. 20-11961	(5/0)5/5-7500 -1 27 (5/0)5/5-755/
Location: Worldwest Subdivision, Steamboat Springs, Colorado	Figure #5	2580 Copper Ridge Drive Steamboat Springs, Colorado 80487

HUNG PARTITION WALL DETAIL	Date: 3/5/2021	
Job Name: Steamboat Basecamp	Job No. 20-11961	Geotocholcal / Environmental Engineering - Meteriala Testing (970)879-7888 - Fax (970)879-7891
Location: Worldwest Subdivision, Steamboat Springs, Colorado	Figure #6	2580 Copper Ridge Drive Steamboat Springs, Colorado 80487

